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Are all highly liquid securities within the same class?

S.M.D. Queirósa
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Abstract. In this article we analyse the leading statistical properties of fluctuations of (log) 3-month US
Treasury bill quotation in the secondary market, namely: probability density function, autocorrelation,
absolute values autocorrelation, and absolute values persistency. We verify that this financial instrument,
in spite of its high liquidity, shows very peculiar properties. Particularly, we verify that log-fluctuations
belong to the Lévy class of stochastic variables.
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Financial markets have become a paradigmatic example of
complexity and the focus of plenty of work within physics.
Specifically, several techniques, mainly related to statis-
tical physics (e.g., stochastic dynamics, theory of criti-
cal phenomena or nonlinear systems), have been applied
either to reproduce or simply verify several properties,
e.g., the probability density functional form (PDF), or
the autocorrelation function (ACF) of financial observ-
ables [1–3]. The systematic (asymptotic) power-law be-
haviour found for quantities such as price/index fluctu-
ations, or traded volume has been pointed out to be at
the helm of the multifractal character of financial time se-
ries [4], a feature that is also regular in out-of-equilibrium
systems [5]. On the account of the background on this
type of phenomena, in which scale invariance also rules, it
has come out the endeavour to identify universality classes
for financial markets defined by the exponents that char-
acterise their main statistical properties. Explicitly, these
classes indicate the existence of a common behaviour for
systems within the same class apart their microscopic or
specific details [6]. On this way, it has been suggested [6]
that financial products like securities with a very high level
of liquidity (high trading activity) might present similar
characteristics. As an example, it has been shown that, de-
spite of the fact that in their essence stocks and commodi-
ties are completely different financial instruments (secu-
rities), their (daily) price fluctuations behave on a very
similar way, i.e., they can be enclosed in the same class [7].
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Within securities are also public debt bonds like
United States (US) Treasury bills [8,9]. The US Trea-
sury bills (T-bills) are marketable bonds issued by the US
federal government and represent one of the debt financ-
ing instruments used by the Treasury Department [10].
T-bills are classified as zero-coupon bonds that are sold
in the primary market at a discount of the face value in
order to present a positive yield to maturity which can be
28 (1 month), 91 (3 months), or 182 (6 months) days. In
regard of this, they are considered to be the most risk-free
investment in the USA. This makes of T-bills an impor-
tant and heavily traded (i.e., highly liquid) financial in-
strument in the secondary market where they are quoted
on an annual percentage yield to maturity.

In the sequel of this article we study some of the main
statistical features of the 3-month US T-bills traded on the
secondary market. Our time series, {Qt}, which is named
DTB3 by the Federal Reserve, is composed by 3-month
US T-bill daily prices and runs from the 4th January 1954
up to the 26th February 2007 in a total of 13866 trading
days [11]. Our choice for a maturity of 3 months is justi-
fied by the fact that it is the most used interest rate matu-
rity in derivative financial products like call-put options.
To compare the statistical properties of DTB3 daily log-
value fluctuations, r̃t = lnQt − ln Qt−1, we use the daily
log-index fluctuations, r̃′t = ln St − ln St−1, of SP500 time
series, {St}, which runs the same time interval as DTB3.
Both fluctuation time series, {r̃t} and {r̃′t} have been sub-
tracted of respective averages,

〈
r̃
(′)
t

〉
, and normalised by

standard deviation σr̃(′) , i.e., r
(′)
t =

[
r̃
(′)
t −

〈
r̃
(′)
t

〉]
/σr̃(′) .

(from here on the prime stands for SP500 quantities, and
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Fig. 1. (Colour online) Autocorrelation function equation 1, C (τ ) vs. τ of r
(′)
t (left panel) and

∣∣∣r(′)
t

∣∣∣ in a log-log scale (right

panel). It is visible that rt is correlated for immediate correlations and presents measurable correlations every multiple of 5 days

lag. The autocorrelation of
∣∣∣r(′)

t

∣∣∣ can be described by equation (2) with qc = 4.7 ± 0.1, T = 0.45 ± 0.05 (χ2/n = 2 × 10−4,

R2 = 0.9) for DTB3, and q′c = 4.3 ± 0.1, T ′ = 0.77 ± 0.05 (χ2/n = 10−4, R2 = 0.9) for SP500. The dashed line in left panel
represents three times the noise level bounds.

x is used in definitions to represent any observable upon
analysis).

Moving ahead, we shall now analyse and compare
primary and more usually studied statistical features.
Commencing with the analysis of ACF,

Cx (τ) =
〈xt xt+τ 〉 − 〈xt 〉2

〈x2
t 〉 − 〈xt 〉2

, (1)

we have verified a noteworthy difference between {rt} and
{r′t}. Firstly, as depicted in Figure 1, Cr (1) clearly exceeds
three time noise level within which typical interday cor-
relation values of SP500 and other indices as well [1] lay
in. Additionally, correlation values greater than noise level
have been measured at least for lag τ = 5, 10 days. We at-
tribute the origin of this feature to the fact that T-bills are
weekly (5 trading days) sold at the primary market. Con-
cerning the ACF of absolute values, we have not observed
any relevant differences. Both curves are fairly described
by (asymptotic power-law) q

(′)
c -exponential functions,

C|r(′)| (τ) =
[
1 −

(
1 − q(′)

c

)
T (′) τ2

] 1

1−q
(′)
c , (2)

where q
(′)
c gives the decaying exponent, and T (′) charac-

teristic parameter. The value qc = 4.7 ± 0.1 is not far
from q′c = 4.3 ± 0.1, and both are in accordance with
previous values obtained for SP500 [12] or DJIA equi-
ties [13]. For T (′) we have obtained T = 0.45 ± 0.05, and
T ′ = 0.77 ± 0.05.

Stronger dissimilarity has appeared on the PDFs,
which we have fitted for q-Gaussian distributions,

Gq (x) = A
[
1 − (1 − q) B x2

] 1
1−q , (q < 3) , (3)

where A is the normalisation, and B is re-
lated to the “width” of the distribution deter-
mined by its q-generalised second order moment,

σ 2
q =

∫
x2 [P (x)]q dx/

∫
[P (x)]q dx, in the form,

B =
[
σ 2

q (3 q − 1)
]−1 [14]. When q < 5/3, standard

deviation is finite and the equality B =
[
σ2 (5 − 3 q)

]−1
is

also valid. For q < 3, Distribution (3) emerges from
optimising non-additive (Tsallis) entropy upon appro-
priate constraints [15]. In the limit q → 1 the Gaussian
distribution is obtained, G1 (x) ≡ G (x). Regardless both
of the two fluctuations are well described by equation (3),
the values of q are qualitatively quite different. Namely,
we have obtained the best fit for q = 1.72 ± 0.02 for
DTB3, and q′ = 1.49± 0.01 for SP500 (see Fig. 2)1. The
latter is in accordance with prior analysis [1–3,12,16].
Such a disparity has clear implications on the attrac-
tor in probability space of each observable when we
consider the addition of fluctuations defining variable
R

(′)
N, t ≡

∑N−1
i=0 r

(′)
t+i. Since the two signals are essentially

uncorrelated, in the sense that ACF rapidly attains at
noise level, standard central limit theorems do apply [17].
In other words, for SP500, by reason of its entropic index
q is smaller than 5

3 , σ′ is finite, hence the convolution
of PDF log-SP500 fluctuations leads to the Gaussian
distribution, G (R′

N ) = 1√
2 π N (σ′)2

exp
[
− R′

N

2 N (σ′)2

]
(for

N → ∞, and since the daily time series has been
normalised upon a finite series, σ′ ≈ 1). Conversely, the
entropic index for DTB3 is greater than 5

3 , which makes
σ actually incommensurable. Thus, according to the
Lévy-Gnedenko central limit theorem [17], the attracting
distribution (for N → ∞) is an α-stable distribution,

Lα (RN ) =
1

2 π

∫ +∞

−∞
exp [−i k RN − a |k|α] dk, (4)

1 We have also used the Hill estimator to evaluate tail expo-
nents. Due to series length and error margins we cannot rely
on the results obtained by this method, although considering
error margins they accord with q(′) values.
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Fig. 2. (Colour online) Left panel: PDF, P (r) vs. r in log-linear scale. Symbols are obtained from data and the full line represents
the best numerical adjustment for equation (3), with q = 1.72 ± 0.02 and B = 5.9 ± 0.4 (R2 = 0.96 and χ2/n = 3 × 10−3).
The dotted line is the best fit for Gq (r), but imposing q = q′ = 1.49 as in SP500 case shown at the in-set (B′ = 2.23 ± 0.09,
R2 = 0.99, and χ2/n = 3 × 10−4 ). The dashed line represents the best fit with q = 1.666 (B = 8.2 ± 0.6) (on the edge of

finite variance). Right panel: P ′ (RN ) = P (RN )
P (0)

N1/α. vs. RN N−1/α for N = 1, 5, 20, 100 days in log-log scale. The asymptotic

collapse of the curves, described by a tail exponent of 1 + α = 2 1
q−1

= 2.77 is visible.

with α = (3 − q) / (q − 1), which follows, for large N , the
scaling law Lα (RN ) = N−1/αLα

(
RN

N1/α

)
, and Lα (RN ) ∼

R−α−1
N . As it is visible in Figure 2, the PDFs of properly

scaled RN variables obtained from r (t) signal asymptot-
ically collapse exhibiting a tail described by α ≈ 1.77,
as it happens for variables whose attractor is a α-stable
distribution (see Ref. [18]). This constitutes, in our point
of view, a substantial difference between 3-month T-bill
daily fluctuations and other financial fluctuations, by the
fact that it represents a drastic change of the attractor.

Within a macroscopic framework, the long-lasting
form of the absolute price fluctuations ACF has been held
responsible for the non-Gaussian behaviour of financial
securities fluctuations [19,20]. To further analyse the per-
sistency of absolute fluctuations, we have applied the DFA
method to assess the Hurst exponent, H , of

∣∣∣r(′)
t

∣∣∣ time se-

ries and shuffled
{∣∣∣r(′)

t

∣∣∣
}

(procedure presented in [21]).
The results are exhibited in Figure 3, where N represents
the length of the time series [21]. For N > 40 we have ver-
ified that DTB3 presents a strong persistent behaviour as
SP500 does with H = 0.90 ± 0.02 and H ′ = 0.90 ± 0.03.
For N < 40 we verify a crossover, but this time index and
T-bill fall apart with H = 0.50 ± 0.02 (like a Brownian
motion) and a specious H ′ = 0.27 (antipersistency). It is
known that the presence of spikes and locality on persis-
tency might introduce spurious features on DFA analy-
sis [22–24] of persistent signals leading to H < 1/2 values
for small N . We attribute to this fact the emergence of
H ≤ 1/2 values.

Another property we have analysed are the correla-
tions between fluctuations and absolute fluctuations [25],

L (τ) =

〈
r
(′)
t

[
r
(′)
t+τ

]2
〉

〈[
r
(′)
t+τ

]2
〉2 . (5)

Fig. 3. (Colour online) Left panel: Root-mean-square devi-
ation F (N) vs. N for integrated absolute fluctuations time
series of DTB3 (squares), and SP500 (circles). The full sym-
bols are from the ordered series and empty symbols from shuf-
fled signals. For large N we have measured a Hurst exponent
of 0.90 ± 0.02 (DTB3), and 0.90 ± 0.03 (SP500). For small
N , T-bills absolute fluctuations log-fluctuations presents a be-
haviour similar to white noise while SP500 exhibits a antiper-
sistent behaviour.

It has been verified in several securities and financial in-
dices that L (τ) = 0 for τ < 0, and L (τ) ∼ − exp [−τ/λ]
for τ ≥ 0. This behaviour, known has leverage effect [26],
is intimately related to risk-aversion and negative skew
of price fluctuations PDF. In defiance of the noisy L (τ)
which has inhibited us to present a trusty quantitative
description, it is plausible to affirm that DTB3 fluctua-
tions also show time symmetry breaking, but in an an-
tisymmetrical fashion, L (−τ) = −L (τ), as it is under-
standable from Figure 4. For τ < 0, there is a posi-
tive correlation between fluctuations and future absolute
fluctuations, whereas for τ > 0, there exists a negative
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Fig. 4. (Colour online) L (τ ) vs. τ of DTB3 (a), and shuffled {rt} (b). Comparing both panels and taking into account noise
level (dashed lines) it is visible the existence of a functional form for L (τ ). Panel (c): L (τ ) for τ > 0 and −L (−τ ) for τ < 0 vs.
τ . At panel (d), L (τ ) vs. τ of SP500 for mere illustration purposes.

correlation between fluctuations and future absolute
fluctuations. This antisymmetric behaviour has clear
implications on dynamical mimicking. As an example, the
Heston approach to financial fluctuations [27,28], in which
the noises of stochastic equations for the fluctuation and
instantaneous variance are anti-correlated, must be mod-
ified in order embrace our empirical observations of T-bill
log-fluctuations.

To summarise, in this article we have analysed a set of
statistical properties of daily fluctuations of the 3-month
T-bill trading value, a highly liquid security. Our results
have shown important differences between this financial
instrument and a paradigmatic example of financial secu-
rities statistical properties, the daily fluctuations of SP500
index which also presents similar properties to other debt
bonds [1]. Specifically, we have verified that T-bill daily
fluctuations PDF belong to the α-stable class of distribu-
tions, while other liquid securities that have been stud-
ied so far present the Gaussian distribution as the attrac-
tor in PDF space. This represents a fundamental justi-
fication for the well-known difficulties on the construc-
tion (namely specification) and implementation (namely
identification and estimation) of generalised spot inter-
est rate models [29], which are always built assuming a

finite standard deviation, unlike Lévy-Gnedenko class of
random variables. Moreover, we have unveiled that the
fluctuations-fluctuations magnitude correlation function
presents an antisymmetric form, i.e., a different behaviour
than the “leverage effect” that has been verified in other
securities.

Our results emphasise the idea that liquidity is not the
only factor to take into account when we aim to define
a behavioural class for financial securities [7,30]. Proper-
ties such as the nature of the financial instrument under
trading are actually relevant for its dynamics and cate-
gorisation. We address to future work the development of
dynamical scenarios capable of reproducing the statistical
properties we have presented herein.
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