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Abstract. We prove that the nonlocal gauge invariant mass dimension 2 operator Fµν(D
2)−1Fµν can be

consistently added to the Gribov–Zwanziger action, which implements the restriction of the path integral’s
domain of integration to the first Gribov region when the Landau gauge is considered. We identify a local
polynomial action and prove the renormalizability to all orders of perturbation theory by employing the
algebraic renormalization formalism. Furthermore, we also pay attention to the breaking of the BRST in-
variance, and to the consequences that this has for the Slavnov–Taylor identity.

PACS. 11.15.-q; 11.15.Tk

1 Introduction

It is a well known fact that SU(N) Yang–Mills gauge theo-
ries, described by the Euclidean action

SYM =
1

4

∫
d4xF aµνF

a
µν , (1)

with Aµ the gauge potential and

F aµν = ∂µA
a
ν −∂νA

a
µ+ gf

abcAbµA
c
ν , (2)

the field strength, whereby Dabµ is the covariant derivative
in the adjoint representation, given by

Dabµ = ∂µδ
ab− gfabcAcµ , (3)

are asymptotically free at very high energies [1–4]. The
coupling constant is sufficiently small to allow for a per-
turbative description, with asymptotic degrees of freedom
given by massless gauge bosons. We shall not consider
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fermion matter in this paper; however, the same conclu-
sion holds for quantum chromodynamics (QCD), written
in terms of gluons and quarks. When we pass to lower
energies, the coupling constant g2 begins to grow, and per-
turbation theory starts to lose its validity. At still lower
energies, the situation becomes dramatically different, as
perturbation theory now completely fails, and confinement
sets in, meaning that the elementary field excitations are
no longer physical observables, but become confined into
colorless states. The hadrons constitute the physical states
of QCD.
A satisfactory understanding of the behavior of Yang–

Mills theories in the low energy regime is yet unavailable.
Due to the large coupling constant, nonperturbative effects
have to be taken into account. The introduction of con-
densates, which are the (integrated) vacuum expectation
value of certain local operators, allows one to parametrize
certain nonperturbative effects arising from the infrared
sector of e.g. the theory described by (1). Condensates give
rise to power corrections, a phenomenon that can be han-
dled using the operator product expansion. Clearly, these
power corrections correspond to nonperturbative informa-
tion in addition to the perturbatively calculable results. If
one wants to consider the possible effects of condensates
on physical quantities in a gauge theory, only gauge in-
variant operators are relevant. The most famous example
is the dimension 4 gluon condensate

〈
αsF

2
µν

〉
, giving rise

to 1
q4
power corrections in QCD. The SVZ (Shifman–
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Vainshtein–Zakharov) sum rules [5] can then be used to re-
late the condensates to observables, and hence one may ob-
tain certain phenomenological estimates for e.g.

〈
αsF

2
µν

〉
.

This approach allows for a study of at least some aspects
of QCD in an energy regime in between the confined and
perturbative zone. One can still use perturbation theory
using the quarks and gluons as effective degrees of freedom
due to the lack of explicit knowledge of the correct physical
degrees of freedom, but the results get adapted by nonper-
turbatively generated condensates.
In this paper, we shall introduce an action that can

serve as a starting point for investigating some nonper-
turbative effects in gauge theories. These nonperturbative
effects arise from two premises: the Gribov problem in fix-
ing the gauge freedom, and the possibility of dynamical
mass generation.
First of all, we shall be concerned about fixing the

gauge. If we want to perform any kind of calculations, we
must reduce the enormous gauge freedom of (1), encoded
in the local gauge symmetry generated by

δωA
a
µ =−D

ab
µ ω

b , with ωb arbitrary , (4)

to a global one by a suitable gauge fixing condition, say
F(Aµ) = 0. In principle, by imposing a gauge condition
one should select a single representativeA∗µ from the gauge
orbit AUµ , where U is a generic SU(N) gauge transform-
ation. Unfortunately, it was shown that it is impossible to
uniquely fix the gauge, a problem related to the compli-
cated topology of the space of gauge orbits [6].
Seminal work on the existence of gauge copies was done

three decades ago by Gribov in [7]. This paper is not the
place to give a complete overview of the ambiguities arising
when a gauge fixing is performed, we therefore kindly re-
fer to Gribov’s original paper or to the available literature,
such as [8], which contains many examples and references.
In particular, in [7], it was pointed out that, in the Landau
and Coulomb gauges, the existence of zero modes in the
Faddeev–Popov operator gives rise to gauge copies. Using
the Landau gauge,

∂µAµ = 0 , (5)

one finds that a gauge equivalent configuration A′µ, con-
nected to Aµ via (4), also obeys ∂µA

′
µ = 0, when

Mabωb = 0 , (6)

whereMab denotes the Faddeev–Popov operator

Mab =−∂µ
(
∂µδ

ab− gfabcAcµ
)
. (7)

The existence of the Gribov copies implies that the do-
main of integration in the path integral has to be further
restricted in a suitable way. Following Gribov, it seems log-
ical to restrict to the region Ω with corresponding bound-
ary ∂Ω, which is the first Gribov horizon, where the first
vanishing eigenvalue of the Faddeev–Popov operator (7)
appears [7]. Within the region Ω the Faddeev–Popov op-
erator is positive definite, i.e. Mab > 0. Quite obviously,

this restriction to the first Gribov region can be motivated
only if every gauge orbit passes through it. It was shown by
Gribov that this is certainly the case for gauge potentials
“sufficiently close” to the boundary ∂Ω [7], whereas the
proof for general configurations was presented in [9]. Nev-
ertheless, we should also mention that the Gribov region
itself is also not free from gauge copies [9–12]. To avoid
the presence of these additional copies, a further restriction
to a smaller region Λ, known as the fundamental modular
region, should be implemented. Nevertheless, the imple-
mentation of the restriction of the domain of integration to
Λ proves to be a quite difficult task, which, to our know-
ledge, has not yet been accomplished. Recently, it has been
argued that the additional copies existing inside Ω might
be irrelevant when computing expectation values, meaning
that averages calculated over Λ or Ω should give the same
value [13].
Using a semiclassical argument [7], Gribov imple-

mented the restriction to the region Ω. Essentially, his
argument relied on the fact that the (Fourier transform of
the) inverse of the Faddeev–Popov operator, which is noth-
ing else than the ghost propagator, encounters no poles

elsewhere than at the origin k2 = 0. This amounts to say-
ing that the operatorMab itself does not vanish, except at
the horizon. By using this “no pole condition”, we are as-
sured that the considered gauge potentials remain inside
the first Gribov region1, and as a such at least the set of
copies obtained via (6) is already excluded from the game.
This restriction has many important consequences for

the infrared behavior of the propagators. The gluon prop-
agator turns out to be suppressed in the infrared, while
the ghost propagator gets enhanced [7]. Moreover, it can
also be shown that the gluon propagator exhibits a vio-
lation of positivity in its spectral density representation,
a sign that the gluon cannot be a physical observable any-
more; see [14–17] and references therein. It is interesting
to mention that lattice simulations of the Landau gauge
propagators have revealed evidence for this suppression,
respectively, enhancement; see e.g. [18–26]. Another conse-
quence of the Gribov restriction is the “infrared freezing”
of the strong coupling constant, i.e. αs(p

2) tends to a con-
stant as p2 goes to zero, see [14, 27] and references therein.
Again, this behavior is in qualitative agreement with lat-
tice data [22–24] as well as with the results obtained from
the analysis of the Schwinger–Dyson equations [28–37].
It might be clear that the restriction to the Gribov re-

gionΩ could be of great relevance for a better understand-
ing of the infrared region of gauge theories. This belief is
further supported by the Kugo–Ojima confinement crite-
rion [38], which, in the case of the Landau gauge, turns
out to rely on a ghost propagator diverging stronger than
1
p2
[39]. This feature is also present when the restriction to

the Gribov region is implemented, yielding in fact a ghost
propagator developing a 1

p4
singularity.

Important progress on the restriction to the Gri-
bov region Ω was accomplished by Zwanziger in the

1 Albeit that this restriction cannot be implemented exactly,
but only in an order by order expansive way.
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papers [40, 41]. The restriction to Ω was implemented
through the introduction of a nonlocal horizon function ap-
pearing in the Boltzmann weight defining the Euclidean
Yang–Mills measure. According to [40, 41], the starting
Yang–Mills measure in the Landau gauge is given by

dµγ =DADcDcDbe
−(S+γ4H) , (8)

where the starting action is

S = SYM+Sgf , (9)

with Sgf the gauge-fixing action given by

Sgf =

∫
d4x

(
ba∂µA

a
µ+ c

a∂µD
ab
µ c
b
)
, (10)

where the auxiliary field ba is a Lagrange multiplier enforc-
ing the Landau gauge (5), (ca, ca) are the Faddeev–Popov
ghost fields, and

H =

∫
d4xh(x) = g2

∫
d4xfabcAbµ

(
M−1

)ad
fdecAeµ ,

(11)

is the so-called horizon function, which implements the re-
striction to the Gribov region Ω. We recognize that H is
nonlocal. The massive Gribov parameter γ is fixed by the
horizon condition

〈h(x)〉= 4
(
N2−1

)
, (12)

where the expectation value 〈h(x)〉 has to be evaluated
with the measure (8). To the first order, the horizon condi-
tion (12) becomes, in d dimensions,

1 =
N (d−1)

4
g2
∫
ddq

(2π)
d

1

q4+2Ng2γ4
. (13)

This equation coincides with the original gap equation de-
rived by Gribov for the parameter γ [7].
We shall rely on the path integral formalism, so that we

can localize the horizon function (11) by means of a pair of

complex bosonic vector fields [41],
(
φabµ , φ

ab

µ

)
, according to

e−SH =

∫
DφDφ (detM)f exp

{

−

∫
d4x

[
φ
ac

µM
abφbcµ

+ γ2gfabc
(
φacµ −φ

ac

µ

)
Abµ

]}
, (14)

where the determinant, (detM)f , takes into account the

Jacobian arising from the integration over
(
φabµ , φ

ab

µ

)
, and

f =D(N2−1) = 4(N2−1) , (15)

withD = 4 the dimension of the Euclidean space time, and
N the dimension of the gauge group. This determinant can
also be localized by means of suitable anticommuting com-
plex vector fields

(
ωabµ , ω

ab
µ

)
, namely

(detM)f =

∫
DωDω exp

[

−

∫
d4x

(
−ωacMabωbcµ

)
]

.

(16)

Henceforth, the nonlocal action SH is transformed into
a local one given by

SLocalH = Sφω+Sγ , (17)

where

Sφω =

∫
d4x

(
φ
ac

µM
abφbcµ −ω

ac
µM

abωbcµ

)
, (18)

and

Sγ = γ
2

∫
d4x gfabc

(
φacµ −φ

ac

µ

)
Abµ . (19)

As was shown in [14, 40–42], the resulting local action
turns out to be renormalizable to all orders of perturba-
tion theory. This is a point of great importance, as it allows
for a consistent and order by order improvable framework
to calculate relevant quantities when the restriction to the
Gribov region Ω is taken into account.
A second point that motivated this paper is the issue of

the dynamical mass generation in gauge theories, and, re-
lated to it, that of the 1

q2
power corrections. A few years

ago, in a series of papers, Zakharov et al. questioned the
common wisdom that 1

q2
power corrections cannot enter

gauge invariant observables, as local gauge invariant opera-
tors of mass dimension two do not exist. This is a reflection
of the fact that one cannot add a renormalizablemass oper-
ator for the gauge fields to the Yang–Mills action, at least
not when the Higgs mechanism and associated symme-
try breaking are not considered. However, by using QCD
sum rules, it was advocated in [43] that an effective gluon
mass could account for the 1

q2
corrections, leading to an ac-

ceptable phenomenology. The underlying condensate was
proposed to be the gauge invariant quantity [44, 45]

〈
A2min

〉
≡ min
U∈SU(N)

1

V T

∫
d4x

〈(
AUµ
)2〉
, (20)

which originates from a highly nonlocal operator, since [46]

A2min =
1

2

∫
d4x

[

Aaµ

(

δµν −
∂µ∂ν

∂2

)

Aaν

− gfabc
(
∂ν

∂2
∂Aa

)(
1

∂2
∂Ab

)

Acν

]

+O(A4) ,

and therefore it falls beyond the OPE applicability. The in-
terest was especially focused on the Landau gauge, since
then the operator A2min reduces to the local quantity A

2
µ.

An effective potential for 〈A2µ〉 was calculated up to two
loops in [47, 48], giving evidence for a nonvanishing con-
densate and consequent effective gluon mass m2 ∝ 〈A2µ〉.
Determining a sensible effective potential for a local com-
posite operator (LCO) is a nontrivial task, but nevertheless
it was dealt with in [47] based on the method developed
in [49]. The renormalizability of the so-called LCOmethod
was proven in [50] to all orders of perturbation theory in
the case of A2µ in the Landau gauge.
Unfortunately, the gauge invariance of A2min is, strictly

speaking, only ensured when the absolute minimum of
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A2min along the gauge orbit has been reached, a highly dif-
ficult task due to the presence of Gribov copies. Moreover,
it is unclear what can be done with this operator beyond
the Landau gauge. In other gauges, other renormalizable
and condensing dimension two operators exist, but these
are explicitly gauge parameter or even ghost dependent;
see [51] for an overview. In e.g. the maximal Abelian gauge,
an effective mass was found for the off-diagonal gluons
only [52], which is qualitatively consistent with the avail-
able lattice data [53, 54].
Let us also mention that effective gluon masses have

been studied in the past from a theoretical, phenomenolog-
ical and numerical viewpoint; see [20, 47, 55–62] for a far
from exhaustive list.
Taking all this into account, it seems to be a worthy

task to look for other potential candidates, which could be
at the origin of the dynamical mass generation and related
1
q2
power corrections. It would also be favorable to start

from a gauge invariant operator. The candidate we already
investigated in [46, 63] is the nonlocal operator2

O = (V T )−1
∫
d4xF aµν

[(
D2
)−1]ab

F bµν , (21)

which can be coupled to the Yang–Mills action via a nonlo-
cal mass term

SO =−
m2

4

∫
d4xF aµν

[(
D2
)−1]ab

F bµν , (22)

wherem is a mass parameter, and [(D2)−1]ab is the inverse
of the covariant Laplacian

D2 ≡Dacµ D
cb
µ = ∂

2δab−2gfabcAcµ∂µ

− gfabc∂µA
c
µ+ g

2facdf cbeAdµA
e
µ .

(23)

Analogously to what has been done in the case of the non-
local horizon function (11), the gauge invariant mass oper-
ator (22) can be localized with the help of a pair of complex
bosonic antisymmetric tensor fields in the adjoint represen-

tation [46],
(
Baµν , B

a

µν

)
,

e−SO =

∫
DBDB (detD2)f

′

e{−
1
4

∫
d4x [BaµνD

ac
σ D

cb
σ B

b
µν+im(B

a
µν−B

a
µν)F

a
µν ]} .

(24)

Here we have

f ′ =
D(D−1)

2
= 6 , (25)

and, like in the case of the horizon function, the determi-
nant, (detD2)f

′
, can be localized using a pair of anticom-

muting antisymmetric complex tensor fields
(
Gaµν , G

a

µν

)
,

2 This particular operator was already proposed in 3D gauge
theories [64].

according to

(detD2)f
′
=

∫
DGDG e[−

1
4

∫
d4x (GaµνD

ac
σ D

cb
σ G

b
µν)] . (26)

Then, the action SO gets replaced by its local version given
by

SLocalO = SBG+Sm , (27)

where

SBG =
1

4

∫
d4x

(
B
a

µνD
ac
σ D

cb
σ B

b
µν −G

a

µνD
ac
σ D

cb
σ G

b
µν

)
,

(28)

and

Sm =
im

4

∫
d4x (Baµν −B

a

µν)F
a
µν . (29)

We underline the fact that an initially nonlocal operator
can be cast into a local form [65]. In the case of A2min, this

would not be possible, as it is a infinite series of different
nonlocal operators. Once we arrive at a local action, we can
investigate e.g. the renormalizability to all orders by means
of algebraic methods, the canonical quantization, the ex-
plicit calculation of the renormalization factors, etc.
The goal of this paper is to study the massive ac-

tion (22) when the restriction to the Gribov region Ω is
implemented à la Zwanziger. Since the extended action
SYM+SO is gauge invariant, we might expect that the pro-
cedure of further restricting the domain of integration will
have no influence on the renormalizability. This will be ex-
plicitly confirmed. In a future stage of research, one can
start searching for the value of the Gribov parameter γ as
well as the dynamically generated mass m. We recall here
that the Gribov–Zwanziger action itself can also be used
to mimic 1

q2
corrections, as explicitly discussed in [27]. As

a future endeavor, it would be worthwhile to study physical
correlators with our action, and find whether the Gribov
and/or mass parameter m are a potential source of such
power corrections.
Let us return to the content of this paper, which is

organized as follows. In Sect. 2, we introduce all the ne-
cessary sources in order to find a suitable starting action.
The set of Ward identities defining this action is pre-
sented in Sect. 3, while in Sect. 4 we compute several use-
ful (anti-) commutation relations between the linearized
symmetry operators. These are used in Sect. 5 in order
to construct the most general allowed invariant countert-
erm. In Sect. 6, we confirm the renormalizability, since we
shall be able to reabsorb all the allowed counterterms in
the starting action by introducing suitable bare quanti-
ties. In Sect. 7 we discuss a few properties of the phys-
ical action, which is obtained from the starting action
by setting the sources equal to their physically relevant
values. The process of giving specific values to the sources
breaks the BRST invariance. In Sect. 8, we discuss the as-
sociated breaking of the Slavnov–Taylor identity, and we
comment on the fact that in most cases this breaking be-
comes harmless for the identities derivable between a large
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class of Green functions. Finally, Sect. 9 is devoted to the
conclusions.

2 Identification of the complete classical
action Σ

We shall start with the following local action, as it was ob-
tained in the introduction:

SLocal = SYM+Sgf+S
Local
H +SLocalO . (30)

As we wish to discuss the renormalizability, we should try
to establish as many symmetries as possible. These symme-
tries can then be translated into Ward identities. As we are
dealing with a gauge theory that is to be gauge fixed, we
expect to find a BRST invariance and consequent Slavnov–
Taylor identity. All these identities are a powerful tool in
constructing the most general allowed counterterm [66].
If this counterterm can be reabsorbed in the original ac-
tion through the introduction of bare quantities, we are
able to conclude that the starting action is renormalizable.
If not, we could still try to identify a more general start-
ing action that is renormalizable. This has been discussed
in extenso already in [46, 63] when analyzing the nonlocal
mass term (22).

2.1 BRST invariance

In order to find the BRST invariance of the resulting local
theory, given by (30), we proceed as in [41, 46] and consider
at first the particular case when γ =m= 0, i.e.,

Sγ=m=0Local = SYM+Sgf+S
Local,γ=0
H +SLocal,m=0O

= SYM+Sgf+Sφω+SBG . (31)

In this case, we have actually introduced nothing more
than two unity factors, written as

1 =

∫
DφDφDωDω

exp

[

−

∫
d4x

(
φ
ac

µM
abφbcµ −ω

ac
µM

abωbcµ

)]

,

1 =

∫
DBDBDGDG

exp

[

−
1

4

∫
d4x

(
B
a

µνD
ac
σ D

cb
σ B

b
µν −G

a

µνD
ac
σ D

cb
σ G

b
µν

)]

.

(32)

Nevertheless, the action (31) may be written in a BRST
invariant fashion. To see this, let us first introduce the fol-
lowing nilpotent BRST transformation

sAaµ =−D
ab
µ c
b ,

sca =
g

2
fabccbcc ,

sBaµν = gf
abccbBcµν +G

a
µν ,

sGaµν = gf
abccbGcµν ,

sG
a

µν = gf
abccbG

c

µν +B
a

µν ,

sB
a

µν = gf
abccbB

c

µν ,

sca = ba ,

sba = 0 ,

sφabµ = ω
ab
µ ,

sωabµ = 0 ,

sωabµ = φ
ab

µ ,

sφ
ab

µ = 0 ,

s2 = 0 . (33)

Now, let S0 be the action defined by

S0 = SYM+ s

∫
d4x

(
ca∂µA

a
µ+ω

ac
µM

abφbcµ

+G
a

µνD
ac
σ D

cb
σ B

b
µν

)
, (34)

which satifies

sS0 = 0 . (35)

Applying the BRST transformations (33) and recalling
that the Faddeev–Popov operator,Mab, is given by (7), we
obtain

S0 = S
γ=m=0
Local +

∫
d4xωacµ ∂ν

(
gfabdφbcµ D

de
ν c
e
)
. (36)

Following [41] one can show that S0 and S
γ=m=0
Local are

equivalent. More precisely, one may transform Sγ=m=0Local
into S0 by performing the following shift in the variable
ωacµ ,

ωacµ → ω
ac
µ −

(
M−1

)ab
∂ν

(
gf bedφecµ D

dn
ν c

n
)
, (37)

and keeping in mind that the corresponding Jacobian turns
out to be field independent. Thus, the following equiva-
lence holds:

∫
DΦ e−S0 =

∫
DΦ e−S

γ=m=0
Local , (38)

where Φ is a shorthand for all the fields. Now, let us reintro-
duce the term Sγ , given by (19), while Sm remains absent.
It is easy to show, using the BRST transformations (33),
that Sγ may be rewritten as

Sγ = γ
2

∫
d4x

[
gfabcφacµ A

b
µ− s

(
gfabcωacµ A

b
µ

)

+ gfabcωacµ D
bd
µ c
d
]
. (39)

The last term can be eliminated by means of the change of
variables

ωbcµ → ω
bc
µ +γ

2
(
M−1

)bd
gfdecDenµ c

n . (40)
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Furthermore, we notice that, thanks to the fact that the
integral of a total derivative vanishes, the following expres-
sion for Sγ holds:

Sγ =−γ
2

∫
d4x

[
Dabµ φ

ba
µ − s

(
Dabµ ω

ba
µ

)]
. (41)

Nevertheless, the action,

S0+Sγ , (42)

is not yet BRST invariant. This point can be dealt with by
means of the introduction of a pair of BRST doublets of

local external sources [41],
(
Mabµν , N

ab
µν

)
and

(
M
ab

µν , N
ab

µν

)
,

which transform as

sMabµν =−N
ab
µν , sN

ab
µν = 0 ,

sN
ab

µν =−M
ab

µν , sM
ab

µν = 0 . (43)

As pointed out in [41], the introduction of these external
sources allows us to promote expression (42) to a BRST
invariant action. In fact, let Ssources be the action

Ssources = s

∫
d4x

(
N
ac

µνD
ab
µ φ

bc
ν −M

ac
µνD

ab
µ ω

bc
ν

)

=

∫
d4x

[
−M

ac

µνD
ab
µ φ

bc
ν −N

ac

µνs
(
Dabµ φ

bc
ν

)

+NacµνD
ab
µ ω

bc
ν −M

ac
µνs

(
Dabµ ω

bc
ν

) ]
, (44)

which obviously satisfies

sSsources = 0 . (45)

When the sources
(
Mabµν ,M

ab

µν , N
ab
µν , N

ab

µν

)
attain their

physical values [41], defined by

M
ab

µν

∣
∣
∣
phys
=−Mabµν

∣
∣
∣
phys
=−γ2δabδµν ,

Nabµν

∣
∣
∣
phys
=N

ab

µν

∣
∣
∣
phys
= 0 , (46)

it immediately follows that

Ssources|phys = Sγ =−γ
2

∫
d4x

[
Dabµ φ

ba
µ − s

(
Dabµ ω

ba
µ

)]
.

(47)

One sees thus that the use of the external sources
(
Mabµν ,

M
ab

µν , N
ab
µν and N

ab

µν

)
enables us to introduce an extended

action Σ0, given by

Σ0 = S0+Ssources , (48)

which enjoys the important property of being BRST
invariant,

sΣ0 = 0 , (49)

while reducing to expression (42) when the sources attain
their physical values, given by (46). Recapitulating, we
have rewritten

∫
DADcDcDbe−S+γ

4H

=

∫
DADcDcDbDφDφωDωDe−S0−Sγ . (50)

It is then easily shown, upon combination of (11), (12), (42)
and (50), that the horizon condition is implemented by re-
quiring that

∂ΓGZ

∂γ2
= 0 , with γ2 �= 0 , (51)

whereby ΓGZ is the Gribov–Zwanziger effective action de-
fined by

e−ΓGZ =

∫
DADcDcDbDφDφDωDωe−S0−Sγ . (52)

To continue, let us analyze the term Sm, given by (29). This
term is, just as SLocalO in (27), left invariant by the gauge
transformations [46]

δAaµ =−D
ab
µ θ
b ,

δBaµν = gf
abcθbBcµν ,

δGaµν = gf
abcθbGcµν ,

δG
a

µν = gf
abcθbG

c

µν ,

δB
a

µν = gf
abcθbB

c

µν , (53)

where θa is the parameter of the gauge transformation,
but it is not invariant by the BRST transformations (33).
This problem can be solved in a way equivalent as done
in the case of Sγ . This time we will introduce a pair of
BRST doublets of external sources, (Uαβµν , Vαβµν) and
(Uαβµν , V αβµν), transforming as

sVαβµν = Uαβµν , sUαβµν = 0 ,

sUαβµν = V αβµν , sV αβµν = 0 . (54)

Hence, by considering the following term

S′sources = s

∫
d4x

(
VαβµνG

a

αβ−UαβµνB
a
αβ

)
F aµν ,

the term S′sources reduces to Sm of (29) when the sources(
Uαβµν , Uαβµν , Vαβµν , V αβµν

)
attain the subsequent phys-

ical values

V αβµν
∣
∣
phys
= Vαβµν |phys =−

im

2
(δαµδβν− δανδβµ) ,

Uαβµν |phys = Uαβµν
∣
∣
phys
= 0 . (55)

These sources enable us to define an action Σ1 by

Σ1 =Σ0+S
′
sources , (56)

in such way that

sΣ1 = 0 . (57)
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2.2 The global U(f) and U(f �) symmetries

In addition to the BRST invariance the action Σ1 displays
the global symmetries U(f), f = 4(N2−1) and U(f ′), f ′ =
6, respectively expressed by

Qabµν(Σ1)≡

∫
d4x

(

φcaµ
δΣ1

δφcbν
−φ

cb

ν

δΣ1

δφ
ca

µ

+ωcaµ
δΣ1

δωcbν

−ωcbν
δΣ1

δωcaν
+M caσµ

δΣ1

δM cbσν
−M

cb

σν

δΣ1

δM
ca

σµ

+N caσµ
δΣ1

δN cbσν
−N

cb

σν

δΣ1

δN
ca

σµ

)

= 0 , (58)

and

Qαβµν(Σ1)≡

∫
d4x

(

Baαβ
δΣ1

δBaµν
−B

a

µν

δΣ1

δB
a

αβ

+Gaαβ
δΣ1

δGaµν

−G
a

µν

δΣ1

δG
a

αβ

+Uαβσρ
δΣ1

δUµνσρ

−Uµνσρ
δΣ1

δUαβσρ
+Vαβσρ

δΣ1

δVµνσρ

−V µνσρ
δΣ1

δV αβσρ

)

= 0 . (59)

The presence of the global invariances U(f) and U(f ′)
means that one can make use [41, 46] of the composite in-
dices I ≡ (a, µ), I = 1, . . . , f , and i≡ (µ, ν), i = 1, . . . , f ′.
Specifically, setting

(
φaI , φ

a

I , ω
a
I , ω

a
I

)
≡
(
φabµ , φ

ab

µ , ω
ab
µ , ω

ab
µ

)
,

(
MaµI ,M

a

µI , N
a
µI , N

a

µI

)
≡
(
Mabµν ,M

ab

µν , N
ab
µν , N

ab

µν

)
,

(60)

and

(
Bai , B

a

i , G
a
i , G

a

i

)
≡
1

2

(
Baµν , B

a

µν , G
a
µν , G

a

µν

)
,

(
U,U, V, V

)
iµν
≡
1

2
(U,U, V, V )αβµν , (61)

we rewrite Σ1 as

Σ1 = SYM+

∫
d4x

{

ba ∂µA
a
µ+ c

a∂µD
ab
µ c
b+φ

a

IM
abφbI

−ωaIM
abωbI + gf

abcωaI∂µ
(
φbID

cd
µ c
d
)
−M

a

µI D
ab
µ φ

b
I

−N
a

µI

[
Dabµ ω

b
I + gf

abcφbID
cd
µ c
d
]
+NaµI D

ab
µ ω

b
I

−MaµI

[
Dabµ φ

b

I − gf
abcωbID

cd
µ c
d
]
+B

a

iD
ab
µ D

bc
µ B

c
i

−G
a

iD
ab
µ D

bc
µ G

c
i +F

a
µν

(
U iµνG

a
i +ViµνB

a

i

−V iµνB
a
i +UiµνG

a

i

)}

. (62)

For the symmetry generators, we have

QIJ ≡

∫
d4x

(

φaI
δ

δφaJ
−φ

a

J

δ

δφ
a

I

+ωaI
δ

δωaJ
−ωaJ

δ

δωaI

+MaµI
δ

δMaJ
−M

a

J

δ

δM
a

I

+ NaµI
δ

δNaµJ
−N

a

µJ

δ

δN
a

µI

)

, (63)

and

Qij ≡

∫
d4x

(

Bai
δ

δBaj
−B

a

j

δ

δB
a

i

+Gai
δ

δGaj
−G

a

j

δ

δG
a

i

+Uiµν
δ

δUjµν
−Ujµν

δ

δU iµν

+Viµν
δ

δVjµν
−V jµν

δ

δV iµν

)

. (64)

By means of the trace of these operators the I(i)-valued
fields turn out to possess an additional quantum number,
displayed in Tables 1 and 2, together with the dimension
and the ghost number.

2.3 The complete classical action Σ

We proceed by establishing the complete set of Ward iden-
tities, which will enable us to analyze the renormalizability
of the theory to all orders. Let us first identify the final
complete action to start with. For this purpose, we need
to introduce additional external sources (Ωaµ, L

a, Y
a

i , Y
a
i ,

X
a

i , X
a
i ) in order to define at quantum level the compos-

ite operators entering the nonlinear BRST transformations

Table 1. Quantum numbers of the fields

A b c c φ φ

dimension 1 2 2 0 1 1
ghost number 0 0 −1 1 0 0
Qf -charge 0 0 0 0 1 −1
Qf ′-charge 0 0 0 0 0 0

ω ω B B G G

dimension 1 1 1 1 1 1
ghost number 1 −1 0 0 1 −1
Qf -charge 1 −1 0 0 0 0
Qf ′-charge 0 0 1 −1 1 −1

Table 2. Quantum numbers of the sources

M M N N V V U U

dimension 2 2 2 2 1 1 1 1
ghost number 0 0 1 −1 0 0 1 −1
Qf -charge 1 −1 1 −1 0 0 0 0
Qf ′-charge 0 0 0 0 1 −1 1 −1
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of the fields
(
Aaµ, L

a, Bai , B
a

i , G
a
i , G

a

i

)
, (33). In the present

case this term reads

Sext = s

∫
d4x

(
−ΩaµA

a
µ+L

aca−Y
a

iB
a
i

− Y ai B
a

i +X
a

iG
a
i +X

a
i G
a

i

)
, (65)

with

sΩaµ = sL
a = 0 , (66)

and

sY ai =X
a
i ,

sXai = 0 ,

sX
a

i =−Y
a

i ,

sY
a

i = 0 . (67)

The quantum numbers of the external sources
(
Ωaµ, L

a,

Y
a

i , Y
a
i , X

a

i , X
a
i

)
are displayed in Table 3. Furthermore,

we have to add the extra source term Sextra for renormal-
ization purposes, as was explained in [41, 46]

Sextra =

∫
d4x

{

M
a

µIM
a
µI −N

a

µIN
a
µI

+λ1
(
B
a

iB
a
i −G

a

iG
a
i

) (
V jµνVjµν −UjµνUjµν

)

+
λabcd

16

(
B
a

iB
b
i −G

a

iG
b
i

)(
B
c

jB
d
j −G

c

jG
d
j

)

+λ3
(
B
a

iG
a
j ViµνUjµν +G

a

iG
a
j UiµνUjµν

+B
a

iB
a
j ViµνV jµν −G

a

iB
a
j VjµνUiµν

−GaiB
a
j U iµνV jµν +G

a

iB
a

j UiµνVjµν

−
1

2
Bai B

a
j V iµνV jµν +

1

2
GaiG

a
j U iµνUjµν

−
1

2
B
a

iB
a

j ViµνVjµν +
1

2
G
a

iG
a

j UiµνUjµν

)

+χ1
(
V iµν∂

2Viµν −U iµν∂
2Uiµν

)

+χ2
(
V iµν∂µ∂αViνα−U iµν∂µ∂αUiνα

)

− ζ
(
U iµνUiµνUjαβUjαβ+V iµνViµνV jαβVjαβ

− 2U iµνUiµνV jαβVjαβ
)
}

, (68)

where λ1, λ3, χ1, χ2, ζ are free parameters, and the gauge
invariant rank 4 tensor λabcd has the following symmetry

Table 3. Quantum numbers of the external sources

X X Y Y Ω L

dimension 3 3 3 3 3 4
ghost number 0 −2 −1 −1 −1 −2
Qf -charge 0 0 0 0 0 0
Qf ′ -charge 1 −1 1 −1 0 0

properties:

λabcd = λcdab = λbacd , (69)

and it obeys a generalized Jacobi identity

fmanλmbcd+fmbnλamcd+fmcnλabmd+fmdnλabcn = 0 .
(70)

Thus, the complete action we are looking for is

Σ =Σ1+Sext+Sextra

= SYM+

∫
d4x

{

ba ∂µA
a
µ+ c

a∂µD
ab
µ c
b+φ

a

IM
abφbI

−ωaIM
abωbI + gf

abcωaI∂µ
(
φbID

cd
µ c
d
)
−M

a

µI D
ab
µ φ

b
I

−N
a

µI

[
Dabµ ω

b
I + gf

abcφbID
cd
µ c
d
]
+NaµI D

ab
µ ω

b
I

−MaµI

[
Dabµ φ

b

I − gf
abcωbID

cd
µ c
d
]
+M

a

µIM
a
µI

−N
a

µIN
a
µI +B

a

iD
ab
µ D

bc
µ B

c
i −G

a

iD
ab
µ D

bc
µ G

c
i

+F aµν
(
U iµνG

a
i +ViµνB

a

i −V iµνB
a
i +UiµνG

a

i

)

+λ1
(
B
a

iB
a
i −G

a

iG
a
i

) (
V jµνVjµν −UjµνUjµν

)

+
λabcd

16

(
B
a

iB
b
i −G

a

iG
b
i

)(
B
c

jB
d
j −G

c

jG
d
j

)

+λ3
(
B
a

iG
a
j ViµνUjµν +G

a

iG
a
j UiµνUjµν

+B
a

iB
a
j ViµνV jµν −G

a

iB
a
j VjµνUiµν

−GaiB
a
j U iµνV jµν +G

a

iB
a

j UiµνVjµν

−
1

2
Bai B

a
j V iµνV jµν +

1

2
GaiG

a
j U iµνUjµν

−
1

2
B
a

iB
a

j ViµνVjµν +
1

2
G
a

iG
a

j UiµνUjµν

)

+χ1
(
V iµν∂

2Viµν −U iµν∂
2Uiµν

)

+χ2
(
V iµν∂µ∂αViνα−U iµν∂µ∂αUiνα

)

− ζ
(
U iµνUiµνUjαβUjαβ+V iµνViµνV jαβVjαβ

− 2U iµνUiµνV jαβVjαβ
)
−ΩaµD

ab
µ c
b

+
g

2
fabcLacbcc+ gfabcY

a

i c
bBci + gf

abcY ai c
bB
c

i

+ gfabcX
a

i c
bGci + gf

abcXai c
bG
c

i

}

. (71)

3 The complete set of Ward identities

In this section, we have enlisted all knownWard identities,
associated to the action (71).

– The Slavnov–Taylor identity

S(Σ)≡
∫
d4x

[
δΣ

δΩaµ

δΣ

δAaµ
+
δΣ

δLa
δΣ

δca
+ ba
δΣ

δca
+ωaI

δΣ

δφaI

+φ
a

I

δΣ

δωaI
−M

a

µI

δΣ

δN
a

µI

−NaµI
δΣ

δMaµI
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+

(
δΣ

δY
a

i

+Gai

)
δΣ

δBai
+
δΣ

δY ai

δΣ

δB
a

i

+
δΣ

δX
a

i

δΣ

δGai
+

(
δΣ

δXai
+B

a

i

)
δΣ

δG
a

i

+V iµν
δΣ

δU iµν

+Uiµν
δΣ

δViµν
−Y

a

i

δΣ

δX
a

i

+Xai
δΣ

δY ai

]

= 0 . (72)

– The Landau gauge fixing

δΣ

δba
= ∂µA

a
µ . (73)

– The antighost equation

δΣ

δca
+∂µ

δΣ

δΩaµ
= 0 . (74)

– The ghost equation

Ga(Σ)≡

∫
d4x

[
δΣ

δca
+ gfabc

(

cb
δΣ

δbc
+φbI

δΣ

δωcI
+ωbI

δΣ

δφ
c

I

−N
b

µI

δΣ

δM
c

µI

−M bµI
δΣ

δN cµI

)]

=∆aclass

=

∫
d4x gfabc

(
ΩbµA

c
µ−L

bcc+Y
b

iB
c
i +Y

b
i B

c

i

−X
b

iG
c
i −X

b
iG
c

i

)
. (75)

– The rigid group transformations

Wa(Σ)≡ gfabc
∫
d4x

∑

k

ψbk
δΣ

δψck
= 0 ,

ψak ≡ (A, b, c, c, φ, φ, ω, ω,B,B,G,G,Ω,L,

M,M,N,N,X,X, Y, Y ) . (76)

– The SL(2,R) invariance [67]

D(Σ)≡

∫
d4x

(

ca
δΣ

δca
+
δΣ

δba
δΣ

δLa

)

= 0 . (77)

– The φ-equation

δΣ

δφ
a

I

−∂µ
δΣ

δM
a

µI

= (1+χ)∂µM
a
µI − gf

abcM bµIA
c
µ .

(78)

– The ω-equation

δΣ

δωaI
+∂µ

δΣ

δNaµI
+ gfabcωbI

δΣ

δbc

=−(1+χ)∂µN
a

µI + gf
abcN

b

µIA
c
µ . (79)

– The φ-equation

δΣ

δφaI
−∂µ

δΣ

δMaµI
+ gfabc

(

φ
b

I

δΣ

δbc
+ωbI

δΣ

δcc
+N

b

µI

δΣ

δΩcµ

)

= (1+χ)∂µM
a

µI − gf
abcM

b

µIA
c
µ . (80)

– The ω-equation

δΣ

δωaI
+∂µ

δΣ

δN
a

µI

− gfabcM bµI
δΣ

δΩcµ

= (1+χ)∂µN
a
µI − gf

abcN bµIA
c
µ . (81)

– The global U(f) invariance, f = 4(N2−1),

QIJ (Σ)≡

∫
d4x

(

φaI
δΣ

δφaJ
−φ

a

J

δΣ

δφ
a

I

+ωaI
δΣ

δωaJ

−ωaJ
δΣ

δωaI
+MaµI

δΣ

δMaJ
−M

a

J

δΣ

δM
a

I

+NaµI
δΣ

δNaµJ
−N

a

µJ

δΣ

δN
a

µI

)

= 0 . (82)

– The rigid symmetry related to the horizon function

RIJ(Σ)≡

∫
d4x

(

φaI
δΣ

δωaJ
−ωaJ

δΣ

δφ
a

I

−MaµI
δΣ

δNaµJ

+N
a

µJ

δΣ

δM
a

µI

)

= 0 . (83)

– The symmetries relating the auxiliary fields φ, φ, ω, ω to
the Faddeev–Popov ghost and antighost c, c

WI(Σ)≡

∫
d4x

(

ωaI
δΣ

δca
− ca

δΣ

δωaI
+N

a

µI

δΣ

δΩaµ

)

= 0 ,

QI(Σ)≡

∫
d4x

(

φ
a

I

δΣ

δca
+ ca

δΣ

δφaI
−MaµI

δΣ

δΩaµ

+
δΣ

δLa
δΣ

δωaI

)

= 0 . (84)

– The global U(6) invariance

Qij(Σ)≡

∫
d4x

(

Bai
δΣ

δBaj
−B

a

j

δΣ

δB
a

i

+Gai
δΣ

δGaj

−G
a

j

δΣ

δG
a

i

+Uiµν
δΣ

δUjµν
−Ujµν

δΣ

δU iµν

+Viµν
δΣ

δVjµν
−V jµν

δΣ

δV iµν
+Y ai

δΣ

δY aj

−Y
a

j

δΣ

δY
a

i

+Xai
δΣ

δXaj
−X

a

j

δΣ

δX
a

i

)

= 0 .

(85)

– The rigid symmetries related to the mass operator

R(α)ij (Σ) = 0 , α ∈ {1, 2, 3, 4}
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with

R(1)ij (Σ)≡

∫
d4x

(

Bai
δΣ

δGaj
−G

a

j

δΣ

δB
a

i

+Viµν
δΣ

δUjµν

−Ujµν
δΣ

δV iµν
+Y ai

δΣ

δXaj
+X

a

j

δΣ

δY
a

i

)

,

R
(2)
ij (Σ)≡

∫
d4x

(

B
a

i

δΣ

δG
a

j

+Gaj
δΣ

δBai
+V iµν

δΣ

δUjµν

+Ujµν
δΣ

δViµν
−Y

a

i

δΣ

δX
a

j

−Xaj
δΣ

δY ai

)

,

R(3)ij (Σ)≡

∫
d4x

(

B
a

i

δΣ

δGaj
−G

a

j

δΣ

δBai
−V iµν

δΣ

δUjµν

+Ujµν
δΣ

δViµν
+Y

a

i

δΣ

δXaj
+X

a

j

δΣ

δY ai

)

,

R
(4)
ij (Σ)≡

∫
d4x

(

Bai
δΣ

δG
a

j

+Gaj
δΣ

δB
a

i

−Viµν
δΣ

δUjµν

−Ujµν
δΣ

δV iµν
−Y ai

δΣ

δX
a

j

+Xaj
δΣ

δY
a

i

)

.

4 The linearized operators
and (anti-)commutation relations

In order to facilitate the upcoming vast amount of algebra
required for the determination of the most general coun-
terterm, we shall give her some (anti-)commutation rela-
tions between several (linearized) symmetry operators.
Equations (72), (77) and (84) generate, respectively,

the following linearized operators:

BΣ ≡

∫
d4x

[
δΣ

δΩaµ

δ

δAaµ
+
δΣ

δAaµ

δ

δΩaµ
+
δΣ

δLa
δ

δca
+
δΣ

δca
δ

δLa

+ ba
δ

δca
+ωaI

δ

δφaI
+φ

a

I

δ

δωaI
−M

a

µI

δ

δN
a

µI

−NaµI
δ

δMaµI

+

(
δΣ

δY
a

i

+Gai

)
δ

δBai
+
δΣ

δBai

δ

δY
a

i

+
δΣ

δY ai

δ

δB
a

i

+
δΣ

δB
a

i

δ

δY ai
+
δΣ

δX
a

i

δ

δGai
+
δΣ

δGai

δ

δX
a

i

+

(
δΣ

δXai
+B

a

i

)
δ

δG
a

i

+
δΣ

δG
a

i

δ

δXai
+V iµν

δ

δU iµν

+Uiµν
δ

δViµν
−Y

a

i

δ

δX
a

i

+Xai
δ

δY ai

]

, (86)

DΣ ≡

∫
d4x

(

ca
δ

δca
+
δΣ

δba
δ

δLa
+
δΣ

δLa
δ

δba

)

, (87)

QΣI ≡

∫
d4x

(

φ
a

I

δ

δca
+ ca

δ

δφaI
−MaµI

δ

δΩaµ

+
δΣ

δLa
δ

δωaI
+
δΣ

δωaI

δ

δLa

)

= 0 . (88)

Consequently, we are able to derive some useful (anti)-
commutations relations:

[
δ

δba
, BΣ

]

=
δ

δca
+∂µ

δ

δΩaµ
,

{
Ga , BΣ

}
=Wa ,

[
DΣ , BΣ

]
= 0 ,

[
δ

δφ
a

I

−∂µ
δ

δM
a

µI

, BΣ

]

=
δ

δωaI
+∂µ

δ

δN
a

µI

− gfabcM bµI
δ

δΩcµ
,

{
δ

δωaI
+∂µ

δ

δNaµI
+ gfabcωbI

δ

δbc
, BΣ

}

=
δΣ

δφaI
−∂µ

δΣ

δMaµI

+ gfabc
(

φ
b

I

δΣ

δbc
+ωbI

δΣ

δcc
+N

b

µI

δΣ

δΩcµ

)

,

{
RIJ , BΣ

}
=QIJ ,

[
WI , BΣ

]
=−QΣI ,

{
R(1)ij , BΣ

}
=Qij ,

{
R(2)ij , BΣ

}
= 0 ,

{
R(3)ij , BΣ

}
=

∫
d4x (δikδjl− δilδjk)

×

(

B
a

k

δ

δBal
−V kµν

δ

δVlµν
+Y

a

k

δ

δY al

)

,

{
R(4)ij , BΣ

}
=

∫
d4x (δikδjl+ δilδjk)

×

(

Gak
δ

δG
a

l

−Ukµν
δ

δU lµν
−Xak

δ

δX
a

l

)

,

{
R(1)ik , R

(3)
kj

}
=−

∫
d4x (δikδjl+ δilδjk)

×

(

G
a

k

δ

δGal
−Ukµν

δ

δUlµν
−X

a

k

δ

δXal

)

,

{
R(1)ik , R

(4)
kj

}
=−

∫
d4x (δikδjl− δilδjk)

×

(

Bak
δ

δB
a

l

−Vkµν
δ

δV lµν
+Y ak

δ

δY
a

l

)

.

(89)

5 Characterization
of the most general counterterm

In order to characterize the most general invariant coun-
terterm, which can be freely added to all orders of pertur-
bation theory, we perturb the classical action Σ by adding
an arbitrary integrated local polynomial ΣCT in the fields
and external sources of dimension bounded by 4 and with
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ghost number 0, and we require that the perturbed action
(Σ+ηΣCT) satisfies the same Ward identities as Σ to the
first order in the perturbation parameter η. Making use of
the BRST cohomological results [66], we may write that

ΣCT = a0 SYM+BΣ∆
(−1) , (90)

where BΣ is the nilpotent linearized Slavnov–Taylor oper-
ator of (86),

BΣBΣ = 0 . (91)

The expression∆(−1) is an integrated polynomial of ghost
number −1, in the present case given by

∆(−1) =

∫
d4x

{

a1
(
Ωaµ+∂µc

a
)
Aaµ+a2L

aca

+a3
(
Y
a

iB
a
i −X

a

iG
a
i +Y

a
i B

a

i −X
a
i G
a
i

)

+a4N
a

µI ∂µφ
a
I +a5M

a
µI ∂µω

a
I +a6U iµν (∂µA

a
ν)B

a
i

+a7U iµνA
a
ν ∂µB

a
i +a8 Viµν (∂µA

a
ν)G

a

i

+a9 ViµνA
a
ν ∂µG

a

i +a10 ω
a
I∂
2φaI +a11G

a

i ∂
2Bai

+a12 ζ U iµνViµν
(
V jαβVjαβ −UjαβUjαβ

)

+a13 χ1 U iµν∂
2Viµν +a14 χ2 U iµν∂µ∂αViνα

+a15 ω
a
Iφ
a
I

(
V iµνViµν −U iµνUiµν

)

+a16 λ1G
a

iB
a
i

(
V jµνVjµν −UjµνUjµν

)

+a17 λ3
(
G
a

iG
a
j ViµνUjµν +G

a

iB
a
j ViµνV jµν

−
1

2
Bai B

a
j U iµνV jµν +

1

2
Bai G

a
j U iµνUjµν

−
1

2
G
a

iB
a

j ViµνVjµν +
1

2
G
a

iG
a

j ViµνUjµν

)

+a18
λabcd+N abcd

16
G
a

iB
b
i

(
B
c

jB
d
j −G

c

jG
d
j

)

+a19 χN
a

µIM
a
µI +a20 gf

abcN
a

µI φ
b
IA
c
µ

+a21 gf
abcMaµI ω

b
IA
c
µ+a22 gf

abcωaIA
c
µ ∂µφ

b
I

+a23 gf
abcωaI (∂µA

c
µ)φ

b
I +a24 gf

abcG
a

iA
c
µ ∂µB

b
i

+a25 gf
abcG

a

i (∂µA
c
µ)B

b
i +a26 gf

abcU iµνA
b
µA
c
νB
a
i

+a27 gf
abcViµνA

b
µA
c
νG
a

i + λ̃
abcdG

a

iB
b
iA
c
µA
d
µ

}

.

(92)

Due to the Ward identities given in Sect. 4, the countert-
erm ΣCT must obey the following constraints

BΣΣCT = 0 , DΣΣCT = 0 , G
aΣCT = 0 ,

WaΣCT = 0 , QIJΣCT = 0 , RIJΣCT = 0 ,

WIΣCT = 0 , Q
Σ
I ΣCT = 0 , QijΣCT = 0 ,

R(1,2,3,4)ij ΣCT = 0 ,
{
R(3,4)ij ,BΣ

}
ΣCT = 0 ,

{
R
(1)
ik ,R

(3,4)
kj

}
ΣCT = 0 ,

δΣCT

δba
= 0 ,

δΣCT

δca
+∂µ

δΣCT

δΩaµ
= 0 ,

δΣCT

δφ
a

I

−∂µ
δΣCT

δM
a

µI

= 0 ,

δΣCT

δωaI
+∂µ

δΣCT

δNaµI
= 0 ,

δΣCT

δφaI
−∂µ

δΣCT

δMaµI
+ gfabc

(

ωbI
δΣCT

δcc
+N

b

µI

δΣCT

δΩcµ

)

= 0 ,

δΣCT

δωaI
+∂µ

δΣCT

δN
a

µI

− gfabcM bµI
δΣCT

δΩcµ
= 0 . (93)

By applying the constraints (93), one can show that

λ̃abcd = a11 g
2facefedb , (94)

and

ΣCT = a0 SYM+

∫
d4x

{

a1

[

Aaµ
δSYM

δAaµ
+
(
Ωaµ+∂µc

a
)
∂µc

a

+φ
a

I∂
2φaI −ω

a
I∂
2ωaI − gf

abcωaI∂µ
(
φbI∂µc

c
)

+M
a

µI∂µφ
a
I +N

a

µI

(
∂µω

a
I + gf

abcφbI∂µc
c
)

−NaµI∂µω
a
I +M

a
µI

(
∂µφ

a

I + gf
abcωbI∂µc

c
)

−
(
M
a

µM
a
µ −N

a

µN
a
µ

)]

+(2a2+a3)
(
B
a

i ∂
2Bai −G

a

i ∂
2Gai

)

− (a1+2a2+a3) gf
abc
[
B
a

i

(
∂µA

b
µ+2A

b
µ∂µ

)
Bci

−G
a

i

(
∂µA

b
µ+2A

b
µ∂µ

)
Gci

]

+(2a1+2a2+a3) g
2fabdf bce

(
B
a

iB
c
i −G

a

iG
c
i

)

×AdµA
e
µ+[(a1+a2+a4) 2∂µA

a
ν

+(2a1+a2+a4)gf
abcAbµA

c
ν

]

×
(
U iµνG

a
i +ViµνB

a

i +UiµνG
a

i −V iµνB
a
i

)

+(4a2+a5)
(λ+N )abcd

16

(
B
a

iB
b
i −G

a

iG
b
i

)

×
(
B
c

jB
d
j −G

c

jG
d
j

)

+(2a2+a6)λ1
(
B
a

iB
a
i −G

a

iG
a
i

)

×
(
V iµνViµν −U iµνUiµν

)

+(2a2+a7)λ3
(
B
a

iG
a
j ViµνUjµν +G

a

iG
a
j UiµνUjµν

+B
a

iB
a
j ViµνV jµν −G

a

iB
a
j VjµνUiµν

−GaiB
a
j U iµνV jµν

+G
a

iB
a

j UiµνVjµν −
1

2
Bai B

a
j V iµνV jµν

+
1

2
GaiG

a
j U iµνUjµν

−
1

2
B
a

iB
a

j ViµνVjµν +
1

2
G
a

iG
a

j UiµνUjµν

)

+a8 ζ
(
U iµνUiµν UjαβUjαβ+V iµνViµνV jαβVjαβ

− 2U iµνUiµνV jαβVjαβ
)

+a9 χ1(V iµν∂
2Viµν −U iµν∂

2Uiµν)

+a10 χ2(V iµν∂µ∂αViνα−U iµν∂µ∂αUiνα)

}

, (95)
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where we renamed the coefficients an as

a3→a2, a18→a5, a12→a8,
a11→a3, a16→a6, a13→a9,
a6→−2a4, a17→a7, a14→a10.

(96)

6 Stability of the action at the quantum level
and renormalization factors

As a final step, we must show that the most general coun-
terterm ΣCT can be reabsorbed by means of a multiplica-
tive renormalization of the parameters, fields, and sources
already present in the starting action Σ. Taking

ψ0 = Z
1/2
ψ ψ ,

J0 = ZJ J ,

ξ0 = Zξ ξ ,

λabcd0 = Zλ λ
abcd+Zabcd , (97)

where

ψ = {A, b, c, c, φ, φ, ω, ω,B,B,G,G} ,

J = {Ω,L,M,M,N,N,U,U, V, V ,X,X, Y, Y } ,

ξ = {g, χ, χ1, χ2, ζ, λ1, λ3} , (98)

we must show that

Σ(ψ0, J0, ξ0) =Σ(ψ, J, ξ)+ηΣCT(ψ, J, ξ)+O(η
2) . (99)

After some algebra, for the renormalization factors {Z} we
obtain

Zb = Z
−1
A , Zc = Zc = Z

−1
g Z

−1/2
A ,

Zφ = Zφ = Z
−1
g Z

−1/2
A , Zω = Z

−2
g , Zω = Z

−1
A ,

ZM = ZM = Z
1/2
φ = Z−1/2g Z

−1/4
A ,

ZN = Z
1/2
ω = Z−1g , ZN = Z

1/2
ω = Z

−1/2
A ,

ZΩ = Z
1/2
c = Z−1/2g Z

−1/4
A , ZL = Z

1/2
A ,

ZX = ZX = ZY = ZY = Z
−1/2
g Z

1/4
A Z

−1/2
B ,

ZA = 1+η(a0+2a1) , Zg = 1−η
a0

2
,

ZB = ZB = ZG = ZG = 1+η(2a2+a3) ,

ZV = ZV = ZU = ZU = 1−η
(a0
2
+
a3

2
−a4

)
,

Zλ = 1+η(a5−2a3) , Z
abcd = η(4a2+a5)N

abcd ,

Zλ1 = 1+η(a0−2a4+a6) ,

Zλ3 = 1+η(a0−2a4+a7) ,

Zζ = 1+η(2a0+2a3−4a4−a8) ,

Zχ1 = 1+η(a0+a3−2a4+a9) ,

Zχ2 = 1+η(a0+a3−2a4+a10) , (100)

hereby confirming the renormalizability to all orders of
perturbation theory of the action (71). We draw atten-
tion to the fact that the renormalization of the quartic

tensor coupling λabcd involves an additional additive part

given by Zabcd [63]. As a consequence, λabcd = 0 is a not
a fixed point of the model. This originates from the fact
that the interactions proportional to the other coupling
g2 reintroduce by quantum effects the tensor coupling ∝(
B
a

µνB
b
µν −G

a

µνG
b
µν

)(
B
c

ρσB
d
ρσ−G

c

ρσG
d
ρσ

)
. This is nicely

reflected in the renormalization group function of λabcd,
that was calculated at one loop order in [63] using dimen-
sional regularization in d= 4−2ε dimensions and the MS
scheme,

µ
∂

∂µ
λabcd =−2ελabcd+

[
1

4

(
λabpqλcpdq+λapbqλcdpq

+λapcqλbpdq+λapdqλbpcq
)

− 12CAλ
abcda + 8CAf

abpf cdpa2

+ 16CAf
adpf bcpa2 + 96dabcdA a2

]

, (101)

where a = g2

16π2
and dabcdA is the totally symmetric rank

four tensor defined by dabcdA = Tr
(
T aAT

(b
A T

c
AT
d)
A

)
. Clearly,

we have

µ
∂

∂µ
λabcd �= 0, for λabcd = 0 . (102)

7 The physical action
and some of its properties

We have shown the renormalizability of the complete ac-
tion (71). In particular, since renormalizability holds for all
possible values of the sources, we have also proven it in the
case that the external source part, (65), is zero, while the
other sources attain their physical values dictated by (46)
and (55), yielding the complete physical action

Sphysical =

∫
d4x

(
1

4
F aµνF

a
µν

)

+

∫
d4x

(
ba∂µA

a
µ+ c

a∂µD
ab
µ c
b
)

+

∫
d4x

(
−ϕacµ ∂ν

(
∂νϕ

ac
µ + gf

abmAbνϕ
mc
µ

)

+ ωacµ ∂ν
(
∂νω

ac
µ + gf

abmAbνω
mc
µ

)

+ ωacµ ∂ν
(
gfabdφbcµ D

de
ν c
e
))

+

∫
d4x

[
γ2gfabcAbµϕ

ac
µ −γ

2gfabcAbµϕ
ac
µ

−4
(
N2−1

)
γ4
]

+

∫
d4x

(
im

4
(B−B)aµνF

a
µν

+
1

4

(
B
a

µνD
ab
σ D

bc
σ B

c
µν −G

a

µνD
ab
σ D

bc
σ G

c
µν

))

+

∫
d4x

(

−
3

8
m2λ1

(
B
a

µνB
a
µν −G

a

µνG
a
µν

)
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+m2
λ3

32

(
B
a

µν −B
a
µν

)2)

+

∫
d4x

(
λabcd

16

(
B
a

µνB
b
µν −G

a

µνG
b
µν

)

×
(
B
c

ρσB
d
ρσ−G

c

ρσG
d
ρσ

))
−

∫
d4x

(
9

4
ζm4

)

.

(103)

Apparently, the symmetry content of the action (71) given
in Sect. 3 is sufficiently powerful to avoid mixing between
the Zwanziger fields/sources on one hand and the mass re-
lated fields/sources on the other hand.
The term ∝ ζm4 in the final action (103) is irrelevant

for the renormalization of Green functions, but it becomes
important when one looks at the renormalization of the
vacuum energy E(m). The parameter ζ is the so-called
LCO parameter, and its value ought to be fixed by re-
quiring a homogeneous linear renormalization group equa-
tion for E(m), whereby ζ is made a function of the avail-
able couplings. This point is, however, beyond the scope
of this paper; the interested reader is kindly referred to
e.g. [47, 49, 52, 68] for more details. It is a remarkable fea-
ture of the Zwanziger action that there is no need for
such a LCO parameter in front of the γ4-term in the
action (103) [14, 41, 42].
If we make an abstraction of the Gribov–Zwanziger

part for the moment, we established a “supersymmetry”
for the action Sm=0,γ=0physical , generated by [63]

δsB
a
µν =G

a
µν , δsG

a
µν = 0 ,

δsG
a

µν =B
a

µν , δsB
a

µν = 0 ,

δsΨ = 0 for all other fields Ψ ,

δ2s = 0 ,

δs

(
Sm=0,γ=0physical

)
= 0 . (104)

We used this symmetry in [63] to show that the mass-
less version of our gauge model is equivalent to Yang–
Mills ordinary gauge theories, despite the extra (quartic)
interactions between the fields Baµν , B

a

µν , G
a
µν and G

a

µν .
A completely similar δs-cohomological argument as pre-
sented in [63] can be used here to actually prove that the
action Sm=0physical and the original Gribov–Zwanziger action
give rise to the same Green functions at any order of per-
turbation theory when we restricts ourselves to those func-
tionals built from fields in the original Gribov–Zwanziger
action, meaning that the quartic coupling λabcd cancels out
from the final results.
The combination of the previous result and the al-

ready mentioned absence of mixing, also implies that the
already known renormalization group functions and rela-
tions for the Gribov–Zwanziger action [14, 41, 42] and mas-
sive gauge model [46, 63] remain valid when both are com-
bined into one action, at least whenever massless renormal-
ization schemes like the MS one are employed.
When the sources are set equal to their physical values

(46) and (55) in order to obtain the action Sphysical, the
BRST symmetry (33) is however broken. It is worth having
a somewhat more detailed look at this.

8 The breaking of the Slavnov–Taylor identity
scrutinized

8.1 The case of the massive gauge model without the
Gribov restriction

In order to avoid too lengthy expressions, we shall momen-
tarily skip the Gribov restriction and concentrate on the
massive gauge model already studied in earlier papers [46,
63].
Let Σ̃ thus be the complete action given by

Σ̃ = SYM+

∫
d4x

{

ba ∂µA
a
µ+ c

a∂µD
ab
µ c
b

+B
a

iD
ab
µ D

bc
µ B

c
i −G

a

iD
ab
µ D

bc
µ G

c
i

+F aµν
(
U iµνG

a
i +ViµνB

a

i −V iµνB
a
i +UiµνG

a

i

)

+λ1
(
B
a

iB
a
i −G

a

iG
a
i

) (
V jµνVjµν −UjµνUjµν

)

+
λabcd

16

(
B
a

iB
b
i −G

a

iG
b
i

)(
B
c

jB
d
j −G

c

jG
d
j

)

+λ3
(
B
a

iG
a
j ViµνUjµν +G

a

iG
a
j UiµνUjµν

+B
a

iB
a
j ViµνV jµν −G

a

iB
a
j VjµνUiµν

−GaiB
a
j U iµνV jµν +G

a

iB
a

j UiµνVjµν

−
1

2
Bai B

a
j V iµνV jµν +

1

2
GaiG

a
j U iµνUjµν

−
1

2
B
a

iB
a

j ViµνVjµν +
1

2
G
a

iG
a

j UiµνUjµν

)

+χ1
(
V iµν∂

2Viµν −U iµν∂
2Uiµν

)

+χ2
(
V iµν∂µ∂αViνα−U iµν∂µ∂αUiνα

)

− ζ
(
U iµνUiµνUjαβUjαβ+V iµνViµνV jαβVjαβ

− 2U iµνUiµνV jαβVjαβ
)
−ΩaµD

ab
µ c
b

+
g

2
fabcLacbcc+ gfabcY

a

i c
bBci + gf

abcY ai c
bB
c

i

+ gfabcX
a

i c
bGci + gf

abcXai c
bG
c

i

}

. (105)

This action Σ̃ obeys the Slavnov–Taylor identity

S̃(Σ̃) = 0 , (106)

with

S̃(Σ̃) =

∫
d4x

[
δΣ̃

δΩaµ

δΣ̃

δAaµ
+
δΣ̃

δLa
δΣ̃

δca
+ ba
δΣ̃

δca

+

(
δΣ̃

δY
a

i

+Gai

)
δΣ̃

δBai
+
δΣ̃

δY ai

δΣ̃

δB
a

i

+
δΣ̃

δX
a

i

δΣ̃

δGai

+

(
δΣ̃

δXai
+B

a

i

)
δΣ̃

δG
a

i

+V iµν
δΣ̃

δU iµν
+Uiµν

δΣ̃

δViµν

−Y
a

i

δΣ̃

δX
a

i

+Xai
δΣ̃

δY ai

]

. (107)

Since the theory is stable and free from anomalies at the
quantum level, we may write down a renormalized 1PI
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quantum vertex functional [66],

Γ̃ = Σ̃+ h̄Γ̃ ,(1)+... , (108)

which fulfills the quantum version of the Slavnov–Taylor
identity (106), i.e.

S̃(Γ̃ ) = 0 , (109)

S̃(Γ̃ ) =

∫
d4x

[
δΓ̃

δΩaµ

δΓ̃

δAaµ
+
δΓ̃

δLa
δΓ̃

δca
+ ba

δΓ̃

δca

+

(
δΓ̃

δY
a

i

+Gai

)
δΓ̃

δBai
+
δΓ̃

δY ai

δΓ̃

δB
a

i

+
δΓ̃

δX
a

i

δΓ̃

δGai

+

(
δΓ̃

δXai
+B

a

i

)
δΓ̃

δG
a

i

+V iµν
δΓ̃

δU iµν
+Uiµν

δΓ̃

δViµν

−Y
a

i

δΓ̃

δX
a

i

+Xai
δΓ̃

δY ai

]

. (110)

Let us now analyze the quantum properties of the model
when the sources attain their physical values (55). First of

all, let us give a look at the classical action Σ̃ph, obtained

by Σ̃ by setting the sources to their physical values, namely

Σ̃ph = Σ̃
∣
∣
∣
physical value of (Viµν ,V iµν ,Uiµν ,Uiµν)

, (111)

or explicitly

Σ̃ph =

∫
d4x

(
1

4
F aµνF

a
µν

)

+

∫
d4x

(
ba∂µA

a
µ+ c

a∂µD
ab
µ c
b
)

+

∫
d4x

(
im

4
(B−B)aµνF

a
µν

+
1

4

(
B
a

µνD
ab
σ D

bc
σ B

c
µν −G

a

µνD
ab
σ D

bc
σ G

c
µν

))

+

∫
d4x

(

−
3

8
m2λ1

(
B
a

µνB
a
µν −G

a

µνG
a
µν

)

+m2
λ3

32

(
B
a

µν −B
a
µν

)2)

+

∫
d4x

(
λabcd

16

(
B
a

µνB
b
µν −G

a

µνG
b
µν

)

×
(
B
c

ρσB
d
ρσ−G

c

ρσG
d
ρσ

))
−

∫
d4x

(
9

4
ζm4

)

.

(112)

It is easy to check that Σ̃ph is not BRST invariant with
respect to (33). In fact, it turns out that

sΣ̃ph =
im

4

∫
d4xGaµνF

a
µν

−λ3
m2

16

∫
d4x

(
B
a

µν −B
a
µν

)
Gaµν . (113)

This equation shows that the breaking of the BRST sym-
metry (33) is not linear in the quantum fields, and hence
the breaking terms have to be treated as composite op-
erators [66]. Therefore, (113) cannot be renormalized as
it stands. The two breaking terms have to be taken into
proper account. This is precisely achieved by introducing
the local sources

(
Viµν , V iµν , Uiµν , U iµν

)
. In other words,

these sources allow us to take into account e.g. the pres-
ence of

∫
d4xGaµνF

a
µν and its renormalization, which is ex-

pressed by the renormalization factor of the source U iµν .
Wewould like to understandwhat happens to the BRST

symmetry at the quantum level, when the sources attain
their physical values. It is instructive to study this limit
by means of the Slavnov–Taylor identity (109). Let Γ̃ph

be the 1PI functional obtained from Γ̃ when the sources(
Viµν , V iµν , Uiµν , U iµν

)
attain their physical values

Γ̃ph = Γ̃
∣
∣
∣
physical value of (Viµν ,V iµν ,Uiµν ,Uiµν)

. (114)

We can write

∫
d4xV iµν

δΓ̃

δU iµν

∣
∣
∣
∣
∣
physical value

=−
im

4

[∫
d4xGaµνF

a
µν · Γ̃

]

physical value

+λ3
m2

16

[∫
d4x

(
B
a

µν −B
a
µν

)
Gaµν · Γ̃

]

physical value

(115)

where e.g.
[(∫
d4xGaµνF

a
µν

)
· Γ̃
]
stands for the generator

of the 1PI Green functions with the insertion of the com-
posite operator

(∫
d4xGaµνF

a
µν

)
. Of course, it holds that

[
. . . · Γ̃

]

physical value
=
[
. . . · Γ̃ph

]
. It follows that the quan-

tum action Γ̃ph obeys the broken Slavnov–Taylor identity

S̃(Γ̃ph) =
im

4

[∫
d4xGaµνF

a
µν · Γ̃

]

physical value

−λ3
m2

16

[∫
d4x

(
B
a

µν −B
a
µν

)
Gaµν · Γ̃

]

physical value

(116)

where

S̃(Γ̃ph) =

∫
d4x

[
δΓ̃ph

δΩaµ

δΓ̃ph

δAaµ
+
δΓ̃ph

δLa
δΓ̃ph

δca
+ ba
δΓ̃ph

δca

+

(
δΓ̃ph

δY
a

i

+Gai

)
δΓ̃ph

δBai
+
δΓ̃ph

δY ai

δΓ̃ph

δB
a

i

+
δΓ̃ph

δX
a

i

δΓ̃ph

δGai
+

(
δΓ̃ph

δXai
+B

a

i

)
δΓ̃ph

δG
a

i

−Y
a

i

δΓ̃ph

δX
a

i

+Xai
δΓ̃ph

δY ai

]

. (117)



M.A.L. Capri et al.: The Gribov–Zwanziger action in the presence of . . . 473

It is worth underlining here that (116) is in fact noth-
ing more than a direct consequence of the Slavnov–Taylor

identity (109), when the local sources
(
Viµν , V iµν , Uiµν ,

U iµν

)
attain their physical values (55).

We conclude that Γph does not obey an exact Slavnov–
Taylor identity. Of course, (116) translates at the quantum
level the fact that the classical action Σ̃ph, obtained from
Σ̃ by bringing the sources to their physical values, is not
BRST invariant, according to (113). However, even if Γph
does not obey an exact Slavnov–Taylor identity, (116) has
far reaching consequences on the behavior of the 1PI Green
functions obtained from Γph, i.e. when the sources are set
to their physical values.
Let us consider the breaking term

[(∫
d4xGaµνF

a
µν

)
·Γ
]
.

Typically, Slavnov–Taylor identities at the level of Green
functions are obtained by acting with a test operator
like δn

δϕ(x1)...δϕ(xn)
, with ϕ any generic field, on expression

(116), and setting all sources and fields equal to zero at
the end. The condition to be fulfilled so that the breaking
would be harmless is quite easily found, since the breaking
term will vanish whenever

δn
[(∫
d4xGaµνF

a
µν

)
·Γ
]

δφ(x1) . . . δφ(xn)
(118)

=

〈(∫
d4xGaµν(x)F

a
µν(x)

)

ϕ(x1) . . . ϕ(xn)

〉

1PI

= 0 ,

meaning that the 1PI Green function with the insertion of
the operator

(∫
d4xGaµνF

a
µν

)
and with n amputated exter-

nal φ-legs should vanish. Thus, if the condition (118) holds
and an analogous one for the other breaking term, the right
hand side of (116) is harmless, so that everything goes as if
the theory would fulfill an unbroken Slavnov–Taylor iden-
tity, namely

S̃(Γ̃ph) = 0 . (119)

The set of identities for which this happens is quite large.
Certainly, it contains all Slavnov–Taylor identities that are
obtained from (116) by acting only on the original Yang–
Mills fields or even the Baµν and B

a

µν fields. In this case,
there is no way to obtain a nonvanishing contribution to
the breaking term because of the presence of the Gaµν -
ghost field in the right hand side of (118). For example, the
Slavnov–Taylor identity for the 1PI gluon propagator can
be obtained from (116) by acting on it with the test op-

erator δ2

δc(x)δAν (y)
and setting all fields and other external

sources equal to zero. The breaking terms will be irrelevant
as the Green function

〈(∫
d4zGaµν(z)F

a
µν(z)

)
c(x)Aν(y)

〉

as well as the other one are trivially zero.
We conclude that most Green functions will behave as

if the theory obeys the unbroken Slavnov–Taylor identity
(119). The same considerations outlined for the Slavnov–
Taylor identity can be repeated for the other Ward identi-
ties. The corresponding breaking terms will always contain
the integrated ghost fields Gaµν and/orG

a

µν , which, in most
cases,will leadtovanishingcontributionswhen inserted into
a Green function, thereby making the breaking harmless.

The beauty in all this is exactly the fact that the break-
ing of the Slavnov–Taylor and other Ward identities can be
broughtunder control at the quantum level by the introduc-
tion of a suitable set of local sources. All the renormaliza-
tion results of the actionwith arbitrary values of the sources
are then preserved once the sources are put equal to specific
values.
Since the classical part of the action (112), obtained by

skipping the gauge fixing term (10), is gauge invariant with
respect to the gauge transformations (53), we expect that
there should be a nilpotent BRST generator at the quan-
tum level for the gauge fixed action (112). Nevertheless,
we have just seen that the BRST operator (33) no longer
generates an exact symmetry of the action (112). As was
already discussed in [63], the nilpotent transformation

s′Aaµ =−D
ab
µ c
b ,

s′ca =
g

2
fabccacb ,

s′Baµν = gf
abccbBcµν ,

s′B
a

µν = gf
abccbB

c

µν ,

s′Gaµν = gf
abccbGcµν ,

s′G
a

µν = gf
abccbG

c

µν ,

s′ca = ba ,

s′ba = 0 ,

s′
2
= 0 (120)

generates an invariance of (112). One shall easily recognize
that there is an intimate connection between the trans-
formations s (33), s′ (120) and δs (104), namely we have

s= s′+ δs . (121)

Then we can say that the breaking of the BRST symmetry
s and its associated Slavnov–Taylor identity is entirely due
to the loss of the supersymmetry δs when the physical limit
(55) is taken [63].
Evidently, the unbroken BRST symmetry s′ can be

used to construct unbroken Slavnov–Taylor identities be-
tween the Green functions of the massive gauge
model (112).

8.2 The case of the massive gauge model
with Gribov restriction

A very similar analysis can be made when we consider the
full action (103). In this case, there are additional breaking
terms coming from the physical limit (46) of the Zwanziger
sources. In particular, applying the transformations s or s′

on (103), we find

sSphysical =
im

4

∫
d4xGaµνF

a
µν

−λ3
m2

16

∫
d4x

(
B
a

µν −B
a
µν

)
Gaµν

+γ2
∫
d4x

(
− gfabcDbdµ c

dφacµ + gf
abcAbµω

ac
µ

+gfabcDbdµ c
dφ
ac

µ

)
, (122)



474 M.A.L. Capri et al.: The Gribov–Zwanziger action in the presence of . . .

or

s′Sphysical = γ
2

∫
d4x

(
− gfabcDbdµ c

dφacµ + gf
abcAbµω

ac
µ

+gfabcDbdµ c
dφ
ac

µ

)
. (123)

Irrespective of the choice of BRST transformation s or s′,
the physical Gribov–Zwanziger action is not BRST invari-
ant anymore. However, repeating the same argument given
in the previous subsection, it turns out that the breaking
terms can be treated consistently at the quantum level,
leading to a renormalized broken Slavnov–Taylor identity.
Furthermore, in most cases, everything will go as if the the-
ory obeys an unbroken Slavnov–Taylor identity, because
the breaking terms are in fact harmless.

9 Conclusions

In this paper, we have shown that the nonlocal gauge in-
variant operator Tr

∫
d4xFµν(D

2)−1Fµν can be coupled to
the Gribov–Zwanziger action in a localized form. By em-
bedding this model into a larger class of models with local
sources, we established a comprehensive set of Ward iden-
tities, which were sufficient to prove the renormalizability
to all orders of perturbation theory. Specializing thus to
a particular values of the local sources, we conclude that we
have constructed a renormalizable action (103) that allows
us to study the gauge invariant mass m in combination
with the restriction to the first Gribov horizon, obtained
when the effective action is minimized with respect to the
Gribov mass parameter γ2. This restriction gives a first
source of nonperturbative effects in gauge theories, as ex-
plained in the introduction: the gluon/ghost propagator
gets infrared suppressed/enhanced, while the Gribov mass
γ is fixed in terms of the QCD scale ΛQCD by means of
the requirement that the effective action is minimized with
respect to it.
We also paid attention to the breaking of the BRST

invariance when the sources are set equal to their physi-
cal values. We have elaborated on the fact that in most
cases, the breaking terms in the Slavnov–Taylor identity
are harmless, since they usually induce zero contributions
to the identities between Green functions.
In the main body of this paper, we have extensively

used and studied the BRST invariance in relation to the
renormalizability. However, there is another major reason
why the BRST symmetry is so important for perturba-
tively handled gauge theories. In a certain sense, BRST
invariance is the quantum version of gauge invariance, and
as such it should play a major role in reducing the num-
ber of relevant (physical) degrees of freedom, at least at the
perturbative level. It is well known that a BRST symmetry
with corresponding nilpotent charge is a very powerful tool
in establishing the unitarity of gauge theories at the quan-
tum level once a gauge has been chosen, see e.g. [38, 69–72].
When we discard the Gribov restriction, we retrieve

the gauge model studied in [46, 63, 72], enjoying the BRST
symmetry with nilpotent generator (120). Therefore, hope

existed that the model might be unitary, i.e. that one would
be able to define a physical subspace Hphys of the total
Hilbert state space H, such that Hphys is endowed with
a positive norm. This optimism turned out to be flawed, as
it was shown in [72] that the massive gauge model is not
unitary.
In addition to this, the restriction to the Gribov hori-

zon only makes things worse. First of all, we have lost
the (nilpotent) BRST symmetry, so any potential discus-
sion of the unitarity cannot be based on BRST related
tools. Further, we already mentioned in the introduction
that the Gribov restriction gives rise to an infrared sup-
pressed gluon propagator, and this suppression is so that
the gluon propagator shows a violation of spectral positiv-
ity. Hence, the gluon is not expected to represent a physical
particle, implying that we should certainly not expect uni-
tarity from the Gribov–Zwanziger action when the gluons
are treated as physical particles. We should rather expect
the opposite. A hint that the Gribov restriction destabi-
lizes the gluon is also given when we take a look at the tree
level propagator, which in our conventions is given by [52]

〈
AaµA

b
ν

〉
p
≡ δab

D(p2)

p2

(

δµν −
pµpν

p2

)

,

with the gluon form factor

D(p2) =
p4

p4+2g2Nγ4
, (124)

which can also be written in a “standard” propagator form

D(p2) =
1

2

p2

p2+i
√
2g2Nγ2

+
1

2

p2

p2− i
√
2g2Nγ2

, (125)

i.e. as the sum of two propagators with imaginary masses
squared.
A similar reasoning can be applied when we do not

implement the Gribov restriction. As we already outlined
in [72], we can see the massless version of our model (112)
as an alternative to ordinary Yang–Mills theory at high
energies, based on their equivalence in the perturbative re-
gion [63]. The benefit of using our gauge model is that it
is possible to couple mass terms ∝m to it without jeopar-
dizing the renormalizability. Then one can start looking for
a sensible gap equation in order to generate a nonperturba-
tive mass scalem. Stated otherwise, we could start looking
for a gauge invariant dynamical mass generation mechan-
ism. The generation of such a mass parameter would break
the unitarity at the level of the gluons, but we must recall
that unitarity is only a prerequisite for the physical degrees
of freedom. We can depart our research from the massless
(unitary) theory [72], but we are no longer interested in de-
scribing the perturbative asymptotic high energy regime
of QCD, but instead we are entering a phenomenologically
interesting region where e.g. the gluons already lose their
physical meaning as observables. In this energy region, the
gluons should be rather seen as a kind of quasi particles
with a finite lifetime, thus not entering the asymptotic
physical spectrum, which we do not know how to describe.
We can continue to use the gluon propagator etc., albeit
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the versions corrected by nonperturbative effects, like an
effective gluon mass and/or Gribov restriction. At first in-
stance, we can concentrate on the case with only the mass
m to be fixed, but at a later stage, we can also study the in-
fluence of the restriction to the Gribov region Ω, since we
have just proven the renormalizability of this action to all
orders.
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