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a b s t r a c t

We propose a model for porous sandstone formation from unconsolidated sand based on
a series of restructuring events where the local pressure difference due to flow in the sand
is the largest. We investigate the local and global permeability distributions after steady
state has been reached. Whereas we find no spatial correlations in the local permeability
distribution, the distribution of inverse permeability shows spatial correlations consistent
with a fractional Brownian noise characterized by a Hurst exponent of 0.88(9). The global
permeability of the system shows time fluctuations as restructuring proceeds consistent
with self-affinity characterized by a Hurst exponent of 0.25(3), crossing over towhite noise
at larger time scales.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The understanding of flow in porous media plays an essential role in essential industries such as the exploitation of oil
reservoirs. An important input in the reservoir simulators used by the industry is the permeability distribution of the grid
blocks one defines. This spatially correlated distribution is often constructed using geostatistics. A particularly promising
approach is that of fractal geostatistics [1], using the methods of artificially generating permeability landscapes that are
statistically indistinguishable from those observed in core samples [2,3].

First proposedbyHewitt [4], it is nowwidely believed that the spatial correlations seen in porositywell logs are consistent
with the signal being a fractional noise. That is, if φ(xi) is the porosity at position xi along the well, measured at intervals 1x,
and

φ̃(fk) = 1x
N−1−
j=0

φ(xi)eifj1x (1)

is the Fourier transform at discrete frequencies fk = (k − 1)1f where 1f = 2π/N1x, then the Fourier spectral density
scales as

S(fk) = |φ̃(fk)|2 ∝
1

f 2H−1
k

, (2)

where 0 < H < 1 is the Hurst exponent of the fractional noise.1
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Even though porosity is only one out ofmany variables that determine the permeability of porous rocks, several heuristic
relations between these two quantities have been proposed [1,5]. A standard correlation common in the literature is

k = a10bφ, (3)

where a and b are constants. Another much-used correlation is the Kozeny–Carman formula [6–8]

k = C
φ3

(1 − φ)2
, (4)

where C is a constant.
As long as the permeability k is a one-to-one function of the porosity φ, the permeability field will show the same scaling

properties of the spatial correlations as the porosity field. This is the case both for Eq. (3) and the Kozeny–Carman correlation
in the physical range φ ∈ [0, 1]—and should be a feature of all permeability–porosity correlations.

It is the aim of this paper to propose a mechanism by which the observed spatial correlations may have been generated.
We describe the mechanism through the introduction of a model. The model is a generalization of the Bak–Sneppen model,
which has become the quintessential example of self-organized criticality [9].

We test out the model in two dimensions, whereas natural sandstone is three-dimensional. We do therefore not expect
that the results we present in the following will be quantitatively correct. On the other hand, the flow properties of
unconsolidated granular materials in two dimensions have been investigated experimentally; see e.g. Ref. [10] and the
references therein. In such two-dimensional systems the present results should be directly applicable.

Our main result is that the ensuing permeability distribution shows white noise-type spatial correlations that even
though the ensuing permeability distribution shows white noise-type spatial correlations, the distribution of the inverse
permeability has the character of a fractional Brownian noise characterized by a Hurst exponent equal to 0.88. Through the
monotonic relation between permeability and porosity, the same properties will hold for the correlations in the porosity
distribution.

It is surprising, but no contradiction in the different correlations of the permeability and its inverse. We see e.g. a
difference in character between a stochastic function and its inverse in the common randomwalk in one dimension,whereas
the random walk itself is self-affine characterized by a Hurst exponent equal to 1/2, its inverse forms a fractal set of infinite
spikes with fractal dimension 1/2 [11]. The model consists of envisioning a granular packing which is undergoing internal
restructurings due to local pressure differences while being flooded. Wemonitor the permeability fluctuations of the entire
system as a function of time, measured in terms of the number of internal restructurings. We find that these fluctuations
are self-affine up to some crossover time scale. On larger scales than this, it becomes white noise. The Hurst exponent
characterizing the fluctuations is 0.25. We also identify two dynamical exponents, one associated with correlating the
permeabilities, and one associated with decorrelating the permeabilities, having the values 1.87 and 2.5 respectively.

In Section 2 we describe in detail the model. The following section is devoted to the results the model gives, and which
were summarized above. We conclude in Section 4.

2. Model

Wemodel the porousmedium as a square lattice placed at 45°with respect to an inlet and an outlet forming two opposite
edges of the lattice; see Fig. 1. The lattice has size L × L and the boundaries are periodic in the direction orthogonal to the
average flow direction. Each bond ij (see Fig. 1) in the lattice is a tube with a given permeability kij, a cross section w and
a length l. The fluid that flows in the network has a viscosity µ. If the pressure difference along the bond is 1pij, the flux
through bond, qij, is given by the Darcy law

qij =
kijw
µl

1pij. (5)

We assume that the disorder in the model is reflected in a distribution of permeabilities kij, while all other parameters are
constant. The bonds in the lattice represent the pore space between unconsolidated or weakly consolidated grains, whereas
the nodes of the dual lattice represent the grains; see Fig. 1. We now assume that if the pressure difference across a bond
exceeds some threshold tij, the two grains that make up the affected pore space, are perturbed. This in turn affects the six
pore spaces (bonds) that constitute the other sides of the two grains. In keeping with the philosophy of minimizing the
number of adjustable parameters, we assume that the thresholds are all equal. Hence, the bond with the largest pressure
difference across it, is the one where the next restructuring will take place. The restructuring itself is modeled through
replacing the permeability of the bond that carried the largest pressure difference and those of the neighbors defined in
Fig. 1 by new, uncorrelated permeabilities drawn from the same probability distribution as that used to generate the initial
permeabilities.

Themodel has a strong linkage to the Bak–Sneppenmodel, whichwas constructed to account for evolutionary bursts [9].
It consists of a one-dimensional chain, where each node is assigned a random number. The smallest random number is
identified and this, and its two nearest neighbors are replaced by new random numbers from the same distribution as used
initially. It is important to notice that without changing the neighbors, the distribution of numbers along the chain never
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Fig. 1. Each link in the lattice shown with thick lines or dotted lines represents the space between two adjacent sand grains. The sand grains themselves
are situated at the nodes of the dual lattice, shown with thin lines. A portion of the dual lattice is shown as dot-dashed thin bonds. The nodes of this lattice
represent the grains. The bonds of the original lattice represent the pore space between the grains. Restructuring affects the two neighboring grains to the
pore space that initiated it, shown as a dashed bond. This in turn affects the pore spaces (bonds) that are noted using dotted bonds.

reaches a steady state. Furthermore, no self-organized criticality is observed in this case. Variations of this model were used
by Török et al. [12–14] to model shear bands in granular packings. The model described in Ref. [12] was implemented on
a square lattice, each node is assigned a random number. These random numbers are interpreted as thresholds for local
restructuring caused by shear. A band of restructurings spanning the lattice in the direction parallel to the average shear
will form along the path such that sumof thresholds isminimum,minP

∑
ij∈P tij. The randomnumbers along this path are all

replaced by new ones, and the process is repeated. It was noted that this procedure leads to a slow aging in the system [14].
This aging is closely related to the non-stationarity observed in the original Bak–Sneppen model. The present model takes a
step even further way from the original Bak–Sneppenmodel than the shear bandmodel in that the extreme dynamics of the
model is connected to a pressure field that is found by solving the Kirchhoff equations for the network. The restructuring
that takes place is not directly changing the extreme value, but rather the value of the random numbers that determine the
extreme value through the solution of the Kirchhoff equations.

We solve the Kirchhoff equations using the conjugate gradient method [15]. Choosing units to that the Darcy equation
becomes qij = kij1pij, we set the pressure difference across the lattice to be equal to one, 1P1 = 1. We then determine the
pressure differences across all bonds,1p1ij, where the superscript refers to the unit pressure difference across the lattice. We
then identify

1Pb =
1

max
ij

1p1 ij
, (6)

which is the pressure difference across the lattice at which the next restructuring takes place. This is precisely the idea of
the Bak–Sneppen model, which may be seen as a one-dimensional version of the present model: local restructuring occurs
where local pressure gradient is the largest. We then calculate the permeability of the lattice,

K = K1P2
1 =

−
ij

kij(1p1ij)
2. (7)

This in turn allows us to determine the flux entering the lattice at the point of the next restructuring,

Qb = K1Pb. (8)

In order to clarify further the relation between the presentmodel and the Bak–Sneppenmodel in one dimension, consider
a chain of permeabilities—a one-dimensional porous medium. Each bond in the chain is allocated a permeability kij. The
indices i refer to the nodes. If a fluxQ is pushed through the chain, therewill be a pressure difference1P = Q/K between the
inlet and outlet of the chain, where K =

∑
ij k

1
ij. The pressure difference between neighboring nodes i and j is1pij = Q/kij. If

we assume that a rearrangement occurs for the bond with the largest pressure difference across it, which in one dimension
is given by minij kij. We then exchange the value of this permeability and its two nearest neighbors by new values. This is
precisely the Bak–Sneppen model.

3. Results

The initial permeability distributionwas chosen to be uniform on the interval [0, 1/2]. The upper limit of 1/2was chosen
such that if all kij were set to this value, the global permeability K would be equal to 1. We show in Fig. 2 (upper figure) the
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Fig. 2. Spatial distribution of local permeabilities (upper figure) and local inverse permeabilities (lower figure) on a 64×64 lattice after 1100000 updates.

Fig. 3. Distribution of local permeabilities after 1100000 updates.

permeability distribution of a 64 × 64 lattice after 1100000 restructurings. There are no discernable spatial correlation
in this distribution. Using average wavelet Coefficient method [16] to determine whether the distribution has any scaling
properties reveals no such properties. Measuring1K =


⟨K 2⟩ − ⟨K⟩2, where ⟨· · ·⟩ signifies an average over configurations,

gives 1K = 0.12 irrespective of the system size L. On the other hand, the inverse permeability distribution shows power-
law type correlations consistent with a fractional noise characterized by a Hurst exponent H = 0.88 (with an accuracy
of about 10%). This is shown in Fig. 4, where we have used the Average Wavelet Coefficient (AWC) Method to analyse
64 × 64 surfaces [16]. The average wavelet coefficients calculated along one-dimensional stripes along the surface scale
asW (a) ∼ a0.38. The Hurst exponent of the trace is then 0.38− 1/2 = −0.12. As we find a negative value, we infer that we
are dealing with a fractional noise. Following convention, we then add unity to the Hurst exponent to bring it into the unit
interval; see Footnote 1. We show in Fig. 2 (lower figure) the inverse of the permeability distribution for the same 64 × 64
lattice as shown in the upper figure. The two figures (upper and lower) look qualitatively very different.
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Fig. 4. Average wavelet coefficient (AWC) analysis of inverse permeability spatial distribution based on 64 samples of 64 × 64 lattices. The exponent of
the straight line is 0.38, corresponding to the spatial distribution being a fractional noise characterized by a Hurst exponent H = 0.88.

Fig. 5. Permeability as a function of elementary updates t rescaled by Lτ , where τ = 1.85.

Fig. 6. AWC analysis of permeability fluctuations. The straight line corresponds to a power law with exponent 0.75. Data collapse of the part having a
power law of 0.75 is achieved by scaling the wavelet coefficient W (a)s by L1.87 , while full data collapse is achieved by scaling W (a)L1.87 by L−1.87 and the
scale a by (L−1.87)1.33 .

Fig. 3 shows the steady-state permeability distribution. The extreme dynamics targets the large pressure differences
across bonds. There occur for low-permeability bonds, and, hence, these get depleted. The distribution shows as a result
a skewness towards large permeabilities. Furthermore, we note that no aging is observed in the system. This is a result of
changing not only the extreme bond, but also its neighbors.

The permeability of the lattice fluctuates as the restructurings proceed [17]. Fig. 5 shows the development of the
permeability as a function of time, measured in terms of the number of restructurings, t . By scaling the time variable by
L−1.85, the permeability curves collapse for different system sizes. Hence, we conclude that there is a correlation time tc
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Fig. 7. AWC analysis of the pressure fluctuations. The straight line corresponds to a power law with exponent 0.1. Data collapse is achieved by scaling the
wavelet coefficientW (a)s by L−1 .

Fig. 8. AWC analysis of the flux fluctuations. The straight line corresponds to a power law with exponent 0.1. Data collapse is achieved by scaling the
wavelet coefficientW (a)s by L−1 .

connected to a length scale ξ as

tc ∼ ξ τc , (9)

where τc = 1.85.We show in Fig. 6 the averagewavelet coefficient of the permeabilityW (a) as a function of time scale a. The
curves reveal a power law with an exponent 0.75, corresponding to a self-affine trace with Hurst exponent H = 0.25 (with
an accuracy of about 10%). At larger time scales, there is a crossover to a flat part. This corresponds to white noise. Without
rescaling either of the axes, the white-noise part of the curves fall on top of each other. Hence, the long-time fluctuations
of the permeability are independent of system size. However, by rescaling the ordinate in Fig. 6 by W (a) → W (a)L1.87 will
produce data collapse in the scaling part of the signal. The exponent 1.87 is the τ exponent defined in Eq. (9). Now, rescaling
the ordinateW (a)L1.87 → [W (a)L1.87]/L1.87 and the abscissa by a → a[L1.87]1/0.75 produces full data collapse. This identifies
a second dynamical exponent τd, controlling the decorrelation time td,

td ∼ ξ τd , (10)

where τd = 1.87/0.75 = 2.5.
Such a crossover to white noisemust exist, since self-affine fluctuations are not stationary and as the local permeabilities

are bounded in the interval [0, 1/2], so must the fluctuations in the global permeability.
The pressure, Pb fluctuations, and the flux,Qb, fluctuations, Figs. 7 and 8, also decorrelate towhite noise. The decorrelation

time is independent of lattice size. However, rescaling the ordinate, W (a) → W (a)/L, produces data collapse. The
significance of this scaling is that flux density and pressure gradient are the proper intensive variables. There is a scaling
part of the curves, both for pressure and flux, corresponding to a fractional Brownian motion with Hurst exponent equal
to 0.6.

Figs. 9 and 10 show histograms of the avalanches in pressure Pb and flux Qb respectively. We measure the avalanches
by recording the number of restructurings that occurs from – say – Pb drops below a certain value until it again exceeds
it. These values were chosen to be close to the median value of Pb and Qb for each lattice size L: for the pressure, we used
for L = 8, 4.1, while for the flux 2.5, for L = 16, we used the values 8 and 5 respectively, for L = 32, 15 and 10, and for
L = 64, 30 and 20. In contrast to the Bak–Sneppen model, the avalanches do not follow power laws. Rather, they follow an
exponential, with a scale that is sensitive to where the return level is set.
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Fig. 9. Avalanche distribution N in pressure Pb for 1100000 restructurings.

Fig. 10. Avalanche distribution N in flux Qb for 1100000 restructurings.

Fig. 11. Restructuring fluxQb vs. restructuring pressure Pb for three lattice sizes based on 5000 restructurings recorded after the systemhas reached steady
state. Qb and Pb have both been rescaled to reflect local quantities.

Fig. 11 shows the restructuring flux Qb plotted against the restructuring pressure Pb. Both quantities have been scaled by
1/L, obtaining data collapse. The reason for this data collapse is as in Figs. 7 and 8 that flux density and pressure gradient
are the proper intensive variables.

4. Discussion and conclusion

Wehave presented amodel based on extremedynamics for the restructuring of unconsolidated sandstone due to internal
pressure gradients. We find that the permeability distribution that emerges is spatially uncorrelated. However, the global
permeability correlations are self-affine with Hurst exponent 0.25(3) up to a decorrelation time td which scales with the
system size as Lτd , see Eq. (10), where τd is 2.5. There is also a correlation time exponent τc = 1.87; see Eq. (9).
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The spatial correlations of the permeability do not show any power-law type correlations. However, the inverse
distribution does. This is understandable from examining Fig. 3. The permeability distribution is depleted towards small
values and limited by the value 1/2 towards larger values. Even though we are not able to resolve the precise form of the
tail of this distribution towards small values, it is likely that it proceeds all the way to zero continuously. Hence, the inverse
distribution is not bounded fromabove and both fractional Brownianwalk or noise are possible candidates for characterizing
the spatial correlations. As shown in Fig. 4, we find a fractional Brownian noise with Hurst exponent 0.88(9). It is interesting
to note that in the one-dimensional Bak–Sneppen model, white noise is found for both the permeability and the inverse
permeability distribution.
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