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Outline

1. Introduction: Plasmas and the Universe
e Need to account for abundance of plasma.

e Magnetohydrodynamics widely applicable due to scale independence.

2. MHD spectral theory of static plasmas
e \Wave equation with singularities.

e Spectral structure monotonic .

3. Modifications for stationary plasmas
e Operator non self-adjoint

e Yet, (partial) monotonicity

4. Instabilities of transonic flows
e \Waves and stationary states entangled: transonic enigma.

e Transonic flows drive continuous spectum unstable.

5. Conclusions
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1. Introduction 1

Plasma |

e Astronomical observations:

Plasma is the most abundant (> 90%) state of matter in the Universe!
(recently: dark matter also has substantial plasma component)

= EXpect plasmas to play a major role in future cosmology.

e Crude definition:
Plasma is a completely ionized gas, consisting of freely moving positively charged
nuclei and negatively charged electrons.

e On Earth exceptional, obtained in laboratory thermonuclear fusion experiments at
high temperatures (" ~ 10°K). In astrophysics, plasmas ever more prominent
(stellar coronae, magnetospheres, pulsars, BH accretion disks, AGN jets, etc.).

e What is so special about plasma?

= Plasma is essentially a global state because of embedded mag netic field.
(meaningless to discuss isolated small piece of plasma)



Introduction

Standard View of Nature |

Nuclear forces

4

guarks/leptons
nuclei (+)/electrons {) 10~ m

Electrostatic forces

4

atoms/molecules 107 %m

(ordinary matter: electrically neutral)

Gravity
Y
stars/solar system 107/103 m
galaxies/ clusters 10%°/10%3 m
universe 10%% m

However, ...
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the Universe does not consist of ordinary matter |

e More than 90 % of visible matter is plasma:

Electrically neutral, but nuclei (+) and electrons (—) are not tied in atoms or molecules
but freely move about to form one collective fluid.

e Unavoidable large scale result is induction of electric currents and magnetic fields
= Plasma dynamics determined by magnetic flux conservation.

e Spherical symmetry of atomic physics and gravity not present on the plasma scale
= V - B = 0 not compatible with spherical symmetry
(causing violent disruptions of stellar magnetic configurations).

e Instead, magnetic confinement geometry of plasma  becomes the basic entity
= Either toroidal or infinitely long tubular structures.

Magnetohydrodynamics (MHD) describes intermediate level s of the Universe!
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Theoretical plasma models |

Three approaches:

Kinetic theory

U
C frequent collisions )

4

Two-fluid theory

J
(Iargescal%)

4

|
Diss. MHD

= Cslow dissipation >:>

ldeal MHD

Local (small scales)
Boltzmann f, ;(r, v,t)
+ Maxwell E, B (r, ).

Local and global
(small and large scales):

FIUId ne,i; ue,i; p@,i <r7 t)
+ Maxwell E, B (r, ).

Global (large scales):

p, v, p, B (r,1).
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ldeal MHD equations |

e Average the kinetic equations over space and time, exploit pre-Maxwell equations
displ. current & electr. forces O(v?/c?) < 1: symmetry between E and B broken]

= Electric field determined from EE = —v x B (perfect conductivity).

e Eliminating E and j yields nonlinear PDEs of ideal MHD:
dp

en +V-(pv) =0, (conservation of mass) (1)
’0(?9—:; +v-Vv)+Vp —pg — i (VxB)xB=0, (momentum) (2)
% +v-Vp+pV-v=0, (entropy) (3)
%—?—VX(VXB)ZO, V-B=0. (magnetic flux) (4)

e MHD equations are scale-independent:

Plasma size ( [y), magnetic field strength ( B;), and time scale ( t;) scale out!

Time scale from density (py) through Alfvén speed vy = By/\/topo = to = lo/va -
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Scales of actual plasmas |

lo (M) By (T) to (S)
tokamak 20 3 3 x 1076
magnetosphere Earth 4 x 107 3 x107° 6
solar coronal loop 108 3 x 1072 15
magnetosphere neutron star 10° 108 * 102
accretion disc YSO 1.5 x 10° 10~ 7 x 10°
accretion disc AGN 4 x 1018 10— 2 x 10'2
galactic plasma 102! 108 101°

(= 10°ly) (=3x10"y)

* Some recently discovered pulsars, called magnetars, teaoed
magnetic fields ol0'* T : the plasma Universe is ever expanding!
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Two approaches in plasma dynamics |

e Stay fully nonlinear = Numerical, large-scale computing
(inaccurate with respect to dynamics inside and accross magnetic surfaces).

e Split in nonlinear equilibrium and linear perturbations = Spectral theory
(restricted to small amplitudes). [Followed here: nice mathematics.]

Angle: |

Unify laboratory and astrophysical pictures of MHD waves an d instabilities

(exploiting scale-independence MHD equations) = | MHD Spectroscopy

e Originated from MHD spectral theory, and large-scale numerical computations
[many authors since 1970s]

= MHD spectroscopy for tokamaks, following example of helioseismolgy.
[Goedbloed, Huysmans, Holties, Kerner, and Poedts, Plasma Phys. Contr. Fusion 35, B277 (1993)]

= Magnetoseismology of accretion disks about compact objects.
[Keppens, Casse, and Goedbloed, ApJ 579, L121 (2002)]



2. MHD spectral theory of static plasmas 8
Linearization |
e Static equilibrium py, py, By (r):
JoXBo=Vpy+poVP,  jo=V X By, V-By=0, (5)
withBC n-By=0 (atthewall).
e Linear perturbations vy, p1, By, p1 (r,1):
5’v1 . .
POE —Vp1+J1 X Bg+Jo x By — p1 VO, (6)
0
% —v1 - Vpo —vpoV - vy, (7)
0B
6—t1 Vx(vixBy), V-B =0, (8)
dp
SRR VA 9
ot (p0V1>7 ( )
withBCs n-vy; =0, n-B;=0 (atthe wall).
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Lagrangian reduction |

e Lagrangian displacement vector field  &(r, t),

& (1)

related to plasma velocity

Dg _ 0¢ 0g
Vé&€ = = —
_— 7—\>B0\ vV = D = o +v-VE V] = 5
r permits integration of equations for p;, B1, p1, and

presentation of momentum eq. in terms of £ alone!

e Equation of motion with force operator F (‘Schrédinger equation’):

82
F(€)=—Vr—Bx (VxQ)+(VxB)xQ+(Ve)V-(p) = p 2. (10)
with shorthand notation T(=p) = —ypwV-£E—E-Vp,
Q(=B;) = Vx(&xB).

e For normal modes , £(r)e “!, eigenvalue problem:

F(&) = —pw?é = spectrum {w?} (discrete and continuous). (11)
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Hilbert space and quadratic forms |

e Inner product for vector fields & and 7) (satisfying BCs), and finite norm:

(&.m) = %/pﬁ*-nd‘/, €]l = (€, 62 < oo. (12)

e Force operator F self-adjoint linear operator in this Hilbert space:

L[ P@av = [ & Fu)av.

= Eigenvalues of p 'F real: w? either > 0 (stable) or < 0 (unstable).

e Linearized kinetic energy related to norm:

KE%/,OVQCZV%%/,OE dV = ||€|I* < oo (13)
Potential energy from energy conservation, W = —K, and self-adjointness:
W = —%/g* -F(&)dV . (14)

e Intuitive meaning: work done against the force F.
=- Energy principle with trial functions: W] > 0 (stable) or < 0 (unstable).
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Two ‘pictures’ of MHD spectral theory: |

Differential egs. Quadratic forms
(‘Schrodinger’) (‘Heisenberq’)
Equation of motion: Hamilton’'s principle:
9% b2y _ Full dynamics:
F(€)=pgs ), (K@ -wig)a=0 = ™ 22
Eigenvalue problem: Rayleigh’s principle:
413 Spectrum{w?}
F(§) = —pw? 0 ——— =0 = _
(&) P8 I[€] & eigenf. {&(r)}
Marginal equation: Energy principle:
Stability (V)
F(¢) =0 Wi[g 20 n
(€) €l < ~ &trial £(r)
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Standard theory (static plasmas) |

Solve MHD force operator equation F(§) = —pw?€ (‘Schrédinger equation’) for
cylindrical flux tube  (‘H atom’).

Project Fourier modes
&(r,0,2) = (&(r), &olr), &.(r)) T (15)
on magnetic geometry (normal, L, || B): x (=7r¢),n, (.

Elimination of n(x’, x) and {(x’, x) leads to radial wave equation:

d (N dx) N [U+K+ (K)'] V=0, [Hain & Liist (1958), (16)

dr \ rD dr D D Goedbloed (1971)]
where N, D, U, V., W are functions of  and w?.

Two kinds of singularities:

N = p*(yp + BY)(w* — w3) (Ww* — wi) = genuine continua {w?}, {w?},
[Uberoi (1972), Grad (1973)]

D = p*(w® — wyy) (w” — why) = apparent continua {w}, {wf,}-

[Appert at al., Greene (1974), Goedbloed (1998)]
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Schematic spectral structure |

e Spectrum ‘hangs’ on the continuous spectra  {w%}, {w%}, {wk(= o0)}, where
slow magneto-sonic (¢), Alfvén (1), or magno-tosonic (£) waves become singular:

BN continuum
E=== Nnon-monotonic
—  Sturmian

<— anti-Sturmian

2
{w} {0}
N _ \_ _/ N v

~

o
slow Alfvén fast

Monotonicity of spectrum outside singularities proved by splitting the quadratic
form in 3D internal product and 1D Sturm-Liouvile type expression. [Goedbloed (1974)]
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What ‘picture’ has emerged? |

MHD spectral theory is powerful organizing principle  for dynamics of macroscopic
waves and instabilities in plasmas.

Spectral structure centers about three continua {wil, {wi}, ws = .

For example, most of tokamak stability theory concerns ‘interchange’ instabilities,

l.e. cluster spectra emitted by the continua when they extend to w = 0 :
0

WA ~ Wg ~ kHB — 0, ﬁ%)HHHHOOOO_—) W (17)

n=1 2 3 4 -
which is the basis of the ballooning formalism.  [Connor, Hastie, Taylor (1979)]

The insight has been embedded in powerful numerical codes (exploiting advanced
eigenvalue solvers like Jacobi-Davidson). [Sleijpen & van der Vorst (1996)]

Folding in data obtained from large variety of diagnostics in tokamaks has led to
maturation of MHD spectroscopy for static laboratory plasmas.

MHD spectroscopy for stationar y astrophysical plasmas  still inmature: spatially
resolved observations presently absent, but will emerge in 21th century!
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Linearization for stationary plasmas |
e Stationary equilibrium  now involves background flow v:
pv-Vv+Vp=jx B, j=V xB, (19)
v-Vp+pV . -v=0, (20)
Vx(vxB)=0, V-B=0. (21)
=> Equilibrium becomes a nonlinear problem in its own right.

e Linear perturbations again representable with displacement vector field & :
F(&) + 2ipwv - V& + pw2£ =0, [Frieman, Rotenberg (1960)] (22)
F = Fstatic(€> + V- [p(V ) VV>£ — pVvVv: Vg] ) (23)

but operator no longer self-adjoint

= complex eigenvalues w!

(damped and ‘overstable’ modes).
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Cylindrical model problem |

e MHD spectral problem now involves Coriolis effects and Doppler shifts:

Fyaiic(&) + V- [p(v - VV)E] + plw+iv-V)* € =0. (24)
e Radial wave equation for cylindrical plasma is again ODE:
d [ N d - v o wy (1987),
' X N A v 5= 0 | [Bondeson et al. (1987) (25)
dr rl) dr D D Keppens et al. (2002)]

~ o~ A~ A~

where N, D, U, V, W are functions of r and the Doppler shifted frequency w :

w=w—Q(r), Qg = mug/r + ko, . (26)

e Forward (+) / backward (—) shifted genuine and apparent continua (both real!),
Q?EQoin, sz@oiwA, szioo, (27)
QF = Q£ w, Qj?o = () L wyo, (28)

determine spectral structure: clustering of complex eigenvalues towards real axis.
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Relationship between MHD and HD spectra |

e Structure MHD spectrum, with real slow, Alfv én, and fast continua [Goedbloed (2004)]:

backward forward
~ - Q% — :|:OO
fast Alfvén slow oy slow Alfvén fast Qi — QO + WA
- - - E + +
A«:»-% - —>-<— :—>-<—:—>-<— :4»/\ > W
- - + +
Qto Qso Qq Qso Qfo

()

e HD spectrum for ordinary shear flow fluid, with real flow continuum [Case (1960)]:

(-)

back ward back ward /forward forward
pmoces g mocdes pmockes
(@) Qg = mug/r+kuv,
Qr Q, 0 ;
- —_— - —
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New insights |

e InHD limit (B — 0), Alfvén and slow continua collapse into flow continuum:

O — Qy,  Q5—Qy  (QFremains attoo) . (29)

Vice versa, flow continuum is absorbed by the four MHD continua when B # 0.

=> In contrast to common beliefs, there is no separate flow continuum in MHD!
[Goedbloed et al (2004b)]

e Monotonicity of MHD spectrum along real axis could be proved for plane slab,
cylindrical plasma (with Coriolis force) required construction of a new quadratic form
() taking the place of w in the complex plane. [Goedbloed et al (2004a)]

e Significant progress in understanding of full complex spectrum (MRI, RT, KH, ...)
of thin cylindrical slice as model for accretion disk around compact object.
[Keppens et al. (2002), Blokland et al. (2005)]
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Making up the balance |

e In astrophysical plasmas stationary equilibrium flows  must appear center stage.

= Non-selfadjoint operators, Doppler shifts, eigenvalues on unknown paths in the
complex w-plane, centrifugal & Coriolis effects in curved velocity fields.

e We could trace the central structure (continua and monotonicity) along the real axis,
and are able to accurately compute full complex spectra.

e However, the big challenge is yet to come: transonic flows!

= Requires at least 2D since hyperbolicity and shocks break symmetry.

= MHD spectral theory of 2D transonic flows |

e Physical problem: In accretion disks around neutron stars or black holes, accretion—
ejection requires anomalous dissipation, i.e. small-scale instabilities. Standard
magneto-rotational instability (MRI) only operates for low magnetic field strength.

= Are there instabilities that operate at arbitrary field strength?
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Accretion disk and jets (YSO & AGN) |

Active galactic nucleus (Mx ~ 10°M):

Young stellar object (Mx ~ 1M):

1]

1000 UA
pr————————

disk: dark strip, jets: red.

Radio Galaxy 3C296
Radio/optical superposition

Copyright (c) NRAO/AUT 1999

disk: blue (optical), jets: red (radio).
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Model |

Transonically rotating magnetized (thick) disk
about compact object:
‘superposition’ of tokamak and black hole.

Assume:
Accretion speed < rotation speeds of the disk.

Investigate:
Stationary 2D equilibrium + local instabilities.

Vp, bp

Will find new instabilities driven by transonic transitions of the flow that involve singular
trans-slow Alfv én modes with a continuous spectrum  that ‘live’ on the curved
two-dimensional surfaces spanned by plasma velocity and ma gnetic field.

Gravitational parameter, measuring deviation from Keplerian flow (where I' = 1):

F(¢> — 2 129 ~ 9

ROM B RUSO
Analysis presented here, amplified with two numerical codes:

(a) Transonic equilibria: FINESSE [Belién et al. (2002)]; (b) Transonic spectra: PHOENIX.

for parallel flow
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Variational principle for stationary MHD equilibria |

Two fields: Poloidal flux 1, squared poloidal Alfvén Mach number M* = pv: /B>,

Stationary axisymmetric states obtained by minimizing Lagrangian:

5/£dV:O, L=

232

(1= M?)|Vy] -

L

Iy

115

M2

M

_|_

1 — M?

Y

Nonlinear composite functions I1; (Ai(zp); R, Z) of five arbitrary flux functions A; (1))

[streamfunction 'y, Bernoulli H, entropy S, vorticity-current density /, electr. pot. O]

relating the primitive variables p, p, v,, v,, By, B,.

Euler-Lagrange equations: PDE for ¢)(RR, Z) , algebraic for M*(R, Z) .

Substitute solution /2 back into PDE for 1) = Characteristics dz’/dy’ = £vV/A,

determined by
B? M
AP +

2_M2
s _M]%>

B2 (M2 — M2)(M>

p

< 0:
> 0 : hyperbolic .

elliptic

= Hyperbolicity for M7 < M?* < M7 (slow regime), and M* > M} (fast regime).
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Transonic enigma |

e At transonic transitions, flows change character from ellip tic to hyperbolic.

— Standard tokamak equilibrium solvers diverge in the hyperbolic regimes!

— ‘Remedy’: calculate in elliptic regimes beyond the hyperbolic ones.

e Temporal waves & spatial nonlinear stationary states becom e interconnected!

— Wave spectra cluster at continuous spectra {twgs}, {+wa}, Foo(wp):

slow Alfven fast
e A ———
| WLL L | . L ||||||||||m| 2
: .||||| 1 R
2 2
ws (*)A 00

— Hyperbolic flow regimes delimited by critical poloidal Alfvén Mach numbers:

588

/HS 83 CC/HA?T
I

Ey Hy

|
M3 1

slow Alfvén

77— M

2
M 00

fast [Goedbloed & Lifschitz (1997)]
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Transonic continuum modes |

e Singular modes localized about single magnetic/ flow surface:

n(, 9, @) ~ 6 — ) n(¥) e™ = EVP: |A-V=B-V|, V=(%{(",

R*B? B?._pRB, 2 B?._ pRB
) (‘?. ngf_ (M2 o Mg)?[a( ngpﬂ R Z(MQ o MCZ) pg [a( ngpﬂfp\
A= :
, B? _ pRB B?
\ ipF(M?* — M?) e 0 = 2)] FMZB*F + p[o((M° — Mf)? op)] )
232
B (vVpw—FM) BQP(\fp&—M]:) —a/pw
icy/p o (Vp@w — FM)B*(\/p@ — MF)

with w = w — nf) the Doppler shifted frequency in frame rotating with ang. vel. €.

e Always unstable in trans-slow ( M?* > M?) flow regime!
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: + : : + + .
Mode Iabelllng I A branches strongly interact with S;-_; and Sm+1 ;
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: : Complex eigenvalues (n = 1), parametrized with
Accretion disk ( T =2) I flux surface label s = 1'/2: Locked modes

(Re w = 0) with huge exponential growth rate!

0.2 I T T I

| |
® s: 0.0 - 0.2 (C)
® s: 0.2 -04
® s: 04 - 0.6
® s: 0.6 — 0.8
0.1 | ® s: 0.8 — 0.9 |
® s: 09-1.0
G 0.0
._E‘ .
-0.1— —
-0.2 | | | | | | |
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Re(®)



5

. Conclusions 27

MHD spectroscopy of extended magnetic flux tubes describes dynamics of magnetic
strings with traveling Alfvén wave excitations that can be observed.

The continuous spectra of transonic equilibria are explosi vely unstable for
large central mass , facilitating both accretion & ejection of jets from accretion disks
about compact objects.

With the advent of ever improving spatial resolution of astrophysical observations,
MHD spectroscopy is expected to become a fruitful theoretic al guide.

Listen to the music of the future (courtesy Igor Semenov)

and
appreciate the mathematical power of Hilbert space (1912) d  escribing it!

FOM-Institute for Plasma Physics ‘Rijnhuizen’ Astronomical Institute Utrecht %A!\\V‘s
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Euler-Lagrange equations |

e Nonlinear PDE for poloidal flux ¥)( R, Z) :

1 — M? 1 oI, 1 Ol 1 Oll;
V.( 2 vw)JrM?azp_vM?W@w_M?—l@w_O' (30)

e Algebraic Bernoulli equation for squared poloidal Alfvén Mach number M?*(R, Z):

1 11, 115 I15

[ 2 S —
2R2’V¢| M4 + M2(7+1) + (M2 _ 1)2

e Solution of Bernoulli equation depends on both 1) and V1> = non-trivial conditions
for hyperbolicity/ellipticity when inserted back into PDE for ).

0. (31)
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Variational principle for stationary TF equilibria |

e Axisymmetric equilibria from two-fluid Lagrangian: [Goedbloed, PoP 11, L81 (2004)]

5/£TF<XOM VXOH Pa; wv vwa 57 v$7 ]77 V]77 R7 Z) dV =0 (Oé = €, 7’) )

1

Vyil? —

1 _
Lrr = V| + 60’V¢|2 3 VY|

| |
2Rz P ~—1" piti =2

e Seven fields x., xi, pe, pi» ¥, ¢, V and nonlinear composites,

I(Xe, Xi) = RB, = Iy + pol(e/me)xe — (Ze/mi)xil

21 R2
pi'S; . (32)

Y. 1 € 9 e ~ ~
Fe(XeawaqbaVaR)Z) H QRQ(LG—E@D) +E€(¢*+¢>_V*—V7
1 Ze o Ze ~ -

Fixi .0, ViR, Z) = H, _2—R2<Li+E¢> _E<¢*+¢>_V*—V7

of six arbitrary stream functions H., ;, L., Sc.i(x..i) and three potentials 1, ¢, V.
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Euler-Lagrange equations (TF) |

e PDEsfor v,

1 1 € Pe!
’ e) — I e H/ Le - Le/ — - e
Y (p€R2 V. ) meRQ e He = g(le = W)L ——15 (39)
ze 1 ze pi!
) = 1A ; H/ L; + — Li/ — d ;. (34
v <sz2VX) g | U = L L] TR
e Bernoulli equations for p,, :
1 Y
2—R2|Vxe!2—peF Hg a8 =0 5 (35)
Y
2R2|VX2’2 R IOZ F ‘|‘ﬁpzv+1s =0 = Pi TT ) (36)
o PDEsforw,gb,)7:
R? 1 , e € 9 Je Ze
—V(—2V¢) = R]¢E__pe(Le__¢> +_pZ(L ‘|‘_¢) g (37)
Lo R 5 6’]’)’[,6 7o mMe my; my;
Vo = —T=—p.——p;. (38)
1 me my;
— VY = P =petpi (39)

ArG



