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Abstract. In this manuscript, we analytically and numerically study statistical properties of an
heteroskedastic process based on the celebrated ARCH generator of random variables whose variance
is defined by a memory of qm-exponencial, form (ex

qm=1 = ex). Specifically, we inspect the self-correlation
function of squared random variables as well as the kurtosis. In addition, by numerical procedures, we infer
the stationary probability density function of both of the heteroskedastic random variables and the variance,
the multiscaling properties, the first-passage times distribution, and the dependence degree. Finally, we
introduce an asymmetric variance version of the model that enables us to reproduce the so-called leverage
effect in financial markets.

PACS. 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 89.90.+n Other topics
in areas of applied and interdisciplinary physics

1 Introduction

Many of the so-called complex systems are characterised
by having time series with a peculiar feature: although
the quantity under measurement presents an autocorrela-
tion function at noise level for all time lags, when the au-
tocorrelation of the magnitudes is appraised, a slow and
asymptotic power-law decay is found. This occurs, e.g.,
with (log) price fluctuations of several securities traded
in financial markets [1], temperature fluctuations [2], neu-
romuscular activation signals [3] or even fluctuations in
presidential approval ratings [4] amongst many others [5].
Moreover, most of these time series are also characterised
by probability density functions with asymptotic power-
law decay and a profile suggestive of intermittency that
is identified by regions of quasi-laminarity interrupted by
spikes. In this perspective, this type of time series might
be seen as a succession of measurements with a time-
dependent standard deviation. Mathematically, this class
of stochastic process is defined as heteroskedastic, in oppo-
sition to the class of processes with constant standard de-
viation that is defined as homoskedastic. With the primary
goal of reproducing and forecasting inflation time series, it
was introduced in 1982 the autoregressive conditional het-
eroskedasticity process (ARCH) [6]. The ARCH process
has rapidly come to be a landmark in econometrics giving
raise to several generalisations and widespread applica-
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tions not only in Economics and Finance but in several
other fields as well.

In the sequel of this article, we introduce further in-
sight into a variation of the ARCH process studied in
reference [7] which is able to reproduce the properties we
have referred to here above. Our considerations are made
both on analytical and numerical grounds. Although the
primary goal of this manuscript is an extensive descrip-
tion of the model following the lines of reference [7], some
assessment of its capability in reproducing the same fea-
tures of SP500 daily log fluctuations spanning the 3rd
January 1950 to the 28th February 2007 is made. In this
context, we also introduce a slight modification on the
model which turns it able to reproduce the leverage effect
when the model is applied to surrogate price fluctuations
time series. The manuscript is organised as follows: af-
ter introducing the ARCH processes and present some
general properties, we make known in Section 2 some an-
alytical calculations on the autocorrelation function of the
model herein analysed and the correlation between vari-
ables and squared standard deviation for the extension
as well as the expressions for the kurtosis. In Section 3,
we introduce results from the numerical analysis about the
probability density functions of the stochastic variable, zt,
and its squared instantaneous standard deviation, σ2

t ; the
dependence degree between zt

t and z2
t+τ ; the distribution

of first passage times of z2
t ; and the multiscaling proper-

ties. In Section 4, we establish an asymmetric variation of
the model which allows the reproduction of the so-called
leverage effect. Final considerations are addressed to Sec-
tion 5.
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2 The symmetric variance model

We start defining an autoregressive conditional
heteroskedastic (ARCH) time series as a discrete
stochastic process, zt,

zt = σt ωt, (1)

with ωt being an independent and identically distributed
random variable with mean equal to zero and second-order
moment equal to one, i.e., 〈ωt〉 = 0 and

〈
ω2

t

〉
= 1. Usually,

ω is associated with a Gaussian distribution, but other
distributions of ω have been presented to mainly describe
price fluctuations [8]. In his benchmark article of refer-
ence [6], Engle suggested a dynamics for σ2

t establishing
it as a linear function of past squared values of zt,

σ2
t = a +

s∑

i=1

bi z2
t−i, (a, bi ≥ 0). (2)

In financial practice, namely price fluctuation modelling,
the case s = 1 (b1 ≡ b) is, by far, the most studied and ap-
plied of all ARCH-like processes. It can be easily verified,
even for all s, that, although 〈zt zt′〉 ∼ δt t′ , correlation
〈|zt| |zt′ |〉 is not proportional to δt t′ . As a matter of fact,
for s = 1, it has been proved that,

〈
z2

t z2
t′
〉

decays as an
exponential law with a characteristic time τ ≡ |ln b|−1,
which does not reproduce empirical evidences. In addi-
tion, the introduction of a large value for parameter s
bears implementation problems [10]. Expressly, large val-
ues of s soar the complexity in finding the appropriate
set of parameters {bi} for the problem under study as it
corresponds to the evaluation of a large number of fit-
ting parameters. Aiming to solve the imperfectness of the
original ARCH process, the GARCH (s, r) process was
introduced [11], with equation (2) being replaced by,

σ2
t = a +

s∑

i=1

bi z2
t−i +

r∑

i=1

ci σ2
t−i (a, bi, ci ≥ 0). (3)

Nonetheless, even this process, presents a exponen-
tial decay for

〈
z2

t z2
t′
〉
, with τ ≡ |ln(b + c)|−1 for

GARCH (1, 1), though condition, b + c < 1, guarantees
that GARCH (1, 1) corresponds exactly to an infinite-
order ARCH process [12].

Despite the fluctuation of the instantaneous volatility,
the ARCH(1) process is actually stationary with a sta-
tionary variance, given by,

〈
σ2

〉
= σ̂2 =

a

1 − b
, (b > 1), (4)

(〈. . .〉 represents averages over samples and .̂ . . averages
over time). Moreover, it presents a stationary probability
density function (PDF), P (z), with larger kurtosis than
the kurtosis of distribution P (ω). The fourth-order mo-
ment is,

〈
z4

〉
= a2

〈
ω4

〉 1 + b

(1 − b) (1 − b2 〈σ4〉) .

This kurtosis excess is precisely the outcome of time-
dependence of σt. Correspondingly, when b = 0, the pro-
cess reduces to generating a signal with the same PDF of
ω, but with a standard variation

√
a.

In the remaining of this article we consider a ARCH(1)
process in which an effective immediate past return, z̃t−1,
is assumed in the evaluation of σ2

t [7]. Explicitly, equa-
tion (2) is replaced by

σ2
t = a + b z̃2

t−1, (a, b ≥ 0), (5)

where the effective past return is calculated according to

z̃2
t−1 =

t−1∑

i=t0

K (i − t + 1) z2
i , (6)

with

K (t′) =
1

Zqm (t′)
expqm

[
t′

T

]
, (t′ ≤ 0, T > 0, qm < 2)

(7)
and

expq [x] = ex
q ≡ [1 + (1 − q) x]

1
1−q

+ , (q ∈ R), (8)

Zqm(t′) ≡
∑0

i=−t′ expqm

[
i
T

]
([x]+ = max{0, x} 1), known

in the literature as q-exponential [13]. This prososal can
be enclosed in the fractionally integrated class of het-
eroskedastic process (FIARCH). Although it is similar
to other proposals [14], it has a simpler structure which
permits some analytical considerations without introduc-
ing any underperformance when used for mimicry pur-
poses. For q = −∞, we obtain the regular ARCH(1) and
for q = 1, we have K(t′) with an exponential form since
exp1[x] = ex [15]. Although it has a non-normalisable
kernel, let us refer that the value qm = ∞ corresponds
to the situation that all past values of zt have the same
weight,

K (t′) =
1

t′ − t0 + 1
. (9)

In this case, memory effects are the strongest possible,
i.e., every single element of that past has the same degree
of influence on σ2

t making it constant after a few steps.
Because of this, in this case, P (z) is the same as noise ω,
as shown in [7]. Similar heuristic arguments are the base of
the Gaussian nature of the “Elephant random walk” [16].

Assuming stationarity in the process some calculations
can be made2. Namely, it is provable that the average
value of σ2 yields,

〈
σ2

〉
= σ̂2 =

a

1 − b
, (b > 1), (10)

and the covariance, 〈zt zt′〉 corresponds to

〈zt zt′〉 = 〈σt σt′〉 〈ωt ωt′〉, (11)
1 This condition is known in the literature as Tsallis cut off

at x = ±(1 − q)−1.
2 This has been numerically analysed by computing the z2

t

self-correlation function for different waiting times.
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which, due to the uncorrelated nature of ω, gives 〈zt zt′〉 =
0 for every t �= t′ and

〈
z2

t

〉
=

〈
σ2

〉
. In addition, we can

verify that all odd moments of zt are equal to zero. Con-
cerning the fourth-order moment,

〈
z4

t

〉
, we have

〈
z4

t

〉
=

〈
σ2

t σ2
t ω2

t ω2
t

〉
=

〈[
σ2

t

]2〉〈
ω4

t

〉
, (12)

which by expansion yields,

〈
z4

t

〉
= a2

〈
ω4

t

〉
+ 2a b

t−1∑

i=t0

K (i − t + 1)
〈
z2

i

〉 〈
ω4

t

〉

+ b2
t−1∑

i=t0

[K (i − t + 1)]2
〈
z4

i

〉 〈
ω4

t

〉

+ 2b2
t−1∑

i=t0

t−1∑

j=i+1

K (i − t + 1)K (j − t + 1)
〈
z2

i z2
j

〉 〈
ω4

t

〉
.

(13)

If zi and zj are assumed as strictly independent, then
〈
z2

i z2
j

〉
=

〈
z2

i

〉 〈
z2

j

〉
=

〈
z2

t

〉2. Assuming stationarity we
have,
〈
z4

t

〉
= a2

〈
ω4

t

〉
+ 2a b

〈
z2

t

〉 〈
ω4

t

〉

+ b2
〈
z4

t

〉 〈
ω4

t

〉 t−1∑

i=t0

[K (i − t + 1)]2

+ 2b2
〈
z2

t

〉2 〈
ω4

t

〉 t−1∑

i=t0

t−1∑

j=i+1

K (i − t + 1)K (j − t + 1),

(14)

or

〈
z4

t

〉
I

=
a2 + 2a b

〈
z2

t

〉
+ 2b2

〈
z2

t

〉2 Q1

1 − b2 〈ω4
t 〉Q2

〈
ω4

t

〉
, (15)

with Q1 =
t−1∑

i=t0

t−1∑

j=i+1

K (i − t + 1)K (j − t + 1) and Q2 =

t−1∑

i=t0

[K (i − t + 1)]2. On the other hand, we have the other

limiting case,
〈
z2

i z2
j

〉
=

〈
z4

t

〉
. Equation (13) is then writ-

ten as

〈
z4

t

〉
C

=
a2 + 2a b

〈
z2

t

〉

1 − b2 〈ω4
t 〉 (2Q1 + Q2)

〈
ω4

t

〉
. (16)

The labelling as upper bound for
〈
z4

t

〉
I

and lower
bound for

〈
z4

t

〉
C

comes as follows; the introduction of
non-Gaussianity in heteroskedastic processes comes from
the fluctuations in the variance (or in z2

t ). When the vari-
ables are strongly attached between them, there is a small

level of fluctuation in σ2
t and eventually it becomes con-

stant. With σt being a constant, or approximately that,
there is not introduction of a significant level of non-
Gaussianity measured from

〈
z4

t

〉
, hence

〈
z4

t

〉
I

>
〈
z4

t

〉
C

(a �= 0).
For an accurate description of

〈
z4

t

〉
, which lies between

the two limiting expressions, we must compute correla-
tions

〈
z2

t z2
t′
〉
. That is obtained averaging,

z2
t z2

t′ = a2ω2
t ω2

t′ + a b

t−1∑

i=t0

K (i − t + 1) z2
i ω2

t ω2
t′

+ a b

t′−1∑

j=t0

K (j − t′ + 1) z2
j ω2

t ω2
t′

+ b2
t−1∑

i=t0

t′−1∑

j=t0

K (i − t + 1)K (j − t′ + 1) z2
i z2

j ω2
t ω2

t′ .

(17)

Defining τ ≡ t − t′, the last term of rhs of equation (17),
hereon labelled as C, is responsible for the dependence of〈
z2

t z2
t′
〉

with τ . It can be written as

C = b2ω2
t ω2

t′

t−1∑

i=t0

t−τ−1∑

j=t0

K (i − t + 1)K (j − t + 1 + τ) z2
i z2

j

∼
t−τ−1∑

i=t0

K (i − t + 1)K (i − t + 1 + τ) z4
i

+
t−τ−1∑

i=t0

t−1∑

j=t−τ+1

K (i − t + 1 + τ) K (j − t + 1) z2
i z2

j .

(18)

We shall now consider a continuous approximation where
the summations are changed by integrals,

t−1∑

i=t0

. . . →
∫ t

0

. . . dx,

and t  1, so that the following relations are obtained in
the limit t → ∞. Computing 〈C〉, the term in z4

i has the
coefficient,

C1 (τ) ∼
∫ t−τ

0

expqm
[x − t] expqm

[x − t + τ ] dx

=
t→∞

[τ (qm − 1)]
1

1−qm

2 − qm
F2,1

×
[
2 − qm

qm − 1
,

1
qm − 1

; 2 +
1

qm − 1
;

1
(1 − qm) τ

]
,

(19)

where F2,1 [a, b; c; x] is the generalised hypergeometric
function. Regarding the term in z2

i z2
j , the first approxima-

tion is obtained considering
〈
z2

i z2
j

〉
=

〈
z2

i

〉 〈
z2

j

〉
=

〈
z2

t

〉2.
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Fig. 1. The black line represents the numerical evalu-
ation of the z2

t autocorrelation function vs. the lag τ
and the red line C2(τ ) from equation (20) for parameters
{a = 0.5, b = bSP , qm = qSP}. The inset depicts the way C1(τ )
(dotted line) and C2(τ ) (full line) decay. As can be seen, C1(τ )
decays much faster than C2(τ ) which is the major responsible
for Cτ

(
z2

t

)
behaviour for large τ .

Its coefficient is then given by

C2 (τ) ∼
∫ t

t−τ

∫ t−τ

0

expqm
[y − t] expqm

[x − t + τ ] dx dy

∼
t→∞ expqc

[−λ τ ], (20)

with
qc =

1
2 − qm

, (21)

and λ = q−1
c . A simple inspection shows that C2 (τ) de-

cays much slower than C1 (τ), hence the asymptotic form
of

〈
z2

t z2
t′
〉

is dominated by C2 (τ) as it is illustrated in
the inset of Figure 1. In Figure 1, we bring face to face
equation (20) and the autocorrelation function of z2

t from
numerical simulation using the parameters applied to re-
produce SP500 returns previously determined, namely
{a, b = bSP , qm = qSP } = {0.5, 0.99635, 1.6875}.

From all these equations we are able to conjecture ex-
pressions which relate parameters {a, b, qm} with the form
of the distribution in the case where

〈
z4

t

〉
is finite. In

this way, we can use the ansatz that the distribution of
this dynamical model is associated with a q-Gaussian (or
Student-t) distribution3,

p (z) = A expq

[
−B z2

]
, (q < 3), (22)

with B =
[
σ̄2

q (3 − q)
]−1, where,

σ̄2
q ≡

∫
z2 [p (z)]q dz/

∫
[p (z)]q dz,

3 A q-Gaussian, with q > 1, corresponds to a Student-t with
m degrees of freedom with q = 3+m

1+m
where m is taken as a real

positive number.

is the q-generalised second order moment [13], and A is the
normalisation constant. This assumption is based on the
same type of arguments used in [27] and whose accuracy
we verify later on (see Sect. 3). For q < 5/3, σ̄2

q relates to
the usual variance according to σ̄2

q (3 − q) = σ̄2 (5 − 3 q).
From equations (13), (17), (19), and (20) we can write,

〈
z4

t

〉
= a2

〈
ω4

t

〉
+ 2a b

〈
z2

t

〉 〈
ω4

t

〉
+ b2

〈
z4

t

〉 〈
ω4

t

〉 (2−qm)2

3−qm

+b2
〈
ω4

t

〉
[a2

〈
ω2

t

〉2 + 2 a b
〈
z2

t

〉 〈
ω2

t

〉2 + 2K]
(23)

where K represents terms like,

∫ t

0

∫ t

0

expqm
[x − t] expqm

[x + τ − t] [C1 (τ)

+C2 (τ)] dτ dx, (24)

which corresponds to a quite complex integration over x

of hypergeometric function F2,1

[
ã, b̃; c̃; x

]
and the Appell

hypergeometric function [17] where ã, b̃, and c̃ represent
general values.

Taking into attention that for a q-Gaussian with q < 7
5

its fourth moment is,

〈
z4

〉
= 3

(
σ̄2

)2 3 q − 5
5 q − 7

, (25)

we can obtain approximate relations between the param-
eters of the model and the parameters of the distribution.
This is achieved when we equalise equations (23) and (25),
remembering the expression of the variance, equation (10),
and the form of the autocorrelation function of z2

t . This
procedure is obviously important in parameter estimation.
Therefore, from the decay of the z2

t autocorrelation func-
tion we can determine the value of qm, and a and b from
the equalisation we have just referred to together with
equation (10).

3 Numerical considerations

3.1 Stationary probability density functions

We firstly recover the results previously presented for the
adjustment of P (z) with q-Gaussians. As mentioned in [7]
the adjustment is striking (diagrams of q as a function of
b and qm are presented in Figure 1 of that reference).
Using the method of χ2 minimisation, we have obtained
for the same cases previously studied4 average values of
χ2 = 1.1×10−6 (per degree of freedom) and R2 = 0.99990.
In Figure 2, we present an example for which it is possible
to assent the accuracy of the fitting not only in the tails,
but in the peak of the PDF as well. We have performed
further analysis using the cumulative distribution function
(CDF) and the Kolmogorov-Smirnov Distance, DKS ,

DKS = max |H (z) − H0 (z)| , (26)
4 Comparing with prior studies we have increased the runs

by a factor of 10.
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Fig. 2. Upper panel: the symbols represent the probability
density function P (z) vs. z for parameters qm = 1.5 and
b = 0.875, and the line the best fit for a q-Gaussian with
q = 1.385 [on log-linear scale] and unitary standard deviation
(χ2 = 1.39 × 10−6 and R2 = 0.99987). The inset is the same,
but on linear-linear scale permitting the appraisal of the fit-
ting in the central region. Lower panel: the symbols are for the
empirical cumulative distribution function H (z) vs. z for the
same parameters and the line the CDF of a q-Gaussian with
q = 1.385 and unitary standard deviation (DKS = 0.00457).
The inset is the same plot, but on a log-linear scale.

where H (z) is the empirical CDF obtained from numerical
evaluation of the model and H0 (z) is the testing proba-
bility density function,

H0 (z) =
∫ z

−∞
A expq

[
−B x2

]
dx. (27)

The average DKS value obtained for the same cases plot-
ted in Figure 1 of the prior work is equal to 4.25 × 10−3.
Such values allow us to rely on the null hypothesis [19],

P (z) = p (z) = A expq

[
−B z2

]
. (28)

Based on the acceptance of the null hypothesis (28) we
are able to introduce some insight into the distribution of
σ2, pσ

(
σ2

)
. Firstly, we carry out the following change of

variables, ⎧
⎨

⎩

z̆t = ln z2
t

σ̆t = ln σ2
t

ω̆t = ln ω2
t ,

(29)

so that equation (1) turns into,

z̆t = σ̆t + ω̆t. (30)

In the probability space, regarding that σ̆t and ω̆t are in-
dependent, we have,

p (z̆) =
∫ ∞

−∞
Pσ̆ (σ̆) Pω̆ (z̆ − σ̆) dσ̆. (31)

We can now apply the convolution theorem. Being p (z̆t),
the probability of z̆t, according to such a theorem,

p (z̆t) = F−1
[
P̌σ̆ (k) P̌ω̆ (k)

]
, (32)

where

P̌x (k) =
1√
2 π

∫
f (x) exp [i k x] dx ≡ F [f (x)], (33)

and F−1 [fx (k)] = 1√
2 π

∫
fx (k) exp [−i k x] dx = f (x) is

the inverse Fourier Transform. Since we respectively know
and postulate the form of p (ω) and p (z), we can write
down,

p (ω̆) =
1√
2 π

exp
[
ω̆

2
− eω̆

2

]
,

p (z̆) = A expq

[
−B e z̆

]
exp

[
z̆

2

]
, (34)

(B = B (σ̄ = 1)), yielding the respective Fourier Trans-
forms [20],

P̌ω̆ (k) =
2i k− 1

2

π
Γ

[
1
2

+ i k

]
,

P̌z̆ (k) =
1√
2π

A
{

(−1)−Q (B q − B)
1

1−q −Q
B

[
1

B − B q
, Q,

2 − q

q − 1

]

+Γ

[
1
2

+ i k

]
F̃2,1

[
1

q − 1
,
1
2

+ ik,
3
2

+ ik,B − B q

]}
,

(35)

where Q = 1
1−q + 1

2 + ik, B [. . .] is the Beta function, and
F̃2,1 [. . .] is the regularised hypergeometric function [17].
Applying equation (35) in equation (32) we can compute
the distribution of σ̆ (easily related to pσ (σ)),

Pσ̆ (σ̆) = F−1

[
P̌z̆ (k)
P̌ω̆ (k)

]
. (36)

From a laborious and tricky calculation, using properties
of F̃2,1 [. . .] (see [18] and related properties), it can be ver-
ified Pσ̆ (σ̆) cooresponds to,

P̌σ̆ (k) =
Γ [θ − i k]

(2β)i k
Γ [c]

. (37)
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Fig. 3. The black symbols represent pσ

(
σ2

)
vs. σ2 [on log-

log scale] obtained by numerical evaluation of the process with
qm = qSP and b = bSP yielding a q-Gaussian distribution
with q = 1.465 (χ2 = 1.6 × 10−6) shown in the inset [on log-
linear scale]. The red line in the main plot is the representation
of the inverted Gamma distribution with c = 1.648 . . . and
θ = 0.770 . . . (χ2 = 6.1 × 10−4).

Therefore, σ2 follows an inverse Gamma distribution,

pσ

(
σ2

)
=

1
(2 θ)c

Γ [c]
(
σ2

)−1−c
exp

[
− 1

2 θ σ2

]
, (38)

where c = 3−q
2 q−2 and θ = q−1

σ̄2(5−3 q) . This result attests the
validity of the superstatistical approach to the problem of
heteroskedasticity. It is worth mentioning that superstatis-
tics [21] represents the long-term statistics in systems with
fluctuations in some characteristic intensive parameter of
the problem like the dissipation rate in Lagrangian turbu-
lent fluids [22] or the standard deviation like in the subject
matter of heteroskedasticity. For the values of qSP and
bSP , with have obtained random variables zt associated
with a (q = 1.465)-Gaussian. This yields cSP = 1.648 . . .
and θSP = 0.770 . . ., which have been applied in Figure 3
to fit pσ

(
σ2

)
obtained by numerical procedures. In that

plot, it is visible that numerical and analytical curves are
in proximity.

3.2 Dependence degree

The degree that the elements of a time series are tied-
in is not completely expressed by the correlation function
in the majority of the cases. In fact, regarding its inti-
mate relation with the covariance, the correlation func-
tion is only a measure of linear dependences. Aiming
to assess non-linear dependences, information measures
have been widely applied [23]. In our case, we use a non-
extensive generalisation of Kullback-Leibler information

Fig. 4. Normalised generalised mutual entropy Iq vs. q for pa-
rameters {qm = qSP , b = bSP} and values of the lag presented
in the figure.

measure [24,25]5,

Iq ≡ −
∑

t

p
(
z2

t , z2
t+τ

)

[
p′(z2

t ,z2
t+τ)

p(z2
t ,z2

t+τ)

]1−q

− 1

1 − q
, (39)

where p′
(
z2

t , z2
t+τ

)
= p

(
z2

t

)
p

(
z2

t+τ

)
=

[
p

(
z2

)]2 (assum-
ing stationarity), which has been able to provide a set
of interesting results with respect to dependence prob-
lems [26]. The quantification of the dependence degree is
made through a value, qop, which corresponds to the in-
flexion point of the normalised version of Iq,

Rq ≡ Iq

Imax
q

, (40)

where Imax
q is the value of Iq when variables z (t) and

z (t + τ) present a biunivocal dependence (see full expres-
sion in Ref. [25]).

For infinite signals, it can be shown that, when the
variables are completely independent qop = ∞, whereas
qop = 0 when variables are one-to-one dependent. For fi-
nite systems, there is a noise level, qop

n , which is achieved
after a finite time lag τ . Typical curves of Rq are depicted
in Figure 5 for qm = qSP and b = bSP .

In what follows, we present results obtained from nu-
merical evaluation of Rq for different values of τ . As ex-
pected, dependence relies on the balance between the ex-
tension of memory, which is given by qm and the weight
of effective past value, z̃t−1, on σt. Firstly, let us compare
cases {qm = qSP , b = bSP } and {qm = 1.25, b = bSP }, as
an example of what happens when we fix b (see Fig. 4).
Dependence is obviously long-lasting in the former case,
in the sense that it takes longer to attain qop

n , but for small
values of τ , the latter has presented higher levels of depen-
dence. This has to do that K (t′) is normalised and that im-
plies the intersection of the curves for different values of qm

at some value of t′. Alternatively, when qm decreases, the
recent values of zt have more influence on z̃t−1 than past

5 In the limit q → 1 the Kullback-Leibler mutual information
definition is recovered.
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Fig. 5. Values of qop vs. time lag τ for the pairs
{qm = qSP , b = bSP} as indicated in the figure. The dotted
lines are merely presented as a guide to the eye.

values. When the value of qm is kept constant, we have ver-
ified that smaller values of b lead to a faster approach to
noise value qop

n . In a previous work on GARCH (1, 1) [27],
we have verified that variables that are approximately as-
sociated with the same distribution present the same level
of dependence independently of the pair (b, c) chosen. In
this case, recurring to cases {qm = 1.375, b = 0.75} and
{qm = 1.625, b = 0.875}, we have noticed that the curves
present very close values for small lags, but they fall apart
for τ > 10, revealing a more intricate relation between q,
qm, and b than in GARCH (1, 1). Additionally, compar-
ing dependence and correlation, we have verified that the
decay is faster for the latter. Specifically, taking into ac-
count noise values of qop and Cτ

(
z2

t

)
, it is verifiable that

qop takes longer to achieve qop
n than Cτ

(
z2

t

)
takes to reach

Cn

(
z2

t

)
.

3.3 First-passage times

First-passage studies in stochastic processes are of con-
siderable interest. Not only from the scientific point of
view [28] (it is useful in the approximate calculation of
the lifetimes of the problems/systems) as well as from a
practical perspective, since they can be applied to quan-
tify the extent of reliability of forecasting procedures, e.g.,
in meteorology or finance [1,29,30]. In what it is next to
come, we have analysed the probability of z2

t ∈ Si = [a, b)
and z2

t+T ∈ Si. We have divided the z2
t domain into five

different intervals. Explicitly:

– S1: z2
t ≤ 1;

– S2: 1 < z2
t ≤ 2;

– S3: 2 < z2
t ≤ 5;

– S4: 5 < z2
t ≤ 10;

– S5: z2
t > 10.

Analysing the probability density functions we have ver-
ified that the simplest expression which enables a nu-
merical description of first-passage inverse cumulative
probability distribution, D (t), is a linear composition

Table 1. Table of the fitting parameters of region S1 using
equation (41).

I II III IV
ε 0.388 0.004 0.414 0.334
ν 1.09 1 1.17 1.17
T1 0.648 2.23 0.541 0.951
φ 0.894 0.394 0.792 0.762
T2 0.867 0.001 0.757 0.27
χ2 5.1 × 10−9 9.2 × 10−7 2.6 × 10−6 1.9 × 10−6

Table 2. Table of the fitting parameters of daily index fluctu-
ation of SP500 region using equation (41).

S1 S2 S3 S4 S5

ε 1 1 1 1 1
ν 1.17 1.21 1.43 2.03 3.03
T1 1.85 0.14 0.157 0.101 0.143
R2 0.999 0.999 0.998 0.998 0.993
χ2 5.4 × 10−7 5 × 10−5 5 × 10−5 1 × 10−4 3 × 10−4

of a asymptotic power-law (or a ν -exponential) with a
stretched exponential,

D (t) = ε

[
1 + (ν − 1)

t

T1

] 1
1−ν

+ (1 − ε) exp

[

−
(

t

T2

)φ
]

.

(41)
Curves of some analysed cases are presented in Figure 6
and fitting parameters in Table 1. The cases we present
are: I-{qm = qSP , b = 0.5}, II-{qm = 1.25, b = bSP}, III-
{qm = 1.25, b = 0.5}, IV -{qm = 1.5, b = 0.875}.

From the Figure 6 we have verified that, excepting
region S1, all curves of D (t) exhibit a decay closely ex-
ponential (ν = 1). For region S1, as we increase the non-
Gaussianity of p(zt), we have observed that both of the
values of ε and ν approach one. Comparing the remain-
ing curves, we have verified that, for every region S2−S5,
the set of parameters which provides higher degree of non-
Gaussianity has the larger characteristic times T. Keep-
ing the memory parameter qm constant, we have observed
that the higher b, the higher T is. An inverse dependence
is found when we have fixed b and let qm vary. In other
words, smaller values of qm (which enhance broader distri-
butions) have larger values of T. We have also verified that
the first-passage times are not Poisson distributed as it is
straightforwardly verified in S2 plots. Looking at the val-
ues of squared daily index fluctuations of SP500, we have
verified that they present an asymptotic power-law be-
haviour for D (t) (ε = 1, ν > 1) (fitting parameters shown
in Tab. 2). Comparing the results of the model with em-
pirical results from SP500 time series, we have observed
that the model provides an overall reasonable description
of first-passage times with curves almost superposing for
S2–S4 regions. For S1 and S5 regions curves present sim-
ilar exponents, but different values of T. It is worth re-
membering that we can improve the results by consid-
ering some characteristic time in K (t) equation. Taking
into account the ν exponents obtained for the adjustment
of SP500 first-passage times, we verify that larger and
smaller ν-exponents are quite different. Such a strong gap
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Fig. 6. Inverse cumulative distribution D (t) of the first-passage times vs. t for the sets of parameters mentioned in the text.
Upper panels: region S1 (left) and S2 (right); middle panels: region S3 (left) and S4 (right); lower left panel: region S5 (left). For
the regions S2–S5, the exponential decay is evident. Lower right panel: inverse cumulative distribution D (t) of the first-passage
times vs. t for squared daily price fluctuations of SP500 (symbols) with the best fit represented by the dotted lines. The full
lines are obtained from the model with parameters qm = qSP and b = bSP . The non-exponential behaviour is clear in this latter
case. The curves of the S3–S5 regions are shifted by a factor of 2, 4, and 16, respectively.

invalidates, at a daily scale, the collapse (existence of a sin-
gle exponent) of D (t) curves proposed for high-frequency
data [29].

3.4 Multiscaling properties

Multiscaling has been the focus of several studies in the
field of complexity [31], particularly regarding applications
to finance [32–34]. If in many works multiscaling (mul-
tifractal) properties of price fluctuations are presented,

other studies have put those multiscaling properties into
questioning [35]. In this section, we analyse mainly mul-
tifractal properties of zt and z2

t . To this aim, we define a
generic variable

Z
(2)
t (T ) ≡

T∑

i=1

z
(2)
t+i−1. (42)

From it, we compute,

Ωh (T ) ≡ 〈|Z(2)
t (T ) − 〈Z(2)

t (T )〉|h〉. (43)
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Fig. 7. Multiscaling exponents η vs. moments h of the values
presented in the plot. The dashed line is η = h.

If there is multiscaling, then the following scaling property
is observed,

Ωh (T ) ∝ T η(h). (44)

The computation of Ωh (T ) has been made using the well-
known MF-DFA procedure [36].

For the case of zt, the multiscaling can be easily and
analytically explained. The multiscaling properties of a
time series can emerge twofold: from memory and from
non-Gaussianity. Since, by definition, the heteroskedas-
tic process we present is uncorrelated, then the only
contribution to multiscaling comes from the non-Gaussian
character of probability density functions. In this way,
time series {zt} is not a multifractal, but a bifractal in-
stead [36]. Therefore, the η (h) curve is defined as follows,

η (h) =

{
h q−1

3−q for h < 3−q
q−1

0 for h > 3−q
q−1 .

(45)

With respect to Z2
t contrastive properties of Zt are found.

The results obtained from SP500 time series and the sur-
rogate data have enabled us to verify that the model is
adequate to reproduce the scaling properties of Z2

t which
are basically linear according to η (h) = h. For a con-
stant b value, we have observed that higher correlations,
introduced by increasing the value of qm turn multiscaling
properties weaker. In other words, ηz2 (h) approaches the
straight line ηz2 (h) = h. Similar qualitative results have
been presented for traded value where long-lasting corre-
lations dominate specially for highly liquid equities [34].
Freezing the memory parameter, qm, we have verified sim-
ilar results, i.e., increasing the value of b, we increase the
tails in z2

t forcing the multiscaling curve to divert (even
more) from the straight line η = h. The same effect is ob-
tained when memory is shortened by reducing the value of
qm. By this we mean that, when memory decays faster we
have a detour from the straight line η = h and an approxi-
mation to a bifractal behaviour because of the asymptotic
power-law behaviour. This reflects the fact that the dy-
namical and statistical properties of our system strongly
depend on the “force relation” between b and qm. Some
results from which these observations can be confirmed
are shown in Figure 7.

4 Asymmetric variance model

In several systems it has been verified that the correla-
tion function between the observable and its instantaneous
variance exhibits an anticorrelation dependence. For ex-
ample, this occurs in the case of financial markets, when
the correlation between past price fluctuations and present
volatilities is measured. The shape of the curve copes with
the so called leverage effect [37,38]. This feature is inti-
mately related to the risk aversion phenomenon, i.e., falls
in price turn the market more volatile than price rises. In
order to reproduce this characteristic we introduce a small
change in equation (6), specifically,

z̃2
t−1 =

t−1∑

i=t0

K (i − t + 1) [zi (1 − c zi)]
2
, (46)

where c ≥ 0. It is worth stressing that this modification
does not introduce any skewness in the distribution P (z)
which is still symmetric. It only acts on how positive and
negative values of zt, with the same magnitude, influence
z̃2

t by different amounts.
Using equations (5) and (46) in equation (1) and ex-

panding it up to first order we have

zt =
{
√

a +
b

2

t−1∑

i=t0

K (i − t + 1)
[
z2

i − 2 c z3
i + c2z4

i

]
+ . . .

}

ωt.

(47)

Computing zt z2
t+τ the only terms which do not vanish

after averaging are

T1 = −2
√

a b c

t−1+τ∑

i=t0

K (i − (t − 1 + τ)) z3
i ωt ω2

t+τ , (48)

and

T2 = −2 b c3
t−1+τ∑

i=t0

t−1∑

j=t0

K (i − (t − 1 + τ))K (j − t + 1)

× z3
i z4

j ωt ω2
t+τ . (49)

Performing averages and considering stationarity we have
in the continuous limit,

〈T1〉 = −6
√

a b c

∫ t+τ

0

K (x − (t + τ))

×
〈
z2

t

〉
〈σt〉

〈
ω2

t

〉
δ (x − t) dx, (50)

which gives,
〈T1〉 ∼ − expqm

[−τ ]. (51)

T2 = −2 b c3

{∫ t

0

K (x − (t + τ))K (x − t) z7
x ωt ω2

t+τ dx

+ 2
∫ t

0

∫ t

x

K (x − (t + τ))K (y − t) z3
xz4

y ωt ω2
t+τ dx dy

+
∫ t+τ

t

∫ t

0

K (x − (t + τ))K (y − t) z3
xz4

y ωt ω2
t+τ dx dy

}
.

(52)
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Fig. 8. The symbols represent leverage L vs. time lag τ of
a processes using equation (46) with qm = 1.65, b = 0.95 and
c = 0.1 obtained from a time series of 106 elements. The red
line is the best fit using equation (56) with L(τ = 0) = −0.39
(χ2 = 3 × 10−4).

Averaging, only the first integral has a non-null contribu-
tion yielding,

〈T2〉 = −2 b c3 (2 − qm)2 expqm
[−τ ]

〈
z6

t

〉
〈σt〉

〈
ω2

t

〉
. (53)

It is not hard to show that6

〈
z3

xz4
y ωt

〉
= 5 δ (x − t) 〈σt〉

〈
z2

t

〉 〈
z4

t

〉

+ 24 δ (y − t) δ (x − y) 〈σt〉
〈
σ2

t

〉 〈
z2

t

〉2

+ 72 δ (x − t) [δ (x − y)]2 〈σt〉
〈
σ2

t

〉 〈
z2

t

〉

+ 12 δ (x − y) 〈σt〉
〈
z2

xz3
yωt

〉

+ 12 δ (y − t) δ (x − y) 〈σt〉2
〈
z2

xz2
y

〉
. (54)

Inserting equation (54) in equation (52) the last two inte-
grals give zero. Therefore, in the first approximation, the
leverage function,

L ≡
〈
zt z2

t+τ

〉

〈z2
t 〉

2 , (55)

goes as,

L ∼ 〈T1〉 + 〈T2〉 ∼ − expqm
[−τ ]. (56)

As it can be seen from Figure 8, the approximation pro-
vides a satisfactory approximation of the numerical re-
sults. A precise description can obviously be obtained by
considering higher-order (slowly decaying) terms which
are obtained through a quite tedious computation that
follows exactly the same lines we have just introduced.

The result above is in apparent contradiction with pre-
vious work in which an exponential dependence with τ is
defended in lieu of an asymptotic power-law dependence.

6 In order to keep the formulae as simple as possible we use
the following expressions the discrete notation zt. Formally, it
should be read as z (t) since we are dealing with a continuous
approach.

Fig. 9. The symbols represent the absolute value of leverage
L vs. time lag τ for the daily index fluctuations of SP500
spanning the period mentioned above. The red line represents
the fitting for a q-exponential function with L0 = 0.07, q =
qSP and T = 9, and the green line a exponential fitting with
L0 = 0.06 and T = 20 (fitting error values in the text).

Nevertheless, in Figure 9 we show the leverage function
computed from the SP500 and numerical adjustments
with function,

L (τ) = −L0 expqm

[
− τ

T

]
, (57)

with qm = qSP and qm = 1. Computing the adjust-
ment error, χ2 and R2, we verify that both approaches
present similar values for the numerical adjustment with
q = qSP being scanty better. For q = qSP , we have ob-
tained χ2 = 4× 10−5 and R2 = 0.47 and for the exponen-
tial adjustment χ2 = 5× 10−5 and R2 = 0.44. From these
results, we can affirm that our proposal is, at least, as
good as the exponential decay scenario firstly introduced
in reference [38]. It is also worth noting that, although
this variation is asymmetric concerning the effects of the
sign of variables zt on the evaluation of σ2

t , the model is
ineffective in reproducing the skewness of the distribution
of price fluctuations. This owes to the fact that ωt used up
to now is symmetric thus, also annulling the asymmetry
introduced by the equation (46). It is worth stressing that
moments 〈zn

t 〉, for n even, in this section are obviously
different from the values presented in preceding sections.

5 Final remarks

In this manuscript we have introduced further insight
into a heteroskedastic process enclosed in the class of
fractionally integrated ARCH processes. This process is
characterised by a memory of past values of the squared
variable which decays according to an qm-exponential.
Despite of the fact that we were unable to provide an
analytical proof, prevailing statistical testing has shown
that q-Gaussian distributions properly describe the prob-
ability density function of the generated stochastic vari-
able. Based on this fact, we have determined a form of
the instantaneous variance, σ2, probability density func-
tion which has yielded an inverse Gamma distribution like
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it happens in superstatistical models giving q-Gaussians
as long-term distributions. Moreover, we have computed
the first term of the correlation function, Cτ (z2

t ), which
corresponds to a qc-exponential. An analytical relation
between qm and qc is presented. From these results, we
are able to state that this dynamical system can actu-
ally be described within non-extensive statistical mechan-
ics (NESM) framework by a triplet of q values [39]. As a
matter of fact, this process presents all the elements to
be characterised, in z2

t variable, as a NESM process. Ex-
plicitly, besides presenting asymptotic power-law distri-
butions which maximise non-additive entropy Sq (as zt),
it has a slow decaying (qc-exponential) auto-correlation
function, and it exhibits multiscaling properties. Such
properties have been advocated as primary features of sys-
tems that should be studied within NESM framework (for
related literature see [40]) for a long time. Furthermore,
we have verified that, for a sufficiently high level of mem-
ory the model presents a non-exponential distribution of
first-passage times and strong levels of dependence mea-
sured from a generalisation of Kullback-Liebler mutual in-
formation. Though they have been applied in several other
areas, in view of the fact that hetoskedastic processes have
been introduced in a financial context, we have tested the
model against daily index fluctuations of SP500. The re-
sults firstly presented, together with the results of this
manuscript, show that this model, despite of its simplic-
ity (it only has two parameters), is able to reproduce the
most relevant and important properties, namely the prob-
ability density functions, the Hurst exponent, the auto-
correlation functions, multiscaling, and first-passage time
distribution (in a less good extend compared to previous).
It is our belief that the same occurs with other time se-
ries presenting similar characteristics. Moreover, we have
studied how the extension of the memory (tuned by qm)
and its weight, or alternatively, the weight of fluctuations
in σ2

t (adjusted by b) have on the quantities. Still in the
context of financial time series, we have introduced a slight
modification which allows the reproduction of the lever-
age effect. Under these circumstances, we propose that the
leverage is not described for an exponential function, but
for a qm-exponential function instead. When statistically
tested, this proposal has emerged as good as the exponen-
tial description. It is well-known that many distributions
obtained from complex systems present skewness which
this model has not been able to capture because of the
symmetrical nature of noise ω distribution. The use of
other types of noise ω, jointly with the modification pre-
sented in Section 4 might give rise to even more precise
modelling.
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