Magnetohydrodynamic spectral theory of laboratory and astrophysical plasmas

Hans Goedbloed

FOM-Institute for Plasma Physics 'Rijnhuizen' & Astronomical Institute, Utrecht University

[goedbloed@rijnh.nl]

1. Introduction: Plasmas and the Universe

- Need to account for abundance of plasma.
- Magnetohydrodynamics widely applicable due to scale independence.

2. MHD spectral theory of static plasmas

- Wave equation with **singularities**.
- Spectral structure monotonic.

3. Modifications for stationary plasmas

- Operator non self-adjoint
- Yet, (partial) monotonicity

4. Instabilities of transonic flows

- Waves and stationary states entangled: transonic enigma.
- Transonic flows drive **continuous spectum unstable**.

5. Conclusions

Plasma

• Astronomical observations:

Plasma is the most abundant (> 90%) state of matter in the Universe! (recently: dark matter also has substantial plasma component)

 \Rightarrow Expect plasmas to play a major role in future cosmology.

• Crude definition:

Plasma is a completely ionized gas, consisting of freely moving positively charged nuclei and negatively charged electrons.

1

- On Earth exceptional, obtained in laboratory thermonuclear fusion experiments at high temperatures ($T \sim 10^8 \,\mathrm{K}$). In astrophysics, plasmas ever more prominent (stellar coronae, magnetospheres, pulsars, BH accretion disks, AGN jets, etc.).
- What is so special about plasma?
 - ⇒ Plasma is essentially a global state because of embedded magnetic field.
 (meaningless to discuss isolated small piece of plasma)

Standard View of Nature

However, ...

the Universe does not consist of ordinary matter

• More than 90 % of visible matter is plasma:

Electrically neutral, but nuclei (+) and electrons (-) are not tied in atoms or molecules but **freely move about to form one collective fluid.**

- Unavoidable large scale result is induction of electric currents and magnetic fields
 ⇒ Plasma dynamics determined by magnetic flux conservation.
- Spherical symmetry of atomic physics and gravity not present on the plasma scale
 ⇒ ∇ ⋅ B = 0 not compatible with spherical symmetry
 (causing violent disruptions of stellar magnetic configurations).
- Instead, magnetic confinement geometry of plasma becomes the basic entity
 - \Rightarrow Either toroidal or infinitely long tubular structures.

Magnetohydrodynamics (MHD) describes intermediate levels of the Universe!

Theoretical plasma models

Three approaches:

- Local (small scales) Boltzmann $f_{e,i}(\mathbf{r}, \mathbf{v}, t)$ + Maxwell E, B (\mathbf{r}, t) .
- Local and global (small and large scales): Fluid $n_{e,i}$, $\mathbf{u}_{e,i}$, $p_{e,i}$ (\mathbf{r}, t) + Maxwell E, B (\mathbf{r}, t).
- Global (large scales): ρ , **v**, p, **B** (**r**, t).

Ideal MHD equations

- Average the kinetic equations over space and time, exploit pre-Maxwell equations [displ. current & electr. forces $\mathcal{O}(v^2/c^2) \ll 1$: symmetry between E and B broken]
 - \Rightarrow Electric field determined from $E = -v \times B$ (perfect conductivity).
- Eliminating E and j yields nonlinear PDEs of ideal MHD:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \qquad (conservation of mass) \quad (1)$$

$$\rho(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) + \nabla p - \rho \mathbf{g} - \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} = 0, \quad (momentum) \quad (2)$$

$$\frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{v} = 0, \qquad (entropy) \quad (3)$$

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0, \qquad \nabla \cdot \mathbf{B} = 0. \qquad (magnetic flux) \quad (4)$$

• MHD equations are scale-independent:

Plasma size (l_0), magnetic field strength (B_0), and time scale (t_0) scale out !

Time scale from density (ρ_0) through Alfvén speed $v_A \equiv B_0/\sqrt{\mu_0\rho_0} \Rightarrow t_0 \equiv l_0/v_A$.

Scales of actual plasmas

	l ₀ (m)	<i>B</i> ₀ (T)	t ₀ (s)
tokamak	20	3	$3 imes 10^{-6}$
magnetosphere Earth	4×10^7	3×10^{-5}	6
solar coronal loop	10^{8}	3×10^{-2}	15
magnetosphere neutron star	10^{6}	10^{8} *	10^{-2}
accretion disc YSO	$1.5 imes 10^9$	10^{-4}	$7 imes 10^5$
accretion disc AGN	4×10^{18}	10^{-4}	2×10^{12}
galactic plasma	10^{21}	10^{-8}	10^{15}
	$(= 10^5 \mathrm{ly})$		$(= 3 \times 10^7 \mathrm{y})$

* Some recently discovered pulsars, called magnetars, have record magnetic fields of 10¹¹ T : the plasma Universe is ever expanding!

Angle:

Two approaches in plasma dynamics

• Stay fully nonlinear \Rightarrow Numerical, large-scale computing

(inaccurate with respect to dynamics inside and accross magnetic surfaces).

Split in nonlinear equilibrium and linear perturbations

 Spectral theory

 (restricted to small amplitudes).
 [Followed here: nice mathematics.]

Unify laboratory and astrophysical pictures of MHD waves and instabilities (exploiting scale-independence MHD equations) \Rightarrow MHD Spectroscopy

- Originated from MHD spectral theory, and large-scale numerical computations
 [many authors since 1970s]
 - ⇒ MHD spectroscopy for tokamaks, following example of helioseismolgy.
 [Goedbloed, Huysmans, Holties, Kerner, and Poedts, Plasma Phys. Contr. Fusion 35, B277 (1993)]
 - ⇒ Magnetoseismology of accretion disks about compact objects. [Keppens, Casse, and Goedbloed, ApJ 579, L121 (2002)]

7

Linearization

• Static equilibrium ρ_0 , p_0 , \mathbf{B}_0 (**r**):

 $\mathbf{j}_0 \times \mathbf{B}_0 = \nabla p_0 + \rho_0 \nabla \Phi, \qquad \mathbf{j}_0 = \nabla \times \mathbf{B}_0, \qquad \nabla \cdot \mathbf{B}_0 = 0,$ (5)

with BC $\mathbf{n} \cdot \mathbf{B}_0 = 0$ (at the wall).

• Linear perturbations \mathbf{v}_1 , p_1 , \mathbf{B}_1 , ρ_1 (\mathbf{r}, t):

$$\rho_0 \frac{\partial \mathbf{v}_1}{\partial t} = -\nabla p_1 + \mathbf{j}_1 \times \mathbf{B}_0 + \mathbf{j}_0 \times \mathbf{B}_1 - \rho_1 \nabla \Phi, \qquad (6)$$

$$\frac{\partial p_1}{\partial t} = -\mathbf{v}_1 \cdot \nabla p_0 - \gamma p_0 \nabla \cdot \mathbf{v}_1, \qquad (7)$$

$$\frac{\partial \mathbf{B}_1}{\partial t} = \nabla \times (\mathbf{v}_1 \times \mathbf{B}_0), \qquad \nabla \cdot \mathbf{B}_1 = 0,$$
(8)

$$\frac{\partial \rho_1}{\partial t} = -\nabla \cdot (\rho_0 \mathbf{v}_1), \qquad (9)$$

with BCs $\mathbf{n} \cdot \mathbf{v}_1 = 0$, $\mathbf{n} \cdot \mathbf{B}_1 = 0$ (at the wall).

8

Lagrangian reduction

• Lagrangian displacement vector field $\boldsymbol{\xi}(\mathbf{r},t)$,

related to plasma velocity

$$\mathbf{v} = \frac{\mathrm{D}\boldsymbol{\xi}}{\mathrm{D}t} \equiv \frac{\partial\boldsymbol{\xi}}{\partial t} + \mathbf{v} \cdot \nabla\boldsymbol{\xi} \quad \Rightarrow \quad \mathbf{v}_1 = \frac{\partial\boldsymbol{\xi}}{\partial t} \,,$$

permits integration of equations for p_1 , B_1 , ρ_1 , and presentation of momentum eq. in terms of $\boldsymbol{\xi}$ alone!

• Equation of motion with force operator F ('Schrödinger equation'):

$$\mathbf{F}(\boldsymbol{\xi}) \equiv -\nabla \pi - \mathbf{B} \times (\nabla \times \mathbf{Q}) + (\nabla \times \mathbf{B}) \times \mathbf{Q} + (\nabla \Phi) \nabla \cdot (\rho \boldsymbol{\xi}) = \rho \frac{\partial^2 \boldsymbol{\xi}}{\partial t^2}, \quad (10)$$
with shorthand notation
$$\pi (\equiv p_1) = -\gamma p \nabla \cdot \boldsymbol{\xi} - \boldsymbol{\xi} \cdot \nabla p,$$

$$\mathbf{Q} (\equiv \mathbf{B}_1) = \nabla \times (\boldsymbol{\xi} \times \mathbf{B}).$$

• For normal modes, $\hat{oldsymbol{\xi}}(\mathbf{r}) \, \mathrm{e}^{-\mathrm{i}\omega t}$, eigenvalue problem:

$$\mathbf{F}(\hat{\boldsymbol{\xi}}) = -\rho\omega^2 \hat{\boldsymbol{\xi}} \Rightarrow \text{spectrum } \{\omega^2\} \text{ (discrete and continuous) }.$$
 (11)

Hilbert space and quadratic forms

• Inner product for vector fields $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ (satisfying BCs), and finite norm:

$$\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle \equiv \frac{1}{2} \int \rho \, \boldsymbol{\xi}^* \cdot \boldsymbol{\eta} \, dV, \qquad \| \boldsymbol{\xi} \| \equiv \langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle^{1/2} < \infty.$$
 (12)

• Force operator F self-adjoint linear operator in this Hilbert space:

$$\frac{1}{2} \int \boldsymbol{\eta}^* \cdot \mathbf{F}(\boldsymbol{\xi}) \, dV = \frac{1}{2} \int \boldsymbol{\xi} \cdot \mathbf{F}(\boldsymbol{\eta}^*) \, dV.$$

 \Rightarrow Eigenvalues of ρ^{-1} F real: ω^2 either ≥ 0 (stable) or < 0 (unstable).

• Linearized kinetic energy related to norm:

$$K \equiv \frac{1}{2} \int \rho \mathbf{v}^2 \, dV \approx \frac{1}{2} \int \rho \dot{\boldsymbol{\xi}}^2 \, dV \equiv \| \dot{\boldsymbol{\xi}} \|^2 < \infty \,. \tag{13}$$

Potential energy from energy conservation, $\dot{W} = -\dot{K}$, and self-adjointness:

$$W = -\frac{1}{2} \int \boldsymbol{\xi}^* \cdot \mathbf{F}(\boldsymbol{\xi}) \, dV \,. \tag{14}$$

• Intuitive meaning: work done against the force F.

 \Rightarrow Energy principle with trial functions: $W[\boldsymbol{\xi}] \ge 0$ (stable) or < 0 (unstable).

Two 'pictures' of MHD spectral theory:

Differential eqs.

('Schrödinger')

Quadratic forms

('Heisenberg')

Equation of motion: $\partial^2 \boldsymbol{\epsilon}$

 $\mathbf{F}(\boldsymbol{\xi}) = \rho \, \frac{\partial^2 \boldsymbol{\xi}}{\partial t^2}$

Eigenvalue problem:

 $\mathbf{F}(\boldsymbol{\xi}) = -\rho\omega^2 \boldsymbol{\xi}$

Marginal equation:

 $\mathbf{F}(\boldsymbol{\xi}) = 0$

Energy principle: $W[\boldsymbol{\xi}] \stackrel{>}{_{<}} 0$

 $\delta \, \frac{W[\boldsymbol{\xi}]}{I[\boldsymbol{\xi}]} = 0$

Rayleigh's principle:

Hamilton's principle: $\delta \int_{t_1}^{t_2} \left(K[\dot{\boldsymbol{\xi}}] - W[\boldsymbol{\xi}] \right) dt = 0 \quad \Rightarrow \quad \begin{array}{l} \text{Full dynamics:} \\ \boldsymbol{\boldsymbol{\xi}}(\mathbf{r}, t) \end{array}$

 $\Rightarrow \begin{array}{l} \text{Spectrum } \{\omega^2\} \\ \& \text{ eigenf. } \{\boldsymbol{\xi}(\mathbf{r})\} \end{array}$

$$\Rightarrow \begin{array}{l} \text{Stability } \binom{y}{n} \\ \& \text{ trial } \boldsymbol{\xi}(\mathbf{r}) \end{array}$$

Standard theory (static plasmas)

- Solve MHD force operator equation $\mathbf{F}(\boldsymbol{\xi}) = -\rho\omega^2 \boldsymbol{\xi}$ ('Schrödinger equation') for cylindrical flux tube ('H atom').
- Project Fourier modes

$$\boldsymbol{\xi}(r,\theta,z) = \left(\xi_r(r),\xi_\theta(r),\xi_z(r)\right) e^{i(m\theta+kz)}$$
(15)

on magnetic geometry (normal, \perp , \parallel **B**): $\chi (\equiv r\xi_r)$, η , ζ .

• Elimination of $\eta(\chi', \chi)$ and $\zeta(\chi', \chi)$ leads to radial wave equation:

$$\frac{d}{dr}\left(\frac{N}{rD}\frac{d\chi}{dr}\right) + \left[U + \frac{V}{D} + \left(\frac{W}{D}\right)'\right]\chi = 0,$$

where N, D, U, V, W are functions of r and ω^2 .

• Two kinds of singularities:

 $N \equiv \rho^2 (\gamma p + B^2) (\omega^2 - \omega_A^2) (\omega^2 - \omega_S^2) \quad \Rightarrow \text{ genuine continua } \{\omega_S^2\}, \{\omega_A^2\},$

$$D \equiv \rho^2 (\omega^2 - \omega_{s0}^2) \left(\omega^2 - \omega_{f0}^2 \right)$$

 $\Rightarrow \text{ genuine continua } \{\omega_S^2\}, \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{ genuine continue } \{\omega_A^2\}, \\ \text{[Uberoi (1972), Grad (1973)]} \\ \Rightarrow \text{[Uberoi (1973), Grad (1973), Grad (1973)]} \\ \Rightarrow \text{[Uberoi (1973), Grad (1$

 \Rightarrow apparent continua $\{\omega_{s0}^2\}, \{\omega_{f0}^2\}$. [Appert at al., Greene (1974), Goedbloed (1998)]

Schematic spectral structure

• Spectrum 'hangs' on the continuous spectra $\{\omega_S^2\}$, $\{\omega_A^2\}$, $\{\omega_F^2(\equiv \infty)\}$, where slow magneto-sonic (ζ), Alfvén (η), or magno-tosonic (ξ) waves become singular:

• Monotonicity of spectrum outside singularities proved by splitting the quadratic form in 3D internal product and 1D Sturm-Liouvile type expression. [Goedbloed (1974)]

What 'picture' has emerged?

- MHD spectral theory is **powerful organizing principle** for dynamics of macroscopic waves and instabilities in plasmas.
- Spectral structure centers about three continua $\{\omega_S^2\}$, $\{\omega_A^2\}$, $\omega_F^2 \equiv \infty$.

For example, most of tokamak stability theory concerns 'interchange' instabilities, i.e. *cluster spectra emitted by the continua when they extend to* $\omega = 0$ *:*

$$\omega_A \sim \omega_S \sim k_{\parallel} B \rightarrow 0, \qquad \xrightarrow{\mathbf{x} \quad \mathbf{x} \quad$$

Ω

which is the basis of the ballooning formalism. [Connor, Hastie, Taylor (1979)]

- The insight has been embedded in **powerful numerical codes** (exploiting advanced eigenvalue solvers like Jacobi-Davidson). [Sleijpen & van der Vorst (1996)]
- Folding in data obtained from large variety of **diagnostics in tokamaks** has led to maturation of MHD spectroscopy for <u>static</u> laboratory plasmas.
- MHD spectroscopy for <u>stationary</u> astrophysical plasmas still inmature: spatially resolved observations presently absent, but will emerge in 21th century!

Linearization for stationary plasmas

• Stationary equilibrium now involves background flow v:

$$\nabla \cdot (\rho \mathbf{v}) = 0, \qquad (18)$$

$$\rho \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = \mathbf{j} \times \mathbf{B}, \qquad \mathbf{j} = \nabla \times \mathbf{B},$$
(19)

$$\mathbf{v} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{v} = 0, \qquad (20)$$

$$\nabla \times (\mathbf{v} \times \mathbf{B}) = 0, \qquad \nabla \cdot \mathbf{B} = 0.$$
 (21)

\Rightarrow Equilibrium becomes a nonlinear problem in its own right.

• Linear perturbations again representable with displacement vector field $\boldsymbol{\xi}$:

$$\mathbf{F}(\boldsymbol{\xi}) + 2\mathrm{i}
ho\omega\mathbf{v}\cdot\nabla\boldsymbol{\xi} +
ho\omega^2\boldsymbol{\xi} = 0$$
, [Frieman, Rotenberg (1960)] (22)

$$\mathbf{F} \equiv \mathbf{F}_{\text{static}}(\boldsymbol{\xi}) + \nabla \cdot \left[\rho(\mathbf{v} \cdot \nabla \mathbf{v})\boldsymbol{\xi} - \rho \mathbf{v} \mathbf{v} \cdot \nabla \boldsymbol{\xi}\right],$$
(23)

but operator no longer self-adjoint \Rightarrow complex eigenvalues ω ! (damped and 'overstable' modes).

Cylindrical model problem

• MHD spectral problem now involves Coriolis effects and Doppler shifts:

$$\mathbf{F}_{\text{static}}(\boldsymbol{\xi}) + \nabla \cdot \left[\rho(\mathbf{v} \cdot \nabla \mathbf{v})\boldsymbol{\xi}\right] + \rho(\omega + i\mathbf{v} \cdot \nabla)^2 \boldsymbol{\xi} = 0.$$
(24)

• Radial wave equation for cylindrical plasma is again ODE:

$$\frac{d}{dr}\left(\frac{\widetilde{N}}{r\widetilde{D}}\frac{d\chi}{dr}\right) + \left[\widetilde{U} + \frac{\widetilde{V}}{\widetilde{D}} + \left(\frac{\widetilde{W}}{\widetilde{D}}\right)'\right]\chi = 0, \quad \text{[Bondeson et al. (1987),} \quad (25)$$
Keppens et al. (2002)]

where \widetilde{N} , \widetilde{D} , \widetilde{U} , \widetilde{V} , \widetilde{W} are functions of r and the *Doppler shifted frequency* $\widetilde{\omega}$:

$$\widetilde{\omega} \equiv \omega - \Omega_0(r), \qquad \Omega_0 \equiv m v_\theta / r + k v_z.$$
 (26)

• Forward (+) / backward (-) shifted genuine and apparent continua (both real!),

$$\Omega_S^{\pm} \equiv \Omega_0 \pm \omega_S \,, \qquad \Omega_A^{\pm} \equiv \Omega_0 \pm \omega_A \,, \qquad \Omega_F^{\pm} \equiv \pm \infty \,, \tag{27}$$

$$\Omega_{so}^{\pm} \equiv \Omega_0 \pm \omega_{so} , \qquad \Omega_{f0}^{\pm} \equiv \Omega_0 \pm \omega_{f0} , \qquad (28)$$

determine spectral structure: clustering of *complex* eigenvalues towards real axis.

Relationship between MHD and HD spectra

• Structure MHD spectrum, with real slow, Alfvén, and fast continua [Goedbloed (2004)]:

• HD spectrum for ordinary shear flow fluid, with real flow continuum [Case (1960)]:

New insights

• In HD limit ($\mathbf{B} \rightarrow 0$), Alfvén and slow continua collapse into flow continuum:

$$\Omega_A^{\pm} \to \Omega_0, \qquad \Omega_S^{\pm} \to \Omega_0 \qquad (\Omega_F^{\pm} \text{ remains at } \pm \infty).$$
 (29)

Vice versa, flow continuum is absorbed by the four MHD continua when $B \neq 0$. \Rightarrow In contrast to common beliefs, there is no separate flow continuum in MHD!

[Goedbloed et al (2004b)]

- Monotonicity of MHD spectrum along real axis could be proved for plane slab, cylindrical plasma (with Coriolis force) required construction of a new quadratic form Q taking the place of ω in the complex plane. [Goedbloed et al (2004a)]
- Significant progress in understanding of full complex spectrum (MRI, RT, KH, ...) of thin cylindrical slice as model for accretion disk around compact object. [Keppens et al. (2002), Blokland et al. (2005)]

Making up the balance

- In astrophysical plasmas stationary equilibrium flows must appear center stage.
 - \Rightarrow Non-selfadjoint operators, Doppler shifts, *eigenvalues on unknown paths in the complex* ω *-plane,* centrifugal & Coriolis effects in curved velocity fields.
- We could trace the central structure (continua and monotonicity) along the real axis, and are able to accurately compute full complex spectra.
- However, the big challenge is yet to come: **transonic flows!**
 - \Rightarrow Requires at least 2D since hyperbolicity and shocks break symmetry.

⇒ MHD spectral theory of 2D transonic flows

- Physical problem: In accretion disks around neutron stars or black holes, accretionejection requires **anomalous dissipation**, **i.e. small-scale instabilities**. Standard magneto-rotational instability (MRI) only operates for low magnetic field strength.
 - \Rightarrow Are there instabilities that operate at arbitrary field strength?

Accretion disk and jets (YSO & AGN)

Young stellar object ($M_* \sim 1 M_{\odot}$):

disk: dark strip, jets: red.

Active galactic nucleus ($M_* \sim 10^8 M_{\odot}$):

disk: blue (optical), jets: red (radio).

Model

- Transonically rotating magnetized (thick) disk about compact object: 'superposition' of tokamak and black hole.
- Assume: Accretion speed <
 rotation speeds of the disk.
- Investigate: Stationary 2D equilibrium + local instabilities.

- Will find new instabilities driven by transonic transitions of the flow that involve singular trans-slow Alfvén modes with a continuous spectrum that 'live' on the curved two-dimensional surfaces spanned by plasma velocity and magnetic field.
- Gravitational parameter, measuring deviation from Keplerian flow (where $\Gamma = 1$):

$$\Gamma(\psi) \equiv \frac{\rho G M_*}{R_0 M^2 B^2} \quad \left[\approx \frac{G M_*}{R v_\varphi^2} \; \text{ for parallel flow} \right].$$

Analysis presented here, amplified with two numerical codes:
 (a) Transonic equilibria: FINESSE [Beliën et al. (2002)]; (b) Transonic spectra: PHOENIX.

Variational principle for stationary MHD equilibria

- Two fields: Poloidal flux ψ , squared poloidal Alfvén Mach number $M^2 \equiv \rho v_p^2 / B_p^2$.
- Stationary axisymmetric states obtained by minimizing Lagrangian:

$$\delta \int \mathcal{L} \, dV = 0 \,, \qquad \mathcal{L} \equiv \frac{1}{2R^2} (1 - M^2) |\nabla \psi|^2 - \frac{\Pi_1}{M^2} - \frac{\Pi_2}{\gamma M^{2\gamma}} + \frac{\Pi_3}{1 - M^2} \,,$$

Nonlinear composite functions $\Pi_j(\Lambda_i(\psi); R, Z)$ of *five arbitrary flux functions* $\Lambda_i(\psi)$ [streamfunction χ , Bernoulli H, entropy S, vorticity-current density K, electr. pot. Φ] relating the primitive variables ρ , p, v_p , v_{φ} , B_p , B_{φ} .

- Euler-Lagrange equations: PDE for $\psi(R,Z)$, algebraic for $M^2(R,Z)$.
- Substitute solution M^2 back into PDE for $\psi \Rightarrow$ Characteristics $dx'/dy' = \pm \sqrt{\Delta}$, determined by

$$\Delta = \frac{\gamma p + B^2}{B_p^2} \frac{M^2 - M_c^2}{(M^2 - M_s^2)(M^2 - M_f^2)} \qquad \begin{cases} < 0 : \text{ elliptic} \\ \ge 0 : \text{ hyperbolic} \end{cases}$$

 \Rightarrow Hyperbolicity for $M_c^2 < M^2 < M_s^2$ (slow regime), and $M^2 > M_f^2$ (fast regime).

Transonic enigma

- At transonic transitions, flows change character from elliptic to hyperbolic.
 - Standard tokamak equilibrium solvers diverge in the hyperbolic regimes!
 - 'Remedy': calculate in *elliptic* regimes beyond the hyperbolic ones.
- Temporal waves & spatial nonlinear stationary states become interconnected!

- Wave spectra cluster at continuous spectra $\{\pm \omega_S\}$, $\{\pm \omega_A\}$, $\pm \infty(\omega_F)$:

- Hyperbolic flow regimes delimited by critical poloidal Alfvén Mach numbers:

Transonic continuum modes

• Singular modes localized about single magnetic / flow surface:

with $\widetilde{\omega} \equiv \omega - n\Omega$ the Doppler shifted frequency in frame rotating with ang. vel. Ω .

• Always unstable in trans-slow ($M^2 > M_c^2$) flow regime!

- MHD spectroscopy of extended magnetic flux tubes describes dynamics of magnetic strings with traveling Alfvén wave excitations that can be observed.
- The continuous spectra of transonic equilibria are explosively unstable for large central mass, facilitating both accretion & ejection of jets from accretion disks about compact objects.
- With the advent of ever improving spatial resolution of astrophysical observations, **MHD spectroscopy is expected to become a fruitful theoretical guide.**

Listen to the music of the future (courtesy Igor Semenov)

and

appreciate the mathematical power of Hilbert space (1912) describing it!

Euler-Lagrange equations

• Nonlinear PDE for poloidal flux $\psi(R,Z)$:

$$\nabla \cdot \left(\frac{1-M^2}{R^2}\nabla\psi\right) + \frac{1}{M^2}\frac{\partial\Pi_1}{\partial\psi} - \frac{1}{\gamma M^{2\gamma}}\frac{\partial\Pi_2}{\partial\psi} - \frac{1}{M^2-1}\frac{\partial\Pi_3}{\partial\psi} = 0.$$
(30)

• Algebraic Bernoulli equation for squared poloidal Alfvén Mach number $M^2(R,Z)$:

$$\frac{1}{2R^2} |\nabla \psi|^2 - \frac{\Pi_1}{M^4} + \frac{\Pi_2}{M^{2(\gamma+1)}} + \frac{\Pi_3}{(M^2 - 1)^2} = 0.$$
 (31)

• Solution of Bernoulli equation depends on both ψ and $\nabla \psi \Rightarrow$ non-trivial conditions for hyperbolicity/ellipticity when inserted back into PDE for ψ .

Variational principle for stationary TF equilibria

• Axisymmetric equilibria from two-fluid Lagrangian:

[Goedbloed, PoP 11, L81 (2004)]

$$\delta \int \mathcal{L}_{\mathrm{TF}}(\chi_{\alpha}, \nabla \chi_{\alpha}, \rho_{\alpha}, \psi, \nabla \psi, \widetilde{\phi}, \nabla \widetilde{\phi}, \widetilde{\mathcal{V}}, \nabla \widetilde{\mathcal{V}}; R, Z) \, dV = 0 \quad (\alpha = e, i) \,,$$

$$\mathcal{L}_{\rm TF} \equiv \frac{1}{2\rho_e R^2} |\nabla \chi_e|^2 + \frac{1}{2\rho_i R^2} |\nabla \chi_i|^2 - \frac{1}{2\mu_0 R^2} |\nabla \psi|^2 + \frac{1}{2}\epsilon_0 |\nabla \widetilde{\phi}|^2 - \frac{1}{8\pi G} |\nabla \widetilde{\mathcal{V}}|^2 + \frac{1}{2\mu_0 R^2} I^2 + \rho_e F_e - \frac{1}{\gamma - 1} \rho_e^{\gamma} S_e + \rho_i F_i - \frac{1}{\gamma - 1} \rho_i^{\gamma} S_i.$$
(32)

• Seven fields χ_e , χ_i , ρ_e , ρ_i , ψ , ϕ , V and nonlinear composites,

$$I(\chi_e, \chi_i) \equiv RB_{\varphi} = I_0 + \mu_0 [(e/m_e)\chi_e - (Ze/m_i)\chi_i],$$

$$F_e(\chi_e, \psi, \widetilde{\phi}, \widetilde{\mathcal{V}}; R, Z) \equiv H_e - \frac{1}{2R^2} (L_e - \frac{e}{m_e}\psi)^2 + \frac{e}{m_e}(\phi_* + \widetilde{\phi}) - \mathcal{V}_* - \widetilde{\mathcal{V}},$$

$$F_i(\chi_i, \psi, \widetilde{\phi}, \widetilde{\mathcal{V}}; R, Z) \equiv H_i - \frac{1}{2R^2} (L_i + \frac{Ze}{m_i}\psi)^2 - \frac{Ze}{m_i}(\phi_* + \widetilde{\phi}) - \mathcal{V}_* - \widetilde{\mathcal{V}},$$

of six arbitrary stream functions $H_{e,i}, L_{e,i}, S_{e,i}(\chi_{e,i})$ and three potentials ψ, ϕ, \mathcal{V} .

Euler-Lagrange equations (TF)

• PDEs for χ_{α} :

$$\nabla \cdot \left(\frac{1}{\rho_e R^2} \nabla \chi_e\right) = \frac{e}{m_e R^2} I + \rho_e \left[H_e' - \frac{1}{R^2} (L_e - \frac{e}{m_e} \psi) L_e'\right] - \frac{\rho_e^{\gamma}}{\gamma - 1} S_e', (33)$$

$$\nabla \cdot \left(\frac{1}{\rho_i R^2} \nabla \chi_i\right) = -\frac{Ze}{m_i R^2} I + \rho_i \left[H_i' - \frac{1}{R^2} (L_i + \frac{Ze}{m_i} \psi) L_i'\right] - \frac{\rho_i^{\gamma}}{\gamma - 1} S_i', (34)$$

• Bernoulli equations for ρ_{α} :

$$\frac{1}{2R^2} |\nabla \chi_e|^2 - \rho_e^2 F_e + \frac{\gamma}{\gamma - 1} \rho_e^{\gamma + 1} S_e = 0 \quad \Rightarrow \rho_e \Uparrow , \qquad (35)$$

$$\frac{1}{2R^2} |\nabla \chi_i|^2 - \rho_i^2 F_i + \frac{\gamma}{\gamma - 1} \rho_i^{\gamma + 1} S_i = 0 \quad \Rightarrow \rho_i \Uparrow , \qquad (36)$$

• PDEs for ψ , $\widetilde{\phi}$, $\widetilde{\mathcal{V}}$:

$$\frac{R^2}{\mu_0} \nabla \cdot \left(\frac{1}{R^2} \nabla \psi\right) = R j_{\varphi} \equiv -\frac{e}{e^m} \rho_e \left(L_e - \frac{e}{m_e} \psi\right)^2 + \frac{Ze}{m_i} \rho_i \left(L_i + \frac{Ze}{m_i} \psi\right)^2, \quad (37)$$

$$\epsilon_0 \nabla^2 \phi = -\tau \equiv \frac{\sigma}{m_e} \rho_e - \frac{2\sigma}{m_i} \rho_i , \qquad (38)$$

$$\frac{1}{4\pi G}\nabla^2 \widetilde{\mathcal{V}} = \rho \equiv \rho_e + \rho_i \,. \tag{39}$$