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Along the lines of nonextensive statistical mechanics, based on the entropy Sq = k(1 −
∑

i pq
i )/(q − 1) (S1 = −k

∑

i pi ln pi), and Beck-Cohen superstatistics, we heuristically
generalize Planck’s statistical law for the black-body radiation. The procedure is based
on the discussion of the differential equation dy/dx = −a1y−(aq−a1) yq (with y(0) = 1),
whose q = 2 particular case leads to the celebrated law, as originally shown by Planck
himself in his October 1900 paper. Although the present generalization is mathematically
simple and elegant, we have unfortunately no physical application of it at the present
moment. It opens nevertheless the door to a type of approach that might be of some
interest in more complex, possibly out-of-equilibrium, phenomena.

We normally obtain the statistical mechanical equilibrium distribution by

optimizing, under appropriate constraints, an entropic functional, namely the

Boltzmann-Gibbs (BG) entropy SBG = −k
∑

i pi ln pi. The success and elegance of

this variational method are unquestioned. But at least one more possibility exists,

namely through differential equations. Such a path is virtually never followed. In-

deed, such an approach might seem quite bizarre at first sight. But we should by

no means overlook that it has at least one distinguished predecessor: Planck’ s law

for the black-body radiation. Indeed, Planck published two papers on the subject

in 1900. The first one in October, the second one in December 1. The bases of

both of them were considered at the time as totally heuristic ones, although kind

of different in nature. The second paper might be considered as a primitive form of

what has now become the standard approach to statistical mechanics, based on the

optimization of an entropy functional, the connection with Bose-Einstein statistics,

and, ultimately, with the Boltzmann-Gibbs thermal theory for a quantum harmonic

oscillator 2. The first paper 3, however, is totally based on simple arguments re-

garding an ordinary differential equation. It is along this line that the present paper
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is constructed.

If SBG is extremized under appropriate constraints, we obtain the famous BG

weight p(E) = p(0) e−βE. This distribution can be seen as the solution of the dif-

ferential equation dp/dE = −βp . Since more than one decade, a lot of effort is

being dedicated to the study of the so called “nonextensive statistical mechanics”,

based on the generalized entropy Sq = k(1−
∑

i pq
i )/(q− 1) (S1 = SBG) 4 (for a re-

view, see 5). The extremization of this entropy under appropriate constraints yields

p(E) = p(0) e−βE
q , where ex

q ≡ [1 + (1 − q)x]1/(1−q) (ex
1 = ex). This distribution,

which has been shown to emerge in many natural and artificial systems 5, can be

seen as the solution of the differential equation d[p/p(0)]/dE = −β[p/p(0)]q. As a

next step, we may consider even more complex systems, namely those which exhibit,

for increasing E, a crossover from nonextensive to BG statistics. Such appears to

be the case of cosmic rays 6. Such situations can be handled with a differential

equation which unifies the previous two ones, as follows:

d[p/p(0)]

dE
= −β1[p/p(0)] − (βq − β1)[p/p(0)]q . (1)

Excepting for the fact that here q may be noninteger, this differential equation is a

particular case of Bernoulli’ s differential equation. Its solution is given by

p(E) =
p(0)

[

1 +
βq

β1

(

e(q−1)β1E − 1
)

]
1

q−1

, (2)

which precisely exhibits the desired crossover for q > 1 and 0 < β1 << βq . Indeed,

for (q − 1)β1E << 1 we have that p/p(0) ∼ e
−βqE
q , whereas, for (q − 1)β1E >> 1,

we have p ∝ e−β1E .

In the limit βq/β1 → ∞ and p(0)β1/βq → C, where C is a constant, Eq. (2)

becomes

p(E) =
C

[

e(q−1)β1E − 1
]

1

q−1

, (3)

which, for q = 2, becomes

p(E) =
C

eβ1E − 1
. (4)

If we multiply this statistical weight by the photon density of states g(E) ∝ E2 and

by the energy E, we have the celebrated frequency spectral density

u(ν) ∝
ν3

ehν/kBT − 1
, (5)

where we have identified β1 → 1/kBT and E → hν. It is in this precise sense that

Eq. (3) (hence Eq. (2)) can be seen as a generalization of Planck statistics.

For q > 1, Eq. (3) can be written as

p(E)

C
=

∞
∑

n=0

d(n, q) e−β1En , (6)
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Figure 1. Degeneracy d(n, q) as function of q (n = 0, 1, 2, 3); q = 2 corresponds to Planck law.

where

En ≡ [(q − 1)n + 1] E ∝ n +
1

q − 1
, (7)

and

d(n, q) ≡
Γ

(

n + 1
q−1

)

Γ
(

1
q−1

)

Γ (n + 1)
, (8)

Γ(x) being the Gamma function. We may now follow Planck’ s path in his December

1900 paper, where he introduced the discretization of energy that eventually led to

the formulation of quantum mechanics. Consistently, we may interpret En as a

discretized energy and d(n, q) as its degeneracy. We see that, ∀q > 1, the spectrum

is made of equidistant levels, like that of the quantum one-dimensional harmonic

oscillator. The situation is definitively different in what concerns the degeneracy

(see Fig. 1). Only for q = 2 we have the remarkable property d(n, 2) = 1 (∀n),

which recovers the harmonic oscillator problem.

At this point, let us emphasize that any thermostatistical weight (that of ther-

mal equilibrium for instance) reflects the microscopic dynamics of the system. This
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fact was addressed by Einstein in 1910 7, and was recently revisited by several au-

thors (see 8, for instance). It was shown also, on quite general grounds, in 9. In

the same vein, a dynamical theory of weakly coupled harmonic oscillators system

was recently used for deducing the functional relation between energy variance and

mean energy that was conjectured by Einstein in connection with Planck’ s for-

mula, thus exhibiting that it is a consequence of pure dynamics 10. It is within this

dynamical interpretation that Beck and Cohen introduced their superstatistics11.

Indeed, nonequilibrium systems might exhibit spatio-temporal fluctuations of inten-

sive quantities, e.g., the temperature. They assumed then that the inverse temper-

ature β might itself be a stochastic variable, such that the generalized distribution

of energy is expressed as

p(E)

p(0)
=

∫ ∞

0

dβf(β)e−βE , (9)

where the distribution f(β) satisfies
∫ ∞

0 dβf(β) = 1. The effective statistical me-

chanics of such systems depends on the statistical properties of the fluctuations of

the temperature and similar intensive quantities. Naturally, if there are no fluc-

tuations of intensive quantities at all, the system must obey BG distribution (i.e.,

f(β) = δ(β − 1/kBT )). They also showed that, if f(β) is the γ-distribution (see

also 12), one obtains the q-exponential weight of nonextensive statistical mechanics.

Moreover, for small variance of the fluctuations, the nonextensive statistical distri-

bution is once again reobtained. See 13 for an entropic functional which, extremized

under appropriate constraints, recovers the distribution of superstatistics.

We straightforwardly obtain, through Laplace transform, that the superstatis-

tical distribution f(β) corresponding to the p(E)/p(0) given by Eq. (2) is

f(β) =

(

β1

βq

)
1

q−1
∞
∑

n=0

d(n, q)

(

1 −
β1

βq

)n

δ (β − β1[(q − 1)n + 1]) . (10)

Moreover, we define

q
BC

≡
〈β2〉

〈β〉2
, (11)

where 〈...〉 ≡
∫ ∞

0 dβf(β)(...). The notation q
BC

(BC stands for Beck-Cohen) has

been introduced to avoid confusion with the present q. Only when f(β) equals the

γ-distribution we have qBC = q. Using Eq. (10) and integrating we obtain

〈β〉 = βq and 〈β2〉 = β2
q

(

q − (q − 1)
β1

βq

)

. (12)

Replacing(12) into (11) we obtain

β1

〈β〉
=

q − q
BC

q − 1
(1 ≤ qBC ≤ q) . (13)
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Figure 2. Functions p(E)
p(0)

(left) and f(β) (right) for 〈β〉 = 1. (a) Boltzmann-Gibbs distribution
[

p(E)
p(0)

= e−E ; f(β) = δ(β−1)
]

; (b) q = qBC = 1.8 distribution
[

p(E)
p(0)

=
√

0.8
π

Γ(1.25)
Γ(0.75)

1
(1+0.8E)1.25 ;

f(β) = β0.25

0.81.25Γ(1.25)
e−1.25β

]

; (c) (q, qBC) = (2, 3/2) distribution
[

p(E)
p(0)

=
(2 ln 2)−1

2eE/2
−1

; f(β) =

1
2
[δ(β − 1

2
) + 1

2
δ(β − 1) + 1

4
δ(β − 3

2
) + ...]

]

; (d) (q, qBC) = (3/2, 5/4) distribution
[

p(E)
p(0)

=

[4(1−ln 2)]−1

(2eE/4
−1)2

; f(β) = 1
4
[δ(β − 1

2
) + δ(β − 3

4
) + 3

4
δ(β − 1) + ...]

]

. In the cases (a,c,d), what is

represented is not f(β) strictly speaking, but rather the weights of the Dirac delta’s.

It is worthy remarking that, for all admissible f(β), we can write the asymptotic

expression p(E)/p(0) = 〈e−βE〉 ∼ e−〈β〉E(1 + σ2E2

2 ), where σ ≡
√

〈β2〉 − 〈β〉2 =

(q
BC

− 1)〈β〉 → 0.

Finally, we may rewrite distribution (2) as follows:

p(E)

p(0)
=

[

1 +
q − 1

qBC − q

(

1 − e(q−q
BC

)〈β〉E
)

]− 1

q−1

, (14)

hence, through Laplace transform,

f(β) =

(

q
BC

− q

1 − q

)
1

q−1
∞
∑

n=0

d(n, q)

(

q
BC

− 1

q − 1

)n

δ

[

β − 〈β〉
(q − q

BC
)

(q − 1)
[(q − 1)n + 1]

]

(15)

Observe that, for all q, if q
BC

→ 1 we obtain the BG distribution. In addition,

we see that β generically assumes discrete values in f(β) . If we focus on the limit

of continuous values for β, we must have (using Eq. (10)) ∆β ≡ β(n + 1)− β(n) =

β1(q − 1) → 0, and this is obtained (see Eq. (13)) when 〈β〉 → 0 (i.e., high



May 18, 2006 15:2 Proceedings Trim Size: 9.75in x 6.5in SouzaTsallisErice.TEX

6

temperature) or q
BC

→ q (i.e., q-statistics) . In Fig. 2 we present typical examples

of pairs
(

p(E)/p(0), f(β)
)

.

Summarizing, we obtained the distribution corresponding to the differential

equation (1), expected to characterize a class of physical stationary states where a

crossover occurs between nonextensive and BG statistics. This led us to a possi-

ble generalization of Planck law. We obtained also the Beck-Cohen superstatistical

distribution f(β) associated with such type of crossovers between statistics. Along

similar lines, it is possible to study crossovers between q and q′ statistics, with

eventual applications in turbulence and other complex phenomena.
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