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Abstract. One of the best-known methods to measure the heat capacity of solids
consists in the illumination of the sample and the analysis of the thermal relax-
ation when the illumination is stopped. In this work, the energy balance equation
with heat losses due to radiation is solved exactly. This is used to establish the
limits of the usual approximations used to obtain the heat capacity from the expe-
rimental data. It is shown that large temperature changes, induced by the heat
source during the experiment can generate errors in the calculation of heat capac-
ity when the traditional approach is used.

1 Introduction

In the thermal relaxation method, a thin sample is attached to a holder and isolated from
the surrounding environment inside a Dewar chamber in which a vacuum of around 1mtorr is
present. The sample previously blackened with a very thin layer of black paint, is illuminated
by a continuous light source. The time that the sample takes to heat or to cool when the
illumination is interrupted is used to determine the heat capacity [1–3]. In this configuration
the losses due to convection and conduction can be minimized. The theoretical approach that
is used is based on the energy balance equation with heat losses due only to radiation and it is
considered that the changes of temperature are much lower than the bath temperature.
In this paper it is shown that, the energy balance equation with losses by radiation for plate

shape solid, can be solved exactly. We get the temperature evolution as a function of time,
and these results can be used to determine the heat capacity with higher accuracy than the
traditional methods. It is also shown that the theoretical predictions of previous works can be
obtained and that the limits and applicability of the usual approach can be explored.

2 Theory

Let the intensity of the heat flux be given by a continuous light beam of power P0. When the
light is turned on, the temperature of the sample is increased from the bath temperature to a
maximum temperature. On the other hand, when the light is turned off, the temperature de-
creases, from the maximum temperature to the bath temperature. The energy balance equation
can be written as

∂Q

∂t
= P0 − PR, (1)
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Fig. 1. Mathematical simulation on equations (3) and (4).

where, Q(t) = ρcpV∆T is the heat given (transferred) to the sample when it increases (de-
creases) its temperature by ∆T . Here, ρ is the density, cp is the specific heat at constant
pressure, V is the volume of the sample, P0 is the power of the incident light, and PR
is the heat lost by radiation, which is given by the Stefan-Boltzmann law, PR = A εσ (T

4−T 4b ).
A is the total area of the sample, ε is the emissivity, σ is the Stefan-Boltzmann constant (5.670
× 10−8 JK−4m−2 s −1), Tb is the bath temperature and T (t) is the temperature at any time.
The differential equation to be solved in case of the cooling and heating of the sample is

d∆T

dt
=
Aσε

ρCV
[T 4∞ − T 4(t)]. (2)

Here, T (t) = T0 + ∆T (t), T0 is the initial temperature and T∞ is the temperature when the
sample has reached the equilibrium. The initial condition to be fulfilled is ∆T (0) = 0. Solving
the Eq. (2) we find

exp

(
− t
τ

)
=

(
T∞ + T0
T∞ − T0

)(
T∞ − T
T∞ + T

)
exp

{
−2
[
tan−1

(
T

T∞

)
− tan−1

(
T0
T∞

)]}
, (3)

with τ = ρcp l/8σT
3∞ the thermal relaxation time that provides the heat capacity per unit

volume and l is the sample thickness. On the other hand, in the conventional approach, the
approximation, it is considered that the changes during the measurement are not large, i.e.
∆T � T0, and therefore: T 4 = (T0+∆T )4 ≈ T 40 + 4T 30∆T , and therefore the simpler equation
is obtained:

∆T = T ∗ − T0 =
(
T 4∞ − T 40
4T 30

)[
1− exp

(
− t
τ∗

)]
(4)

with τ* = (ρcp) ∗ l/8σ T30 [2,3].

3 Results and discussion

For the case when the light beam is obstructed, T∞ corresponds to the environmental tem-
perature and T0 to the maximum temperature reached by the illumination. As can be easily
observed, the difference in the relaxation times, τ and τ∗ leads to different values of the heat
capacity. In fact, using the expressions for such quantities the following relation is obtained:

(ρcp)

(ρcp)∗
=

(
T∞
T0

)3
τ

τ∗
. (5)

The error introduced in the measurement will be larger when the initial and final temperatures
differ appreciably. Using mathematical simulation on equations (3) and (4), it can also be
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Fig. 2. The results of the fitting of the experimental data for nacre (a) and polyethylene terephtelate
(b) samples using equation 3.

observed that the results provided near T0 are very close, however at the end of the experiment
the difference has grown (Figure 1).
In Figure 2(a) and 2(b) the results of the fitting of the experimental data for nacre and

a polyethylene terephtelate samples using equation 3, can be observed. The fitting of the
experimental data provide the results for the heat capacities per unit volume: ρcp = 0.61
× 106 JK−1m−3 for the nacre, and ρcp = 3.28× 106 JK−1m−3 for the polymer.
It is important to mention that if equation 4 is used, and the first factor in this equation is

taken only as a fitting constant, the values provided for the relaxation time are smaller in the
approximate case than using the complete expression (Equation 4), given than T∞ < T0. This
compensates the error in the measurement making the quotient close to 1. This can explain the
success of this technique in obtaining experimental data based in Equation 4, and also indicates
that the results for the heat capacity would be better when the process is studied when the
sample is cooling after obstructing the light beam.
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CO2-44058.

References

1. I. Hata, Rev. Sci. Instrum. 50, 292 (1979)
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