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Abstract

A general framework for superconformal mechanics is presented. Starting from d-module reps of 1-D SUSY, su-
perconformal mechanics is developed in systematics steps. We first classify the d-module reps of the N -extend
superconformal algebras in one dimension and discuss the parabolic and hyperbolic/trigonometric d-module reps.
This is followed by the explicit construction of their corresponding σ- models. The generality of this framework is
further attested by the construction of topological models in worldline superconformal mechanics based on pseudo-
SUSY. Finally, the framework is concluded with a discussion on its canonical quantization.

Keywords: Conformal Mechanics, Supersymmetry
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Resumo

Neste trabalho apresentamos um formalismo geral para a mecânica superconforme em uma dimensão. Partindo
das representações d-modulares da álgebra de supersimetria em 1D, a mecânica superconforme é desenvolvida em
passos. Começamos classificando as representações d-modulares das álgebras superconformes N -estendidas em 1D
e discutindo as representações parabólicas, hiperbólicas e trigonométricas. Em seguida mostramos como os seus
respectivos modelos-σ são construídos. A generalidade deste método é atestada ainda pela construção de modelos
de mecânica superconforme topológica em 1D baseados em pseudo-supersimetria. Finalmente, concluímos com uma
discussão sobre a quantização canônica dos modelos apresentados.

Palavras-chave: Mecânica Conforme, Supersimetria
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Introduction

The origins of conformal mechanics can be traced to Calogero’s late sixties and early seventies papers [1, 2, 3]. These
papers dealt chiefly with n-body problems in one dimension with quadratic and inverse quadratic potentials. Although
they may appear to be interesting exercises in quantum mechanics with unimportant theoretical consequences, an
ever growing field of research in theoretical physics was born from those papers.

The reason conformal mechanics’ importance in theoretical physics grew so quickly in the years after the publi-
cation of Calogero’s inaugural papers is scale invariance. In their classical paper from 1976 [4], de Alfaro, Fubini and
Furlan studied general properties of systems with conformal invariance in one dimension. Their goal was to shed
light on quantum field theories near the zero mass regime. Such theories have no dimensional parameters and thus
are scale invariant. In one dimension, their symmetry algebra is sl(2).

Fast forward to a couple of decades later. Conformal field theories have been put at the edge of theoretical
physics research ever since Maldacena conjectured the AdS/CFT correspondence to be a realization of ’t Hooft’s
holographic principle [5, 6, 7]. Far from being restricted to the realms of string theory and high energy physics, it has
seen interesting applications appearing in subjects as diverse as black hole physics [8] and condensed matter. The
increasing interest in bulk-edge phenomena as seen in the quantum Hall effect [9, 10, 11] come to mind as an example.
As geometrical and topological methods disseminate through every branch of physics, conformal field theories are
assured to remain an active research topic.

The present text is intended to provide a general framework to superconformal field theories in one dimension. Al-
though we follow the general lines established by de Alfaro, Fubini and Furlan’s gold standard in 1D (super)conformal
mechanics, our approach is quite different. It is a hands-on, get-it-done algebraic and algorithmic approach rather
than a formal one. The advantages of such an approach become clear in the kinder learning curve required to pro-
duce and generalize many of the well known results of 1D conformal mechanics, such as Calogero’s and de Alfaro,
Fubini and Furlan’s. Those with computer-oriented, algorithmic minds will also quickly realize that the methods
here presented are a perfect fit to computer-algebraic methods. And indeed algebraic packages were extensively used
in the construction of the d-module reps and σ-models here presented.

The first chapter is an overture of the methods and techniques used throughout the rest of the text. It serves
as a smooth, quick and self-contained introduction to Clifford and SUSY algebras in one dimension, as well as the
d-module representations of the latter. The same techniques are then applied in the last half of the chapter to build
a similar machinery for 1D superconformal algebras, both in the parabolic and hyperbolic/trigonometric d-module
representations.

The second chapter uses the techniques of the first chapter to construct d-module representations of the superWitt
algebra. In this chapter supersymmetric extensions of the results derived in [12] are presented, together with some of
their superconformally invariant σ-models. An important point to note is the introduction of the scaling dimension
parameter, which had been neglected in the aforementioned paper and allows for the construction of inequivalent,
albeit possessing the same simmetries, σ-models. As becomes clear in this chapter, it is related to many interesting
aspects of superconformal theories such as criticality of the symmetry algebra. It consists of the results published in
the paper Four types of superconformal mechanics, by N.L. Holanda and F. Toppan [13].

The third chapter constructs topological conformal field theories in one dimension from pseudo-SUSY. As in the
second chapter d-module representations are presented together with topological σ-models. This chapter draws on
the paper A world-line framework for 1D topological conformal σ-models, by L. Baulieu, N.L. Holanda and F. Toppan
[14].

Finally, the fourth chapter completes our framework with the canonical quantization of some of the theories
presented. The purpose of this chapter is to show how the worldline theories constructed in the previous chapters
can be sistematicaly quantized a la Dirac. New results including the relation between the vacuum energy of de-Alfaro-
Fubini-Furlan oscillators and the D(2, 1;α) superalgebras are presented. It is, therefore, the most physics-related
chapter, albeit the algebraic and algorithmic techniques are still there. The contents of this chapter are in the
paper From worldline to quantum superconformal mechanics with/without oscillatorial terms: D(2, 1; Îś) and sl(2|1)
models, by I.E. Cunha, N.L. Holanda and F. Toppan [15].
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One last point to note is that this work intends to be pedagogical and expository, instead of encyclopedic. Anyone
with an undergraduate education in physics should be able to follow most of the topics here presented. Indeed, this
should be the hallmark of these techniques: by focusing on the algebraic aspects, important physical results are
put on the main stage and derived smoothly, leaving formal complications involving geometry and analysis to the
specialists in these fields.
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Chapter 1

Worldline superconformal mechanics

1.1 Introduction
This chapter is intended to be an introduction to the techniques used throughout this work. It also serves the purpose
of establishing notations and conventions. Although not strictly necessary for a full comprehension of the following
chapters, it will surely be helpful for those unfamiliar with the topics here presented.

The chapter starts with a discussion on 1D SUSY. In sections 2 and 3 we introduce the SUSY algebra in
one dimension and Clifford algebras. The latter are the backbone of d-module representations of extended SUSY
algebras, as shown in section 4. Section 5 builds on the root representations constructed in section 4 to generate
extra, inequivalent d-module representations of the 1D SUSY algebra using the dressing operator. Our discussion
on 1D SUSY ends in section 6 with a brief comment on SUSY-invariant σ-models. A good and quick reference to
1D SUSY is [1].

Superconformal algebras are the topic of sections 7-9. D-module representations of the conformal algebra in one
dimension are introduced in section 7 with an emphasis on the parabolic and hyperbolic types. In section 8, the
methods used in the manufacturing of d-module representations of the SUSY algebra are employed to furnish the
conformal algebra with fermionic generators, thus yielding parabolic and hyperbolic d-module representations of the
superconformal algebra. We end the chapter with a quick discussion of superconformal σ-models in section 9. For a
general overview of (super)conformal mechanics, see [2][3][4][5].

1.2 The Supersymmetry algebra in one dimension
The N = (p, q)-extended pseudo-supersymmetry algebra is defined by

{Qi, Qj} = 2ηijH, (1.1)

where the Q′is (i, j = 1, ..., p+ q) are the fermionic generators of the algebra, H is the bosonic generator and η is a
diagonal signature matrix with the first p entries equal to +1 and the last q entries equal to −1. We use here the
terminology "pseudoSUSY" to denote algebras that have both p, q 6= 0. In case either p or q are zero, we shall refer
to the corresponding algebra simply as "SUSY", and write "N = p SUSY algebra" as an equivalent to "N = (p, 0)
SUSY algebra".

In physics applications, the bosonic generator H is commonly identified with the generator of time translations
(the Hamiltonian) of the system. As we shall see when dealing with D-module representations of the superconformal
algebras in one dimension, this needs not be true in general. Nevertheless, it will be useful for us in this chapter to
consider H as the generator of time translations. With this caveat in mind, equation (1.1) may be written in a way
that explicitly says what H is,

{Qi, Qj} = 2ηijI∂t. (1.2)

Equation (1.2) entices us to search for the explicit Qi’s that realize it. It is clear from it that they, too, must
be differential operators. Furthermore, they cannot be written as simple complex number multiples of ∂t. Let us
illustrate this point with the simplest case, that of N = 1 SUSY algebra. Take the operators Q and H to be

Q =
(

0 1
∂t 0

)
, H =

(
∂t 0
0 ∂t

)
. (1.3)

15



16 CHAPTER 1. WORLDLINE SUPERCONFORMAL MECHANICS

This clearly is a representation of the algebra (1.2), with I taken as the 2x2 identity matrix. Such representations
consisting of differential operators in the entries of matrices are called D-module representations, or D-module reps
for short. A task thus presents itself to us: to construct in a systematic way all the irreducible D-module reps of the
algebra (1.2). This task is accomplished via Clifford algebras, the basics of which we introduce next.

1.3 Clifford algebras
The defining relations of Clifford algebras are much like those in equation (1.1):

{γi, γj} = 2ηijI. (1.4)

Just as before, if the diagonal signature matrix η has its first p entries equal to +1 and the remaining q entries equal
to -1, we refer to the corresponding Clifford algebra as C`(p, q). A trivial example of an irreducible representation
(abbreviated to "irrep" when convenience demands) of a Clifford algebra is obtained by setting

γ = 1, η = 1. (1.5)

This is evidently C`(1, 0), and it turns out to be pretty useful in spite of its triviality. The reason is that given an
inital D = p+ q spacetime dimensional signature η and an irreducible representation of its C`(p, q) Clifford algebra,
two algorithms exist that allow us to obtain the irreducible representations of the C`(p + 1, q + 1) and C`(q + 2, p)
Clifford algebras in D + 2 spacetime dimensions. These algorithms are described below.

Algorithm i): C`(p, q)→ C`(p+ 1, q + 1).

Define the Clifford matrices Γ of C`(p+ 1, q + 1) as

Γj =
(

0 γi
γi 0

)
,

(
0 Id
−Id 0

)
,

(
Id 0
0 −Id

)
. (1.6)

Algorithm ii): C`(p, q)→ C`(q + 2, p).

Γj =
(

0 γi
−γi 0

)
,

(
0 Id
Id 0

)
,

(
Id 0
0 −Id

)
. (1.7)

As an example, successive applications of either algorithms i) or ii) to the irrep of C`(1, 0) given in (1.5) generate
irreps of the so called real series of Clifford algebras,

C`(1, 0)→ C`(2, 1)→ C`(3, 2)→ C`(5, 4)→ ...→ C`(p, p− 1)→ ... . (1.8)

It should be noted that all algebras in the above series are maximal: a tentative inclusion of another generator to
enlarge the Clifford algebra would require doubling the size of the matrices in the representation. The first algebra
in a series, which is C`(1, 0) here, is the primitive maximal Clifford algebra of that series. To generate irreps for a
series of maximal Clifford algebras, one thus only needs to know the irrep of the primitive maximal Clifford algebra
and apply algorithms i) or ii) repeatedly. Representations of non-maximal Clifford algebras are obtained by simply
discarding some generators of the corresponding maximal algebra.

Let us write down an explicit example to illustrate these concepts. Applying algorithm i) to the irrep of C`(1, 0)
given in (1.5) we get an irrep of C`(2, 1),

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 1
−1 0

)
, τ3 =

(
1 0
0 −1

)
. (1.9)

Clearly, it is impossible to enlarge the Clifford algebra C`(2, 1) without doubling the size of the matrices. Thus,
C`(2, 1) is a maximal Clifford algebra. Now let us exclude from the algebra the elements τ1 and τ3. We end up with
only τ2, which is a generator of the non-maximal Clifford algebra C`(0, 1).

A point worth emphasizing is that, as long as the irrep of the primitive maximal Clifford algebra is real (meaning
that all the entries of the matrices representing the generators are real), algorithms i) and ii) ensure that all the irreps
of the maximal Clifford algebras in the series will be real too. This is very convenient for classification purposes. It
should be noted, however, that nothing prohibits the construction of complex representations of Clifford algebras.
For instance, the Clifford algebra C`(0, 1) could have been constructed as
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Table 1.1: Real irreps of Clifford algebras

1 * 2 * 4 * 8 * 16 * 32 * 64 * 128 * 256 ...
(1,0) ⇒ (2,1) ⇒ (3,2) ⇒ (4,3) ⇒ (5,4) ⇒ (6,5) ⇒ (7,6) ⇒ (8,7) ⇒ (9,8) ...

(1,4) → (2,5) → (3,6) → (4,7) → (5,8) → (6,9) ...
↗

(0,3)
↘

(5,0) → (6,1) → (7,2) → (8,3) → (9,4) → (10,5) ...
(1,8) → (2,9) → (3,10) → (4,11) → (5,12) ...

↗
(0,7)

↘
(9,0) → (10,1) → (11,2) → (12,3) → (13,4) ...

...

γ = i, η = −1, (1.10)

and this algebra would be maximal. Since the remaining of this work uses only the real representations of Clifford
algebras, it will suffice for us to present a table with a sketch of the classification of the real irreps. The table is
organized so that the first line specifies the size of the matrices entering each representation. The remaining lines
are the real, quaternionic and octonionic series of Clifford algebras. The table continues indefinetely, as indicated by
the ellipses.

With the basic tools of Clifford algebras at our disposal, we can now proceed to the construction of D-module
representations of SUSY algebras in one dimension.

1.4 D-module representations of SUSY algebras
With the benefit of hindsight, it is now easy to generalize the construction of the D-module rep of the N = 1 SUSY
algebra given in equation (1.3). We started from C`(1, 0) and applied algorithm i) or ii) in a slightly modified form
convenient for SUSY, which we present below.

SUSY algorithm i): C`(p, q)→ N = (p, q + 1) SUSY.

Qj =
(

0 γi
γi∂t 0

)
,

(
0 Id

−Id∂t 0

)
and H =

(
Id∂t 0

0 Id∂t

)
. (1.11)

SUSY algorithm ii): C`(p, q)→ N = (q + 1, p) SUSY.

Qj =
(

0 γi
−γi∂t 0

)
,

(
0 Id

Id∂t 0

)
and H =

(
Id∂t 0

0 Id∂t

)
. (1.12)

A first thing to notice in both algorithms above is that the diagonal generators appearing in equations (1.6) and
(1.7) have been eliminated. This is the result of an implicit choice that we have made for the representation of the
super vector space uppon which these generators will act. This is a good moment to clarify this choice.

A superalgebra is an algebra with a Z2-grading, meaning that it is a direct sum of two subspaces,

A = A0 ⊕A1. (1.13)
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The subspace A0 is the even or bosonic subspace, while A1 is the odd or fermionic subspace. Under the binary
composition rule (, ) : A×A→ A of the algebra, these subspaces respect the Z2 grading, meaning that

(A0, A0) = A0, (A0, A1) = (A1, A0) = A1 and (A1, A1) = A0. (1.14)

Just the same, the super vector space has a Z2-grading too, written as

V = V0 ⊕ V1. (1.15)

Again, the grading of the superalgebra and that of the super vector space respect the Z2-grading,

A0V0 = V0, A0V1 = A1V0 = V1 and A1V1 = V0. (1.16)

Given that the Qs are fermionic generators, they take the bosonic subspace to the fermionic subspace and vice
versa. The bosonic generator H on the other hand takes the bosonic subspace to itself, and does the same to the
fermionic subspace. The anti-diagonal form of the Q′s and the diagonal form of H in equations (1.11) and (1.12)
imply that we must represent the supervectors as column vectors with the first d entries representing the bosonic
subspace and the last d entries representing the fermionic one. As an example, we show the first Qj in equation
(1.11) acting on the super vector space: (

0 γi
γi∂t 0

)(
V0
V1

)
=
(
γiV1
γi∂tV0

)
. (1.17)

These conventions shall become more clear after working out some examples.

Example 1.1: the N = 1 (1, 1, 0) root supermultiplet.
This is just the SUSY rep given in equation (1.3),

Q =
(

0 1
∂t 0

)
, H =

(
∂t 0
0 ∂t

)
.

These operators act on the supermultiplet (x;ψ; 0) giving the following linear SUSY transformations:

Qx = ψ, Qψ = ẋ,

Hx = ẋ, Hψ = ψ̇. (1.18)

Note that we have used the field content of the supermultiplet to label the representation. Thus, N = 1 means that
we have one generator of SUSY (which is Q here) and (1, 1, 0) means that the generators in this representation act
on a supermultiplet consisting of one propagating boson (x), one fermionic field (ψ) and zero auxiliary bosonic fields.

Example 1.2: the N = 2 (2, 2, 0) root supermultiplet.
We can construct this rep from application of the SUSY algorithm ii) to the Clifford algebra C`(2, 1) given in

equation (1.9). Indeed, define the SUSY generators

Q0 =
(

0 I2
I2∂t 0

)
, Q1 =

(
0 τ2

−τ2∂t 0

)
and H =

(
I2∂t 0

0 I2∂t

)
. (1.19)

The action of these generators on the supermultiplet (x0, x1;ψ0, ψ1; 0) is written below.

Q0xα = ψα, Q0ψα = ẋα,

Q1xα = δ0αψ1 − ε0αψ0, Q1ψα = −δ0αẋ1 + ε0αẋ0,

Hxα = ẋα, Hψα = ψ̇α. (1.20)

Here α = 0, 1 and the antisymmetric symbol εαβ is defined with ε01 = 1.

Example 1.3: the N = 4 (4, 4, 0) root supermultiplet.
This rep is constructed from C`(0, 3), the primitive maximal Clifford algebra of the quaternionic series, which

comprises the Clifford algebras C`(0, 3 + 8n). The algebra C`(0, 3) has the following generators:

q1 = τ3 ⊗ τ2, q2 = τ2 ⊗ I2, q3 = τ1 ⊗ τ2. (1.21)
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The matrices qi above together with the identity I4 form a matrix representation of the quaternionic algebra. In
this representation, a general quaternion is written

q = x0I4 + xiqi (1.22)

and the quaternionic product is obtained via matrix multiplication,

qiqj = εijkqk, (1.23)

where summation is understood over repeated indices and εijk is the Levi-Civita symbol in three dimensions. It is
therefore clear why this series of maximal Clifford algebras is called quaternionic. It also becomes apparent that the
SUSY generators of the N = 4 (4, 4, 0) rep should bear the quaternionic structure inside them somehow. This is
indeed the case. Applying the SUSY algorithm ii), the generators we get are

Q0 =
(

0 I4
I4∂t 0

)
, Qi =

(
0 qi
−qi∂t 0

)
and H =

(
I4∂t 0

0 I4∂t

)
. (1.24)

These generators act on the supermultiplet (x0, xi;ψ0, ψi; 0), i = 1, 2, 3, as shown below.

Q0xα = ψα, Q0ψα = ẋα,

Qixα = δ0αψi − δiαψ0 − δjαεijkψk, Qiψα = −δ0αẋi + δiαẋ0 + δjαεijkẋk,

Hxα = ẋα, Hψα = ψ̇α. (1.25)

Here α = 0, 1, 2, 3 and we used the summation convention again. This way of doing computations will be standard for
us: whenever an index takes values starting at zero, we shall use greek letters. If an index only takes values greater
than zero, we use italic letters. The summation convention is understood throughout, unless stated otherwise.

The method we have used so far to construct D-module reps of the SUSY algebra, albeit very effective, does
not exhaust all possibilities. As should be clear by now, we can only generate "root" representations this way:
no auxiliary fields exist in the supermultiplets. We now present a tool that complements the techniques we have
developed, allowing for the construction of new, inequivalent irreps from the root irreps. This tool is the dressing
operator.

1.5 The dressing operator
Consider again the N = 1 (1, 1, 0) D-module rep of the SUSY algebra in example (1.1). Given that the only
requirement imposed on a representation of SUSY is that it satisfies the same relations as the SUSY algebra, one
might wonder about writing another representation with a simple trick:

Q =
(

0 ∂t
1 0

)
, H =

(
∂t 0
0 ∂t

)
. (1.26)

At first sight, this may look like cheating. However if we keep in mind that we have fixed the conventions on our
supervector space, with bosons at the top and fermions at the bottom, we will realize that equations (1.26) are indeed
a different representation. The supervector space now includes one auxiliary bosonic field b and so is written (b;ψ).

The key property of auxiliary fields in linear representations of SUSY is that they are taken by the SUSY
generators to time derivatives of the fermionic fields. In one dimension, the time derivative is a total divergence.
This feature of one-dimensional SUSY can be used to show that all finite linear irreps of the SUSY algebra in one
dimension descend from a root representation (see [6]). This means that, knowing how to construct the root irreps
as we do, one should be able to generate all others. All that is needed is to generalize the trick used to obtain the
N = 1 (0, 1, 1) irrep. This generalization is the dressing operation.

An intuitive way to look at the dressing operation is through permutation matrices. In fact, the dressing of N = 1
(1, 1, 0) may be written explicitly as (

0 ∂t
1 0

)
=
(

0 1
1 0

)(
0 1
∂t 0

)(
0 1
1 0

)
which is the same as

Q(0,1,1) = P
(2)−1

12 Q(1,1,0)P
(2)
12 (1.27)

where P (2)
12 is the 2x2 permutation matrix that permutes the first line with the second one. The dressing is then

simply a conjugation with permutation matrices.
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Another approach to the dressing operation in one dimension is obtained by observing that the auxiliary fields
have the same dimensions as the time derivatives of propagating bosons. Thus, the equation below is dimensionaly
correct: (

b
ψ

)
=
(
∂t 0
0 1

)(
x
ψ

)
(1.28)

Formally, the equation above tells us that the supermultiplet (b;ψ) is obtained from the root supermultiplet (x;ψ)
by applying the dressing operator

S =
(
∂t 0
0 1

)
. (1.29)

An analogy with linear algebra can be readily made. Let M represent the supermultiplet with a particular field
content. For example, for N = 1 (1, 1, 0), M = (x;ψ). Equation (1.28) can be compactly written as

M(0,1,1) = SM(1,1,0). (1.30)

Looking at this last equation as a change of basis, we are led to construct the SUSY generator Q(0,1,1) from Q(1,1,0)
as

Q(0,1,1) = SQ(1,1,0)S
−1 (1.31)

where S is given by equation (1.29). Some remarks should be made about this construct. The first thing to note is
that the dressing operation as defined in equation (1.31) is a formal operation in the sense that we take

S−1 =
( 1
∂t

0
0 1

)
.

The terms 1
∂t
, which are just formal devices useful for algebraic manipulations, will be canceled out by corresponding

∂t terms in the numerator whenever a valid dressing operation is performed. Therefore, a lawful dressed representation
ends up having no 1

∂t
terms. Any dressing operation that results in operators with these illegal terms should be

viewed as not producing irreps of the SUSY algebra. A second point to note is that this procedure is fairly general.
We have used the simplest N = 1 case here as an example, but an analogous procedure will work for higher SUSY
algebras too. As an example, to dress the N = 2 (2, 2, 0) supermultiplet to the N = 2 (0, 2, 2) , the dressing operator
is

S =
(
I2∂t 0

0 I2

)
.

Note that in this case the two propagating bosons are dressed to auxiliary fields and therefore the dressing operator
has two time derivatives in its bosonic subspace.

Example 1.4: The N = 4 (1, 4, 3) irrep.

Let us write explicitly the SUSY transformations for the N = 4 (1, 4, 3) irrep. Starting from the root generators
of the N = 4 (4, 4, 0) irrep, we write the dressing operator as

S = diag(1, ∂t, ∂t, ∂t, 1, 1, 1, 1).

We then use the relation Qα,(1,4,3) = SQα,(4,4,0)S
−1 where α = 0, ..., 3 labels the SUSY generators. The generators

act on the supermultiplet (x0, bi;ψα). We find the following SUSY transformations.

Q0x0 = ψ0, Q0ψ0 = ẋ0,

Q0bi = ψ̇i, Q0ψi = bi,

Qix0 = ψi, Qiψ0 = −bi,
Qibj = −δijψ̇0 − εijkψ̇k, Qiψj = δij ẋ0 + εijkbk,

Hx0 = ẋ0, Hψ0 = ψ̇0,

Hbi = ḃi, Hψi = ψ̇i. (1.32)

1.6 SUSY-invariant σ-models
Having outlined the construction of irreps of N -extended SUSY algebras, we now move on the their σ-models. As is
well known, an invariant action under the SUSY algebra can be constructed from a Lagrangian L,

S =
∫
Ldt, (1.33)
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provided that the action variation under the SUSY generators vanishes. This is accomplished by a Lagrangian that
yields a total derivative term under variations of the SUSY generators. We can use the fact that the SUSY generators
are square roots of the Hamiltonian to construct manifestly invariant actions. Let us use the N = 1 (1, 1, 0) case
again to illustrate this procedure. We apply the SUSY generator Q to the quantity F (x)ψ̇. We get

Q(Fψ̇) = (QF )ψ̇ + F
d

dt
(Qψ) = Fx(Qx)ψ̇ + Fẍ = Fxψψ̇ − Fxẋ2

where the last term results from integration by parts (remember that total derivative terms can be neglected). Since
the prepotential function F (x) is arbitrary, let us substitute −Fx by another arbitrary function A(x). We thus have
constructed a manifestly invariant Lagrangian for the N = 1 (1, 1, 0) SUSY irrep:

L = A(ẋ2 + ψ̇ψ), (1.34)

with A = A(x) arbitrary. We note that the lagrangian written above is SUSY-invariant by construction, since acting
again on it with Q gives

QL = −Q2(F (x)ψ̇)) = − d

dt
(F (x)ψ̇) = d

dt
(Aẋψ)

which is a total derivative. The last equation is again obtained by integration by parts. As the previous computation
should have made clear, the operators of the SUSY algebra act like a Leibniz graded derivation,

D(ab) = (Da)b+ (−1)deg(a)deg(D)(Db)

where deg denotes the grade of a field or operator. The equation above reduces the usual Leibniz derivation rule
when either the operator D of the field a are bosonic. When both of them are fermionic (like Q and ψ in our case),
the sign change must be observed to produce the correct results.

Although the function A(x) appearing in equation (1.34) is arbitrary for global invariance, we can use dimensional
analysis to have an ideia of how it should actually look like. Let us assume that the mass dimension of ∂t is unity
([∂t] = 1) and let λ = [x]. Since Q2 = ∂t and ψ = Qx, we find that [ψ] = λ + 1

2 . From the definition of the action
(1.33) we also have that [S] = [L] + [dt] = [L]− 1. A dimensionless action is thus recovered for [L] = 1. Computing
the dimension of A(x) from equation (1.34) we find

[A] = [L]− 2(λ+ 1) = −(2λ+ 1).

This last equation suggests that A(x) should be given up to a dimensionless constant factor by

A(x) = x−
2λ+1
λ . (1.35)

Since conformal field theories have scale invariance their σ-models should have dimensionless actions. We thus expect
that lagrangian (1.34) with A(x) given by (1.35) should be the N = 1 (1, 1, 0) superconformal lagrangian. Later we
show this to be true indeed.

Example 1.5: The σ-model for the N = 2 (2, 2, 0) irrep.
Using the SUSY transformations written in example 1.2, the SUSY-invariant lagrangian will be given by L =

Q1Q0(Aψ0ψ1). Expanding this expression we find

L = A(ẋαẋα + ψ̇αψα) +Aβ ẋαψβψα. (1.36)

Clearly, applying either Q0 or Q1 to this lagrangian will give a total time derivative, since these operators anti-
commute. Also worthwhile to mention is that again we have [A] = −(1 + 2λ). In this case a choice for A(x0, x1) that
is symmetric in the propagating bosons and has the correct dimension is

A(x0, x1) = r−
2λ+1
λ , r = (x2

0 + x2
1) 1

2 . (1.37)

Example 1.6: The σ-model for the N = 4 (4, 4, 0) irrep.
For the SUSY transformations given in example 1.3, we write the lagrangian as L = Q0Q1Q2Q3F , where F =

F (x0, x1, x2, x3) is an arbitrary function. We find

L = A(ẋαẋα + ψ̇αψα) +Aβ ẋαψβψα −
1
2εijkAiẋ0ψjψk

+ εijkAiẋjψ0ψk + 1
2εijkA0ẋiψjψk + 1

6εijk�Aψiψjψk, (1.38)

where A = �F and � =
∑

∂2

∂x2
α
is the d’Alembertian. Note that once again a dimensionless action is obtained for

A(x0, x1, x2, x3) = r−
2λ+1
λ , r = (x2

0 + x2
1 + x2

2 + x2
3) 1

2 . (1.39)
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1.7 Conformal algebra
A conformal transformation between two manifolds is a transformation that preserves the angle between two lines
in the domain space. Although the angle between two lines seems to assume that the manifolds involved have at
least two dimensions, it is possible to restrict the set of conformal transformations in higher dimensions to one-
dimensional spaces. Since our goal here is to introduce conformal mechanics in one dimension, we are not going to
discuss conformal field theories in higher-dimensional spaces. Instead, we shall start from the set of infinitesimal
transformations in the line that generate conformal transformations in 1D. We refer the reader to [7][8] for detailed
introductions to conformal field theories in two or more dimensions.

The algebra of infinitesimal generators of conformal transformations in one dimension is the sl(2) algebra. As has
been done in the previous discussion about SUSY, we use the notation sl(2) to denote the real algebra sl(2,R). A
Cartan-Weyl basis of sl(2) is comprised of the generators H, D and K satisfying the commutation relations below:

[H,D] = H; [K,D] = −K; [H,K] = 2D (1.40)

We can realize the algebra above with differential operators. Take

H = aH∂t + bH ; D = aD∂t + bD; K = aK∂t + bK (1.41)

where aH = aH(t), bH = bH(t) and so on. Equations (1.40) and (1.41) together lead to the following system of
differential equations:

aH ȧD − aDȧH = aH ,

aK ȧD − aDȧK = −aK ,
aH ȧK − aK ȧH = 2aD,
aH ḃD − aD ḃH = bH ,

aK ḃD − aD ḃK = −bK ,
aH ḃK − aK ḃH = 2bD. (1.42)

The equations above can be used to write the functions aH , bH and aK , bK in terms of arbitrary input functions
aD = a and bD = b. We thus obtain the general d-module representation written below.

H = e
−
∫ t dt′

a(t′) (a(t)∂t + b(t)− λ),
D = a(t)∂t + b(t),

K = e

∫ t dt′
a(t′) (a(t)∂t + b(t) + λ). (1.43)

The solution written above is very general and account for the fact that any linear combination of the generators
of sl(2) can be made equal to the generator of time translations ∂t. Indeed, in systems with conformal invariance,
any linear combination of the generators H, D and K will be a conserved charge, and thus can be used to study
the evolution of the system. As pointed out in [3] though, the choice of a particular combination of operators carries
many subtleties that range from the acceptable domain of time evolution to non-normalizability of eigenstates. Of
the solutions contained in equations (1.42), two will be of particular interest to us:

i) The parabolic d-module representation:
This d-module rep takes a(t) = t, b(t) = λ, so that the generator of time translations (= H) is a root of the algebra.
The parabolic sl(2) generators are

H = ∂t, D = t∂t + λ, K = t2∂t + 2λt. (1.44)

ii) The hyperbolic/trigonometric d-module representation:
This d-module rep takes a(t) = 1, b(t) = 0. The generator of time translations (= D) is now the Cartan generator.
The hyperbolic sl(2) d-module rep is

H = e−t(∂t − λ), D = ∂t, K = et(∂t + λ). (1.45)

A variation of the hyperbolic d-module representation can also be constructed by complexification of the time variable,
t→ −it. We shall call this the trigonometric d-module representation:

H = e−it(−i∂t − λ), D = −i∂t, K = eit(i∂t + λ). (1.46)
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We can view the operators of the d-module reps above as acting on a scalar field x(t). The dimensionless parameter
λ in these equations is the scaling dimension. It is a measure of the mass dimension of the field. In the equations
above, the d-module representations close the sl(2) algebra for any value of the scaling dimension. We thus say that
there is no criticality, meaning that no particular value of the mass dimension of the fields is necessary to ensure
conformal symmetry.

1.8 Superconformal algebra
The methods we have described for d-module representations of the SUSY algebra can be directly applied with little
modifications to the construction of d-module representations of the superconformal algebra. Indeed that was done
in [9] [10]. We again use the example of the N = 1 theory as a proxy to illustrate the procedure. As happened with
SUSY, the operators act on the supermultiplet (x, ψ). Thus, we represent them with 2x2 matrices. The sl(2) algebra
is given by

H = e
−
∫ t dt′

a(t′) (a(t)∂tI2 +B(t)− Λ
)
,

D = a(t)∂tI2 +B(t),

K = e

∫ t dt′
a(t′) (a(t)∂tI2 +B(t) + Λ

)
, (1.47)

where Λ = diag(λ, λ + 1
2 ). The 2x2 matrix B(t) is zero in the hyperbolic case and equal to Λ in the parabolic one.

Note that the scaling dimension parameter for the fermionic fields is shifted by 1
2 . Equation (1.3) now suggests us

to take the square root of H as

Q =
(

0 1
e
−
∫ t dt′

a(t′) (a(t)∂t + b(t)− λ) 0

)
. (1.48)

And indeed the operator Q in (1.3) parabolic case (a(t) = t, b(t) = λ) is recovered. For the hyperbolic case (a(t) = 1,
b(t) = 0), we perform a similarity transformation on the operator Q. Take R = diag(1, e−

∫ t dt′
2a(t′) ) and perform the

transformation
Q→ R−1QR.

We thus end up with the following operators Q for the parabolic and hyperbolic case:

Qpar =
(

0 1
∂t 0

)
, Qhyp = e−t/2

(
0 1

∂t − λ 0

)
. (1.49)

To conclude the construction of the N = 1 superconformal algebra, all that is left is to find the superconformal
partner of Q, which we shall denote by Q̄. It will be given by the commutator of Q and K:

Q̄ = [Q,K]. (1.50)

The resulting superalgebra is osp(1|2). Its non-vanishing (anti-)commutation relations are written below.

[H,D] = H, [K,D] = −K, [H,K] = 2D,

[H, Q̄] = Q, [Q,D] = Q

2 , [Q̄,D] = − Q̄2 , [K,Q] = −Q̄.

{Q,Q} = 2H, {Q, Q̄} = 2D, {Q̄, Q̄} = 2K. (1.51)

The procedure we have just sketched for the N = 1 superconformal algebra is general and applies to higher
superconformal algebras. We start from the d-module representation of the sl(2) algebra and extend it to include
the square roots of H (labeled by Q) and the square roots of K (labeled here by Q̄). As illustrated above, knowing
the d-module representations of the sl(2) and the Q′is together with the non-vanishing (anti)commutation relations
of the proper N -extended superconformal algebra suffices to construct the whole algebra.

Example 1.7: The N = 2 (2,2,0) d-module reps of the superconformal algebra.

The N = 2 extension of the sl(2) algebra is the sl(1|2) superalgebra. Its bosonic sector consists of the sl(2)
algebra H, D, K together with the u(1) generator J , and thus is the direct sum sl(2)⊕u(1). The fermionic sector is
generated by the square roots of H (Qα) and K (Q̄α). The non-vanishing superbrackets of sl(1|2) are written below.

[H,D] = H, [K,D] = −K, [H,K] = 2D,
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[H, Q̄α] = Qα, [Qα, D] = Qα
2 , [Q̄α, D] = − Q̄α2 , [K,Qα] = −Q̄α.

[J,Qα] = εαβQβ , [J, Q̄α] = εαβQ̄β ,

{Qα, Qβ} = 2δαβH, {Qα, Q̄β} = 2δαβD + 2(1− δαβ)J, {Q̄α, Q̄β} = 2δαβK. (1.52)

As should be clear from the superbrackets above, a d-module representation of sl(1|2) can be recovered from Q0, Q1
and K. In the parabolic d-module rep, they are

Q0 =
(

0 I2
I2∂t 0

)
, Q1 =

(
0 τ2

−τ2∂t 0

)
, K = t2∂tI4 + 2Λt.

where Λ = diag(λ, λ, λ+ 1
2 , λ+ 1

2 ). In the hyperbolic d-module rep, these generators are given by

Q0 = e−
t
2

(
0 I2

I2(∂t − λ) 0

)
, Q1 = e−

t
2

(
0 τ2

−τ2(∂t − λ) 0

)
, K = et(∂tI4 + Λ).

Example 1.8: The N = 4 (1,4,3) d-module reps of the superconformal algebra.

The N = 4 extension of the sl(2) algebra is the family D(2, 1;α) of exceptional Lie superalgebras. The real
parameter α 6= 0,−1 appears in the structure constants of this family of superalgebras, and thus each value of α
labels a different symmetry superalgebra up to isomorphisms that relate the superalgebras with the following values
of α:

α±1, −(1 + α)±1, −( α

1 + α
)±1.

The limits α → 0,−1 recover the A(1, 1) superalgebra. At the special value α = 1, the superalgebra D(2, 1;α)
becomes the superalgebra D(2, 1). Thus, we may look at D(2, 1;α) as a deformation of D(2, 1). More detailed
discussions on Lie superalgebras and the D(2, 1;α) superalgebra in particular are to be found in [11][12].

The even sector of D(2, 1;α) is the Lie algebra sl(2)⊕sl(2)⊕sl(2). The R-symmetry therefore has six generators,
which we shall call Ji, Gi, i = 1, 2, 3. The non-vanishing superbrackets of D(2, 1;α) are written below.

[H,D] = H, [K,D] = −K, [H,K] = 2D,

[Ji, Jj ] = −εijk((1 + 2α)Gk + Jk), [Ji, Gj ] = −εijk(Gk + (1 + 2α)Jk), [Gi, Gj ] = −εijk((1 + 2α)Gk + Jk),

[H, Q̄β ] = Qβ , [Qβ , D] = Qβ
2 , [Q̄β , D] = − Q̄β2 , [K,Qβ ] = −Q̄β ,

[Ji, Qβ ] = (1 + 2α)δ0βQi − (1 + 2α)δiβQ0 − δβjεijkQk, [Gi, Qβ ] = δ0βQi − δiβQ0 − δβjεijk(1 + 2α)Qk,

[Ji, Q̄β ] = (1 + 2α)δ0βQ̄i − (1 + 2α)δiβQ̄0 − δβjεijkQ̄k, [Gi, Q̄β ] = δ0βQ̄i − δiβQ̄0 − δβjεijk(1 + 2α)Q̄k,

{Qβ , Qγ} = 2δβγH, {Qβ , Q̄γ} = 2δβγD + (δ0βδγi + δ0γδβi)Gi + δβiδγjεijkJk, {Q̄β , Q̄γ} = 2δαβK. (1.53)

In the parabolic d-module rep of the N = 4 (1,4,3) superconformal algebra, the fermionic generators Qα are given
by (1.32). The generator K is

K = t2∂tI8 + 2Λt,

where Λ = diag(λ, λ + 1, λ + 1, λ + 1, λ + 1
2 , λ + 1

2 , λ + 1
2 , λ + 1

2 ). Note that the entries of Λ corresponding to the
auxiliary fields are shifted by one with respect to the propagating bosons.

In the hyperbolic d-module rep of the N = 4 (1,4,3) superconformal algebra, we have the following sufficient set
of generators that recover the complete superalgebra.

Q0x0 = e−
t
2ψ0, Q0ψ0 = e−

t
2 (ẋ0 − λx0),

Q0bi = e−
t
2 (ψ̇i − (λ+ 1

2)ψi), Q0ψi = e−
t
2 bi,

Qix0 = e−
t
2ψi, Qiψ0 = −e− t2 bi,

Qibj = −e− t2 (δij(ψ̇0 − (λ+ 1
2)ψ0) + εijk(ψ̇k − (λ+ 1

2)ψk)), Qiψj = e−
t
2 (δij(ẋ0 − λx0) + εijkbk),

together with K = et(∂t + Λ), where again Λ = diag(λ, λ+ 1, λ+ 1, λ+ 1, λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 ).
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Table 1.2: D-module reps of 1D superconformal algebras

SUSY Supermultiplet Superconformal algebra Criticality

N = 1 (1,1,0)
(0,1,1) osp(1|2) −

N = 2
(2,2,0)
(1,2,1)
(0,2,2)

sl(2|1) −

N = 4

(4,4,0)
(3,4,1)
(2,4,2)
(1,4,3)
(0,4,4)

D(2, 1;α)
D(2, 1;α)
A(1, 1)
D(2, 1;α)
D(2, 1;α)

α = −2λ
α = −λ
λ = 0
α = λ
α = 2λ

N = 8

(8,8,0)
(7,8,1)
(6,8,2)
(5,8,3)
(4,8,4)
(3,8,5)
(2,8,6)
(1,8,7)
(0,8,8)

D(4, 1)
F (4)
A(3, 1)
D(2, 2)
-
D(2, 2)
A(3, 1)
F (4)
D(4, 1)

λ = 1/4
λ = 1/3
λ = 1/2
λ = 1
-
λ = −1
λ = −1/2
λ = −1/3
λ = −1/4

An important point to note here is the relation that exists between the parameter α that labels the family
D(2, 1;α) of N = 4 exceptional Lie superalgebras and the scaling dimension λ. For the (1, 4, 3) supermultiplet, we
have α = λ. In general, the relation between α and λ in N = 4 (k, 4, 4− k) super multiplets is α = (2− k)λ. In the
N = 4 d-module reps the scaling dimension parameter is said to be critical, since it determines the actual symmetry
algebra of the d-module representation. Next we present a table with a quick classification of the 1D superconformal
algebras. Although not complete, it should be useful as a quick reference.

1.9 1D superconformal σ-models
In this last section of this chapter, we present a quick overview of the superconformal σ-models associated to the
superalgebras we have described. As has been done with the previous sections, the purpose is mainly to illustrate
the techniques that are used throught this work.

Let us start with the osp(1|2)-invariant action. In section 1.5 we have shown that the globally invariant action
for the N = 1 (1, 1, 0) supermultiplet is given by the Lagrangian (1.34),

L = A(ẋ2 + ψ̇ψ).

This means that the action is invariant under H and Q in the parabolic rep. Given that all generators of osp(1|2)
can be obtained from Q and K using the brackets (1.51), we must only find which function A(x) renders the action
invariant under K. This is enough to ascertain that invariance follows for the whole osp(1|2) superalgebra. Thus, the
procedure in the parabolic case is fairly straight: given a globally SUSY-invariant action with arbitrary prepotential,
find the correct prepotential that leads to an action invariant under K. Since

K =
(
t2∂t + 2λt 0

0 t2∂t + 2(λ+ 1
2 )t

)
,

we can straightforwardly compute the variation of the action due to K, bearing in mind that K acts as a Lebniz
derivative on the fields. We thus get

K(Aẋ2 +Aψ̇ψ) = 2t(λAxx+ (1 + 2λ)A)(ẋ2 + ψ̇ψ) + d

dt
(t2Aẋ2 + t2Aψ̇ψ + 4λ

∫ x

A(x′)x′dx′).

As far as conformal invariance of the action is concerned, the equation above should equal a total derivative. This
will be true provided that

λAxx+ (1 + 2λ)A = 0. (1.54)
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The solution of this differential equation up to constant factors is

A(x) = x−
2λ+1
λ .

which is exactly what we have found from dimensional analysis in equation (1.35).
Now let us switch to the hyperbolic case. We follow the lines of [3] here. The action in the parabolic case is given

by
S =

∫
dtA(ẋ2 + ψ̇ψ), (1.55)

and we know that it will be conformally invariant with the correct choice of A(x). Write the following change of
variables and fields:

t = eτ , x = f(τ)u(τ) ψ = g(τ)χ(τ). (1.56)

In words, we are substituting the time variable t by τ in the integration, and the fields x(t), ψ(t) by the new fields
u(τ), χ(τ). It is straightforward to verify that the action (1.55) becomes

S =
∫
dτB[e−τ (f ′2u2 + 2f ′fuu′ + f2u′2) + g2χ′χ],

where the primes denote derivatives with respect to the new time variable τ and B = B(τ, u) = A(x). Now if the
action is conformally invariant, we have

A(x) = x−
1+2λ
λ = f−

1+2λ
λ u−

1+2λ
λ = f−

1+2λ
λ A(u) = B(τ, u),

and we may rewrite the action as

S =
∫
dτA(u)f−

1+2λ
λ [e−τ (f ′2u2 + 2f ′fuu′ + f2u′2) + g2χ′χ],

It is clear from this last equation that we can eliminate any explicitly dependence on τ by setting

f(τ) = e−λτ , g(τ) = e−(λ+ 1
2 )τ . (1.57)

This will lead us to the following action:

S =
∫
dτA(u)(u′2 + χ′χ+ λ2u2), (1.58)

where we have eliminated from it the total derivative term −2λ
∫
dτA(u)uu′.

The action in (1.58) is the conformally invariant action of the hyperbolic rep. To see that this is so, consider the
operator D in the parabolic and hyperbolic reps:

Dpar = t∂tI2 + Λ, Dhyp = ∂τ . (1.59)

The last equation suggests that to change from the parabolic to the hyperbolic d-module rep we need to perform the
change of variable t = eτ , since this leads us to the relation

∂τ I2 = t∂tI2.

Under this change of variable, Dpar becomes ∂τ I2 + Λ. We can eliminate Λ through a similarity transformation.
Indeed, take the 2x2 matrix R(τ) = diag(f(τ), g(τ)). A similarity transformation of Dpar by R(τ) gives

R−1DparR = ∂τ I2 + Λ + diag(f
′

f
,
g′

g
)

and therefore Λ will vanish if we take diag( f
′

f ,
g′

g ) = −Λ = diag(−λ,−λ− 1
2 ). We thus arrive at the results in (1.57).

From these arguments, it is clear that the set of transformations (1.56),(1.57) we have performed to arrive at the
action (1.58) are simply the mathematical steps required to change from a parabolic to a hyperbolic conformally
invariant action. The hyperbolic Lagrangian is then given by

Lhyp = A(u)(u′2 + χ′χ+ λ2u2) = Lpar + λ2A(u)u2. (1.60)

We emphasize here that this result, first obtained for conformal mechanics in 1D in [3], holds its generality for
superconformal mechhanics. In particular, the hyperbolic Lagrangians will be identical to the parabolic ones plus
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an extra potential term and, for supermultiplets of the form (k,N ,N − k) with N = 1, 2, 4, 8, the conformal factor
A(x) multiplying the kinetic terms in the Lagrangians will be the solution to the differential equation

λ(~r · ∇)A+ (1 + 2λ)A = 0 (1.61)

which will depend only on the modulus of ~r = (x1, ..., xk):

A(~r) = r−
1+2λ
λ , r = (

k∑
i

x2
i )

1
2 . (1.62)

Having introduced the basic ideas and computations that are performed through this work, we may now move
on to its core results.
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Chapter 2

Four types of superconformal mechanics

2.1 Introduction
In this paper we prove the existence of four types of conformally invariant actions for one-dimensional mechanical
systems. In [1] Papadopoulos realized that under hyperbolic/trigonometric transformations of the fields, extra
potential terms entered the conformal Lagrangians (these extra potential terms are not present when the standard,
parabolic, realization of the conformal transformations is considered).

We generalize here the results of [1] in two distinct ways. At first we point out that a scaling dimension λ is
associated with the parabolic and hyperbolic/trigonometric D-module reps of the conformal algebra sl(2). In [1] λ
was only taken at the given fixed value which produces constant kinetic terms.

The scaling parameter λ, however, cannot be so easily dismissed. In the supersymmetric generalizations (starting
from the N = 4 supersymmetric extension) it acquires a critical property. Depending on the given supermultiplet,
see e.g. formula (2.36), it specifies under which of the exceptional D(2, 1;α) (parametrized by α) supersymmetry
algebras, the system under consideration is superconformally invariant.

Our second extension concerns the generalization to the inhomogeneous parabolic and hyperbolic/trigonometric
conformal transformations of the fields (in [1] only homogeneous transformations were considered).

We point out, see Appendix A, the existence of two inequivalent classes of linear one-dimensional conformal
transformations (and their supersymmetric extensions), the homogeneous ones, depending on the critical scaling λ,
and the inhomogeneous ones, which are parametrized by the constant ρ.

Hyperbolic versus trigonometric transformations are mutually recovered via an analytic continuation. The passage
from parabolic to hyperbolic transformations, see e.g. formula (2.12), requires a singular change of variable. Under
this change of variable the properties of their respective D-module reps (the scaling λ or, in the inhomogeneous case,
the parameter ρ) are easily recovered. The singularity of the change of variable is, on the other hand, responsible
for the appearance in the Lagrangians of the extra potential terms that we mentioned before.

On algebraic grounds the crucial difference between the hyperbolic and the parabolic sl(2) transformations is
the following. In the parabolic case the operator proportional to a time-derivative (the “Hamiltonian") is given by
the (positive or negative) sl(2) root, while in the hyperbolic case this Hamiltonian operator is associated with the
sl(2) Cartan generator. This is the reason why, when we consider superalgebra extensions, the parabolic systems are
supersymmetric in the ordinary sense, while the hyperbolic systems, despite being superconformally invariant, are
not ordinary supersymmetric theories (see the discussion in Appendix D).

We end up, for one-dimensional conformal systems and their supersymmetric extensions, with four types of
D-module reps and their associated (super)conformally invariant actions, namely the homogeneous parabolic, inho-
mogeneous parabolic, homogeneous hyperbolic/trigonometric and inhomogeneous hyperbolic/trigonometric cases.

Only for the very special homogeneous parabolic case the conformally invariant actions are based on power-law
and contain no dimensional parameter. In all remaining cases we have at disposal at least one dimensional constant
to play with.

In the following we present all four types of (super)conformal actions in various exemplifying d = 1 situations:
the sl(2)-invariant actions of a single boson, the osp(1|2)-invariant (sl(2|1)-invariant) actions of an N = 1 (N = 2)
supermultiplet. For a given set of N = 4 supermultiplets, the actions are D(2, 1;α)-invariant in the two homogeneous
cases and A(1, 1)-invariant in the two inhomogeneous cases. The non-trivial relation between homogeneous and
inhomogeneous actions (discussed in Appendix C) can be appreciated in a different basis obtained through non-
linear field redefinitions. In the new basis the actions possess a constant kinetic term (plus interacting potentials),
while the superconformal algebra is realized non-linearly.

The construction is also applied, in the Lagrangian setting, to (super)conformal actions in d = 2 dimensions.

31
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The invariance in this case is under a single copy (for the chiral models) or the direct sum of two copies (the full
conformal invariance) of the Witt algebra (the centerless Virasoro algebra) and its supersymmetric extensions.

Contrary to the d = 1 case, in d = 2, hyperbolic and parabolic active transformations of the field(s) produce
the same conformally invariant output. As an example, the inhomogeneous transformations applied on a single
boson induce, see (2.32), the conformally invariant Liouville action, while the homogeneous transformations induce a
power-law conformally invariant action, see formula (2.31). These two-dimensional actions are related by a non-linear
field redefinition.

From the point of view of representation theory we extend here in two directions the results of [2] and [3] on
D-module reps of finite d = 1 superconformal algebras. We enlarge the D-module reps of the osp(1|2), sl(2|1),
B(1, 1) = osp(3|2) and A(1, 1) = sl(2|2)/Z superalgebras to the class of inhomogeneous (ρ-dependent) D-module
reps, see (2.42).

We further construct the D-module reps of the N = 1, 2, 3, 4 centerless superVirasoro algebras, both in the
homogeneous case (they are summarized in (2.43)) and, for N = 1, 2, 3, inhomogeneous case (these results are
summarized in (2.44)). The explicit construction of these D-module reps is presented in Appendix B.

Conformal mechanics based on the sl(2) algebra has been investigated since the work of de Alfaro, Fubini and
Furlan [4]. Models of superconformal mechanics have been presented in [5]–[13] (for an updated review on supercon-
formal mechanics and a list of recent references see, e.g., [14]). For superconformal actions with oscillator potentials
see also [15] and [16]. For non-linear realizations see [17]. There are several reasons to study one-dimensional su-
perconformal mechanics (more on that in the Conclusions). Here it is sufficient to mention the applications to test
particles moving in the proximity of the horizon of certain black holes, see [12]. In [2] and [3] it was advocated
the point of view that superconformal mechanics, in the Lagrangian setting, could be derived from the D-module
reps of superconformal algebras. In most of the papers in the literature and all works cited in the [14] review,
the superconformal actions are based on power laws, being dependent only on dimensionless constants (apart the
optional addition of oscillatorial terms, what is known as the DFF trick [4]). This is what to be expected for the
homogeneous parabolic D-module reps. The possibilities offered by the three remaining types of D-module reps
(presenting dimensional constants), on the other hand, greatly enlarge the class of available superconformal systems.
One should confront, for instance, the power law N = 4 superconformal systems with A(1, 1) or D(2, 1;α) invariance
investigated in [18, 19] and [20]–[25], respectively, with the N = 4 actions presented in Section 9.

The scheme of the paper is as follows: in Section 2 we introduce the homogeneous parabolic and hyperbolic D-
module reps of the Witt algebra and its sl(2) subalgebra. The inhomogeneous D-module reps of the sl(2) and Witt
algebras are discussed in Section 3. In Section 4 we derive the different types of conformally invariant actions for a
single boson. In Section 5 we extend the analysis to the bosonic, conformally invariant actions in d = 2 dimensions.
In Section 6 we collect the main properties of the finite d = 1 superconformal algebras (together with their known
D-module reps) and of the N = 1, 2, 3, 4 centerless superVirasoro algebras. The new results on D-module reps for
the finite d = 1 superconformal algebras and for the centerless superVirasoro algebras are summarized in Section 7.
Different types of N = 1, 2 superconformal actions in d = 1 and supersymmetric chiral actions in d = 2 are given in
Section 8. In Section 9 we present the four types of N = 4 superconformally invariant actions associated with the
class of (1, 4, 3) supermultiplets. In the Conclusions we point out the possible applications of our results and the future
lines of investigations. The paper is complemented by four Appendices. A discussion about homogeneous versus
inhomogeneousD-module reps is given in Appendix A. In Appendix B we present the explicit construction of the new
supersymmetric D-module reps discussed in the main text. In Appendix C the N = 4 superconformally invariant
actions of Section 9 are presented in a new basis. In this basis the kinetic term is constant, while the superconformal
algebra is realized non-linearly. In Appendix D we point out that the one-dimensional, superconformally invariant,
hyperbolic and trigonometric systems are not ordinary supersymmetric theories.

2.2 The bosonic case: homogeneous D-module reps of the sl(2) and
Witt algebras

The sl(2) algebra is the conformal algebra in d = 1 dimensions. Its three generators D,H,K satisfy the commutation
relations

[D,H] = H,

[D,K] = −K,
[H,K] = 2D. (2.1)

The Cartan generator D is the dilatation operator.
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A (parabolic) D-module representation of (2.1) is given by the differential operators (depending on a single
variable t which, in application to physics, plays the role of time)

H = ∂t,

D = −t∂t − λ,
K = −t2∂t − 2λt. (2.2)

The constant λ is the scaling parameter. The above D-module rep is non-critical because the commutators (2.1)
close for any value of λ.

The Virasoro algebra Vir is the central extension of the algebra of one-dimensional diffeomorphisms (known as
“Witt algebra”). Its infinite generators Ln (n ∈ Z) satisfy the commutation relations

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0. (2.3)

The Virasoro algebra contains sl(2) as a subalgebra. It is obtained by restricting n = ±1, 0.
In the centerless case the Witt algebra admits a parabolic D-module rep. Indeed

Lpar.n = −tn+1∂t − λntn (2.4)

give the commutators (2.3) with c = 0 provided that the λm’s satisfy the set of equations

mλm − nλn = (m− n)λm+n. (2.5)

A solution is recovered for

λn = nλ̃+ γ̃, (2.6)

with λ̃, γ̃ arbitrary constants.
For the sl(2) generators we obtain, in particular,

Lpar.−1 = −∂t + (λ̃− γ̃)1
t
,

Lpar.0 = −t∂t − γ̃,
Lpar.1 = −t2∂t − (λ̃+ γ̃)t. (2.7)

The special value γ̃ = λ̃ allows us to identify, for λ = λ̃,

Lpar.−1 ≡ −H,
Lpar.0 ≡ D,

Lpar.1 ≡ K. (2.8)

At this special value of γ̃ one of the root generators of sl(2) is proportional to a time-derivative and, in physics, can
be identified with the Hamiltonian.

The constant γ̃ is arbitrary and can be changed via a similarity transformation. Indeed, for f(t) = sgn(t)γ̂ln|t|,
we have

Lpar.n 7→ Lfn = efLpar.n e−f = Lpar.n + γ̂tn.

Therefore, γ̃ 7→ γ̃ − γ̂.
For the special choice γ̃ = λ̃, the parabolic D-module rep of the Witt algebra is

Lpar.n = −tn+1∂t − (n+ 1)λ̃tn. (2.9)

By using hyperbolic/trigonometric functions, a hyperbolic/trigonometric D-module rep of the Witt algebra can be
given. In the hyperbolic case the c = 0 commutators (2.3) are satisfied for

Lhyp.n = − 1
µ
enµτ (∂τ + λn), (2.10)

if λn = nλ + γ. The dimensional constant µ has been introduced here for dimensional reasons. Without loss of
generality we can fix it at the µ = 1 value. In most of the cases, nevertheless, it is convenient to explicitly keep it in
the equations in order to facilitate a dimensional analysis.
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The sl(2) generators read now

Lhyp.1 = − 1
µ
eµτ (∂τ + λ+ γ),

Lhyp.0 = − 1
µ

(∂τ + γ),

Lhyp.−1 = − 1
µ
e−µτ (∂τ − λ+ γ). (2.11)

In the hyperbolic case the generator proportional to the time-derivative (the “Hamiltonian") coincides, for γ = 0,
with the sl(2) Cartan generator Lhyp.0 .
Just like the parabolic case, the constant γ can be shifted by a similarity transformation.

At this point it is important to stress that the parabolic and the hyperbolic D-module reps of the Witt algebras
are singled out, among the most general class ofD-module reps, by the aforementioned very special property. Namely,
that for a specific value of the constant parameter (either γ̃ or γ), one of the sl(2) generators is proportional to the
Hamiltonian. The mathematical difference between the parabolic and the hyperbolic D-module reps can be stated
as follows. In the parabolic case, the Hamiltonian is identified with the (positive or negative) sl(2) root generator
while, in the hyperbolic case, the Hamiltonian is identified with the sl(2) Cartan generator. This difference proves
to be crucial in the construction of conformally invariant actions.

From an algebraic point of view the hyperbolic D-module rep can be recovered from the parabolic D-module
rep via a singular transformation. Let us call, for simplicity, Ln = Lhyp.n when we fix the values µ = 1 and γ = 0.
Therefore Ln = −enτ (∂τ + nλ). For t > 0 the change of variable

t 7→ τ(t) = ln(t) (2.12)

allows to recover the parabolic rep Ln = −tn+1∂t − nλtn at the specific values, for its constants, λ̃ = λ and γ̃ = 0.
The

λ̃ = λ (2.13)

relation is of particular importance. Extended to superconformal algebras with N ≥ 4 (the ones, as discussed in the
Introduction, where the criticality of the scale parameter plays a role), it implies that the same critical scaling is
recovered in both parabolic and hyperbolic cases (we will see this property at work in the following of the paper).

The singularity of the transformation connecting parabolic and hyperbolic D-module reps has the consequence,
for the respective conformal invariant actions, that they are not (at least trivially) related. With respect to the
parabolic case, in the hyperbolic case extra potential terms appear due to the presence of the dimensional constant
µ (and due to the different identification of the Hamiltonian operator with the given sl(2) generator).

The connection of the trigonometric case (that we do not need here to write down explicitly) with the hyperbolic
case is simply given by an analytic continuation. One can perform a Wick rotation of the time coordinate τ by
identifying a new periodic variable θ (τ ≡ iθ). Alternatively, the analytic continuation can also be obtained by
performing a Wick rotation of the dimensional constant µ, mapping µ 7→ iµ. It will be shown in the following that
the extra potential terms entering the conformally invariant actions in the hyperbolic case are not bounded below,
due to a “wrong" sign. Since they are proportional to µ2, the correct sign can be recovered through the latter Wick
rotation. The conformally invariant actions based on the trigonometric D-module transformations have therefore
well-defined, bounded from below, potentials.

As recalled in [1], the group of diffeomorphisms Diff(R) of the real line induced by the hyperbolic D-module
rep is promoted, in the trigonometric case, to the group of diffeomorphisms Diff(S1) of the S1 circle.

2.3 Inhomogeneous D-module reps of the sl(2) and Witt algebras
Besides distinguishing Witt algebra’s D-module reps into the two classes of parabolic versus hyperbolic/trigonometric
representations, another discrimination can be introduced. It concerns the homogeneous versus the inhomogeneous
representations.

Let ϕ(t) be a time-dependent field. In the homogeneous case, the action of the Witt generators is written down
as

Ln(ϕ) = anϕ̇+ bnϕ. (2.14)

In the inhomogeneous case the generators act as

Ln(ϕ) = anϕ̇+ dn. (2.15)
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In both cases the closure of the c = 0 (2.3) commutators is guaranteed, provided that the coefficients an, bn and an, dn
are fixed to proper values (the coefficients bn, dn coincide; for clarity reasons in application to conformal actions, it
will be however convenient to denote with different letters their respective normalization constants).

The parabolic subcase requires

an = −tn+1, bn = λ̃ȧn, dn = ρ̃ȧn. (2.16)

The hyperbolic subcase requires

an = − 1
µ
enµτ , bn = λȧn, dn = ρȧn. (2.17)

Taking into account the discussion in Appendix A, the overall result is the existence of four types of D-module
representations of the Witt algebra, labelled as follows:

I (Hom. par.) - the homogeneous parabolic rep,
II (Inh. par.) - the inhomogeneous parabolic rep,
III (Hom. hyp.) - the homogeneous hyperbolic rep,
IV (Inh. hyp.) - the inhomogeneous hyperbolic rep.

Let [t] = [τ ] = −1 be the scaling dimension of the time coordinate(s) (therefore [µ] = 1). Let us furthemore set
the scaling dimension of the field ϕ being given by [ϕ] = s.

For consistency, in the respective cases, the scaling dimensions of the λ̃, ρ̃, λ, ρ parameters are

I : [λ̃] = 0, II : [ρ̃] = s, III : [λ] = 0, IV : [ρ] = s. (2.18)

For s 6= 0 the Hom. par. rep contains no dimensional parameter, while one dimensional parameter (ρ̃) is found in
the Inh. par. rep, one dimensional parameter (µ) in the Hom. hyp. rep and two dimensional parameters (µ, ρ) in
the Inh. hyp. rep.

Similarly to the homogeneous case, the change of variable (2.12) allows to connect the inhomogeneous parabolic
and hyperbolic D-module reps. Under this transformation the relation

ρ̃ = ρ (2.19)

is verified.
Since no confusion will arise, in both parabolic and hyperbolic cases, we denote in the following, for simplicity,

the scaling parameter of the homogeneous D-module rep as “λ” and the parameter of the inhomogeneous D-module
rep as “ρ”.

2.4 Conformal actions in d = 1
We are looking at first for conformally invariant actions depending on a single field ϕ(t). The Lagrangian has the
form

L = g(ϕ)ϕ̇2 + h(ϕ), (2.20)

where g(ϕ) is a (one-dimensional) metric and h(ϕ) is a potential term. The conformal invariance puts restrictions
on both g and h.

We present here the general results for the four types of conformal transformations (homogeneous/inhomogeneous
and parabolic/hyperbolic) introduced in Sections 2 and 3.

In the homogeneous parabolic case, the invariance under the Ln transformations (2.14) requires solving the system
of equations

ȧn[(1 + 2λ)g + λgϕϕ] = 0,
2λgänϕ+ hϕan +N (n)

ϕ = 0,

λhϕϕȧn +N
(n)
t = 0, (2.21)

with an given in (2.16). The set of functions N (n)(ϕ, t) has to be determined; it reflects the arbitrariness of the
invariance of the Lagrangian up to a total time-derivative.
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The same system is derived in the homogeneous hyperbolic case with an given in (2.17). In the hyperbolic case
we have the relation

än = n2µ2an, (2.22)

which is not present in the parabolic case.
Under the inhomogeneous transformations (2.15) the system of equations

ȧn[g + ρgϕ] = 0,
2ρgän + hϕan +N (n)

ϕ = 0,

ρhϕȧn +N
(n)
t = 0 (2.23)

is derived for both parabolic and hyperbolic cases; an is given, respectively, by (2.16) and (2.17).
Solving the above systems for all four cases is straightforward.
In the Hom. par. case, for instance, the first set of equations in (2.21) gives for the metric the solution g =

C1ϕ
− (1+2λ)

λ (C1 is a normalization constant). The third set of (2.21) equations allows to write N (n) = −λhϕϕan +
M (n), where M (n)(ϕ) are arbitrary functions of ϕ which do not explicitly depend on the time coordinate t. By
plugging this result into the second set of equations, together with the (2.16) position for an, we end up with the
following system: −2λ(n+ 1)ntn−1gϕ− tn+1[(1− λ)hϕ − λhϕϕϕ] +M

(n)
ϕ = 0.

The vanishing of the term inside square brackets gives the solution h = C2ϕ
1
λ (C2 is the normalization constant).

The first term in the left hand side is vanishing for n = 0,−1, while it can be reabsorbed by a suitable choice of
M (1)(ϕ) for n = 1.

Therefore, the (2.21) system of equations cannot be nontrivially solved, simultaneously, for all n ∈ Z, but at most
for the sl(2) subalgebra.

Deriving the solution for the three remaining cases proceeds along similar lines. In the two hyperbolic cases, the
(2.22) relation for the an’s induces an extra term in the potential, proportional to the metric normalization constant
C1, which is not present in the parabolic cases.

The overall results can be summarized as follows. We obtain four d = 1 conformal actions, invariant under
different realizations of the sl(2) active transformations of the single bosonic field ϕ(t). Their respective Lagrangians
are given by

I - Homogeneous parabolic case:

L = C1ϕ
− (1+2λ)

λ ϕ̇2 + C2ϕ
1
λ . (2.24)

II - Inhomogeneous parabolic case:

L = C1e
− 1
ρϕϕ̇2 + C2e

1
ρϕ. (2.25)

III - Homogeneous hyperbolic case:

L = C1[ϕ−
(1+2λ)
λ ϕ̇2 + µ2λ2ϕ−

1
λ ] + C2ϕ

1
λ . (2.26)

IV - Inhomogeneous hyperbolic case:

L = C1e
− 1
ρϕ[ϕ̇2 + µ2ρ2] + C2e

1
ρϕ. (2.27)

In order to have a dimensionless action S ([S] = 0), the scaling dimension of the Lagrangian is [L] = 1, if we
assign the time coordinate to have scaling dimension −1. Taking into account [µ] = 1 and the relations (2.18), we
end up with the following dimensional analysis:
- in both homogeneous cases (I and III), [C1] = [C2] = 0, provided that [ϕ] = λ;
- in both inhomogeneous cases (II and IV), [C1] = −1− 2s, [C2] = 1, [ϕ] = [ρ] = s, with s arbitrary.

The homogeneous parabolic case is the only one not containing dimensional constants in the conformal action (in
the Hom. hyp. case the constant µ is present).

The C1, C2 constants are arbitrary. On the other hand, in the two hyperbolic cases, extra terms for the po-
tential appear with respect to the parabolic cases. Their normalization constant (C1µ

2) is linked with the metric
normalization constant. Since µ2 is positive, these potential terms have a “wrong" sign and are not bounded below.

A consistent action with a correct, bounded below, potential is obtained by allowing µ to be a complex variable
and performing the µ 7→ iµ Wick rotation. As recalled in Section 2, this is tantamount to pass from the hyperbolic
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to the trigonometric version of the D-module representation. We find convenient to derive the trigonometric actions
in terms of a complex field ϕ (the real case can be recovered by setting its imaginary part equal to zero). A simple
inspection shows that conformal, sl(2)-invariant actions based on the trigonometric D-module reps are given by

i - Homogeneous trigonometric case:

L = C1(|ϕ|−
(1+2λ)
λ ϕ̇∗ϕ̇− µ2λ2|ϕ|− 1

λ ) + C2|ϕ|
1
λ ; (2.28)

ii - Inhomogeneous trigonometric case:

L = C1e
−ϕ+ϕ∗

2ρ (ϕ̇∗ϕ̇− µ2ρ2) + C2e
ϕ+ϕ∗

2ρ . (2.29)

In both cases the correct, bounded below potentials are obtained by choosing C1 > 0 and C2 ≤ 0.
Our results should be compared with the ones derived by Papadopoulos in [1]. In that paper only homogeneous

transformations were considered. Furthermore, only constant metrics were discussed. This amounts to set λ = − 1
2

in the homogeneous parabolic Lagrangian (2.24) and in the homogeneous hyperbolic Lagrangian (2.26) (the results
of [1] are recovered, as it should be, in these special cases). These restrictions, however, can no longer be justified for
the N -extended superconformal actions with N ≥ 4. As already pointed out in Section 2, in the N ≥ 4 cases, the
parameter λ becomes critical. It specifies under which of the inequivalent superconformal algebras the mechanical
system is invariant. We postpone to Appendix C (after the introduction of N = 4 superconformal actions in Section
9) a discussion of the subtle issues concerning the relation of the inhomogenous versus homogeneous actions.

2.5 Conformal actions in d = 2
It is instructive to extend the previous analysis to d = 2 conformally invariant actions. In the Lagrangian framework
and classical case, the infinite-dimensional conformal algebra is witt⊕witt, the direct sum of two copies of the Witt
algebra witt.

Let x1,2 be the coordinates of the plane. The L±n generators of a D-module rep of witt⊕witt can be written in
terms of the chiral/antichiral coordinates z± = x1 ± x2. The L±n generators can be recovered from the d = 1 Ln
generators introduced in Section 2 after replacing either t or τ (in the respective cases) with z±. The chiral/antichiral
decomposition implies the vanishing of the commutators [L+

n , L
−
m] = 0 for any n,m ∈ Z.

The two-dimensional conformal actions have a Lagrangian of the form

L = gϕ+ϕ− + h, (2.30)

where the ± suffix denotes the partial derivative with respect to z±.
Looking for conformal invariance under the assumption that homogeneous/homogeneous or inhomogeneous/inhomogeneous
active D-module transformations of ϕ(z±) apply on both chiral/antichiral sectors, we are led to the following re-
sults. Contrary to the d = 1 case, the parabolic and hyperbolic D-module reps produce the same output for the
Lagrangians, while the actions are invariant under the whole infinite set of L±n generators.

The two surviving cases correspond to the Homogeneous or the Inhomogeneous transformations, respectively.
In the Homogeneous case g, h are restricted so that the conformally invariant Lagrangian is

L = C1

ϕ2 ϕ+ϕ− + C2ϕ
1
λ , (2.31)

with C1, C2 arbitrary constants.
The resulting action is invariant under the δ±n (ϕ) = −zn+1

± ϕ± − λ(n+ 1)zn±ϕ transformations.
In the Inhomogeneous case we recover the Liouville action. The metric needs to be a constant, while the potential

is the exponential Liouville potential. We have

L = C1φ+φ− + C2e
φ
ρ . (2.32)

The corresponding action is invariant under the δ±n (φ) = −zn+1
± φ± − ρ(n+ 1)zn± transformations.

By requiring the action being dimensionless, and assuming [z±] = −1, we obtain the Lagrangian scaling dimension
[L] = 2.

In the Homogeneous case the scaling dimensions are fixed to be

[ϕ] = 2λ, [C1] = [C2] = [λ] = 0 (2.33)
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(therefore, no dimensional parameter is present in the theory).
In the Inhomogenous (Liouville) case, for an arbitrary value s, the scaling dimensions are

[φ] = [ρ] = s, [C1] = −2s, [C2] = 2. (2.34)

In this two-dimensional case the homogeneous action (2.31) is recovered from the Liouville action (2.32) through
the non-linear field redefinition ϕ = eφ and by performing the identification λ = ρ (as discussed in Appendix C the
latter identification is not possible for systems that, unlike (2.31) and (2.32), possess a critical value of the scaling
dimension λ).

One should note that the classical Liouville action is invariant under two separate copies of the centerless Virasoro
algebra. Even in this case, on the other hand, the associated Noether charges, endowed with a Poisson brackets
structure, necessarily close the centrally extended version of the algebra, the full V ir⊕V ir algebra. It is a consequence
of a non-equivariant moment map applied to the Liouville theory (see [26] for details).

2.6 On superconformal algebras
We discuss here two types of superconformal algebras, the supersymmetric extensions of the d = 1 conformal algebra
sl(2) and the supersymmetric extensions of the Virasoro algebra.

The finite one-dimensional superconformal algebras belong to the simple Lie superalgebras classified in [27, 28, 29]
and satisfy special properties. A d = 1 superconformal algebra G admits a grading [30] G = G−1⊕G− 1

2
⊕G0⊕G 1

2
⊕G1.

Its even sector Geven = G0 ⊕ G−1 ⊕ G1 is isomorphic to sl(2)⊕R, where the subalgebra R is known as R-symmetry.
The odd sector (G 1

2
⊕ G− 1

2
) is spanned by 2N generators (N is the number of extended supersymmetries).

At fixed N the positive sector G>0 is isomorphic to the d = 1 superPoincaré algebra (the algebra of the N -extended
supersymmetric quantum mechanics [31]).

If we denote, see (2.1), the sl(2) generators asD,H,K, we have that G1 (G−1) is spanned by the positive (negative)
root H (K), while G0 = DC⊕R.

We are especially interested in the N = 1, 2, 4, 8 extensions. The corresponding list of d = 1 superconformal
algebras is given by osp(1|2) for N = 1 and sl(2|1) for N = 2. For N = 4 we have the exceptional superalgebras
D(2, 1;α), depending on the complex parameter α 6= 0,−1 and A(1, 1) = sl(2|2)/Z (it can be recovered for α = 0,−1).
Four distinct simple Lie superalgebras exist for N = 8: A(3, 1), D(4, 1), D(2, 2) and the exceptional superalgebra
F (4).

The exceptional superalgebras D(2, 1;α), D(2, 1;α′) are isomorphic iff α′ belongs to an S3-group orbit generated
by the moves α 7→ 1

α and α 7→ −(1 + α), i.e. if α′ takes one of the six values

α, 1
α , −(1 + α), − 1

(1+α) , − (1+α)
α , − α

(1+α) . (2.35)

The (homogeneous and parabolic) D-module reps of the above d = 1 superconformal algebras have been constructed
in [2] (the N = 1, 2, 4 cases and one N = 8 example) and [3] (the remaining N = 8 cases). The construction relies
upon the classification, presented in [32] and [33], of the d = 1 superPoincaré (the G>0 subalgebra) D-module reps.

Concerning the d = 1 superPoincaré D-module reps for N = 1, 2, 4, 8, the results can be summarized as follows.
The differential operators act on N bosonic and N fermionic fields (the supermultiplet). For any k = 0, 1, . . . ,N , we
have k fields with scaling dimension λ (they are known as the “propagating bosons"), N fields (the fermions) with
scaling dimension λ + 1

2 and the remaining N − k fields (the so-called “auxiliary bosons") with scaling dimension
λ+ 1. Both a supermultiplet and the associated d = 1 superPoincaré D-module rep will be denoted with the symbol
“(k,N ,N − k)λ".

The extension to a d = 1 superconformal algebra D-module rep requires introducing (in compatible way, so that
to close the (anti)commutation relations) the extra differential operators associated to the G≤0 generators.

The [2] and [3] results can be summarized as follows:
i) for N = 1, 2 and any value of the scaling dimension λ (no criticality), the (k,N ,N − k)λ supermultiplet induces
a D-module rep for osp(1|2) and sl(2|1), respectively;
ii) for N = 4 the (k,N ,N − k)λ supermultiplet induces a D-module rep for the D(2, 1;α) superalgebra with the
identification

α = (2− k)λ (2.36)

(since α, up to the (2.35) relations, parametrizes inequivalent superalgebras, we already encounter here the criticality
of the scaling dimension);
iii) for N = 8 the (k,N ,N −k)λ supermultiplet induces a D-module rep for a superconformal algebra only for k 6= 4
and at the critical scaling dimensions

λ ≡ λk = 1
k−4 ; (2.37)
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the given superalgebras are D(4, 1)for k = 0, 8, F (4) for k = 1, 7, A(3, 1) for k = 2, 6 and D(2, 2) for k = 3, 5.
The D-module reps for the N = 4 d = 1 superconformal algebra A(1, 1) (recovered from the α = 0,−1 values)

are, in particular, obtained at the critical values

λ = 0 and λ = 1
k − 2 (k 6= 2) (2.38)

for, respectively, the supermultiplets

(k, 4, 4− k)λ=0 ∀k = 0, 1, 2, 3, 4 and (k, 4, 4− k)λ= 1
k−2

, k 6= 2. (2.39)

The singular transformation, discussed in Section 2, which relates the parabolic and hyperbolic D-module reps
of sl(2) (producing, in particular, the (2.13) equality between the respective scaling dimensions) is applicable in
all supersymmetric cases. As a consequence, homogeneous hyperbolic D-module reps, with the same criticality
properties of the corresponding parabolic cases, are immediately obtained for all the above listed superalgebras.

For what concerns the supersymmetric extensions of the Virasoro algebras, it is known [34] that non-trivial central
charges can only exist up to N = 4. Since in the following we are dealing with D-module reps, here we only need to
consider the centerless (c = 0) N = 1, 2, 4 superVirasoro algebras which generalize the Witt algebra.

The centerless N = 4 superVirasoro algebra is spanned by the even generators Ln, J in and by the odd generators
QIr , where I = 0, 1, 2, 3 and i = 1, 2, 3. The centerless N = 1, 2 superVirasoro algebras are its subalgebras, obtained
by restricting I = 0, 1 and i = 1 for N = 2 and I = 0 for N = 1 (the latter case includes only the Ln, Q0

r generators).
Two variants of the superalgebras exist [35], the Ramond (R) and the Neveu-Schwarz (NS) versions. In both cases
n is an integer (n ∈ Z); in the Ramond version r is also an integer (r ∈ Z), while in the Neveu-Schwarz version r is
a half-integer number (r ∈ 1

2 + Z).
The (anti)commutators of the centerless N = 4 superVirasoro algebra are explicitly given by

[Lm, Ln] = (m− n)Lm+n,

[Ln, QIr ] = (n2 − r)Q
I
n+r,

[Ln, J im] = −mJ in+m,

{Q0
r, Q

0
s} = 2Lr+s,

{Q0
r, Q

i
s} = 2(r − s)J ir+s,

{Qir, Qjs} = 2δijLr+s + 2εijk(r − s)Jkr+s,

[Q0
r, J

i
n] = 1

2Q
i
n+r,

[Qir, Jjn] = −1
2δ

ijQ0
n+r −

1
2ε
ijkQkn+r,

[J in, Jjm] = −εijkJkn+m. (2.40)

The finite d = 1 N = 4 superconformal algebra A(1, 1) is recovered as a subalgebra.
In the Ramond version the A(1, 1) generators are L0, L±2, Q

I
±1, J

i
0;

in the Neveu-Schwarz version they are L±1, L0, Q
I
± 1

2
, J i0.

The osp(1|2) subalgebra is given by the generators
L0, L±1, Q

0
± 1

2
(NS) or L0, L±2, Q

0
±1 (R).

The sl(2|1) subalgebra is given by the generators
L0, L±1, Q

0
± 1

2
, Q1
± 1

2
, J1

0 (NS) or L0, L±2, Q
0
±1, Q

1
±1, J

1
0 (R).

An extra centerless superVirasoro case which does not fit into the above scheme and contains an extra set of odd
generators (Wr) is given by the N = 3 extension. The even generators of the N = 3 centerless superVirasoro are Ln
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and J in, while the odd generators are Qir and Wr (i = 1, 2, 3). The (anti)commutators are explicitly given by

[Lm, Ln] = (m− n)Lm+n,

[Ln, Qir] = (n2 − r)Q
i
n+r,

[Ln, J im] = −mJ in+m,

[Ln,Wr] = −(n2 + r)Wn+r,

{Qir, Qjs} = 2δijLr+s + 2εijk(r − s)Jkr+s,

[Qir, Jjn] = −1
2ε
ijkQkn+r −

n

2 δ
ijWn+r,

{Qir,Ws} = 2J ir+s,

[J in, Jjm] = −1
2ε
ijkJkn+m,

[J in,Wr] = 0,
{Wr,Ws} = 0. (2.41)

The finite subalgebra consisting of the twelve generators L0, L±1, J
i
0, Q

i
± 1

2
(please note the absence of the Wr’s

generators) is the d = 1 N = 3 superconformal algebra B(1, 1) = osp(3|2).
In [3] a D-module rep for B(1, 1) was constructed. It acts on the (1, 3, 3, 1) supermultiplet which contains one

bosonic field of scaling dimension λ, three fermionic fields of scaling dimension λ+ 1
2 , three bosonic fields of scaling

dimension λ+ 1 and one fermionic field of scaling dimension λ+ 3
2 . This D-module rep (existing for an arbitrary λ)

is non-critical.

2.7 New results for superconformal D-module reps
In this Section we concentrate all new results concerning D-module reps of superconformal algebras. Our analysis
heavily used algebraic computations with Mathematica.

Two classes of results are presented. At first we extend the construction presented in [2] and [3] of the homogeneous
D-module reps to the case of the inhomogeneous D-module reps of the d = 1 finite superconformal algebras (the ones
we introduced in Section 6). Next, we extend the [2] and [3] results to the case of D-module reps (both homogeneous
and inhomogeneous) of the centerless N = 1, 2, 3, 4 superVirasoro algebras.

The explicit presentation of these D-module reps is given in Appendix B.
As discussed in Appendix A, the new class of inhomogeneous D-module reps are obtained for λ = 0 and ρ 6= 0.
Since the presence of at least a propagating boson is required to construct the inhomogeneous term, the inhomo-

geneous supermultiplets (k,N ,N − k)λ=0,ρ 6=0 can only exist for k ≥ 1.
The list of inhomogeneous D-module reps for the finite d = 1 superconformal algebras of Section 6 is given by

N = 1 : osp(1|2) with (1, 1)0,ρ,

N = 2 : sl(2|1) with (1, 2, 1)0,ρ, (2, 2)0,ρ,

N = 3 : B(1, 1) with (1, 3, 3, 1)0,ρ,

N = 4 : A(1, 1) with (1, 4, 3)0,ρ, (2, 4, 2)0,ρ, (3, 4, 1)0,ρ, (4, 4, 0)0,ρ,

N = 8 : none (2.42)

(the last result is a consequence of the fact that, for N = 8, the d = 1 finite superconformal algebras have critical
scalings λ 6= 0).

Concerning the centerless superVirasoro algebras, the homogeneous supermultiplets are encountered for

N = 1 SVir : (k, 1, 1− k)λ, k = 0, 1 with λ arbitrary,
N = 2 SVir : (k, 2, 2− k)λ, k = 0, 1, 2 with λ arbitrary,
N = 3 SVir : (1, 3, 3, 1)λ, with λ arbitrary,

N = 4 SVir : (k, 4, 4− k)λ, k = 0, 1, 2, 3, 4 with λ = 0 or λ = 1
k − 2(k 6= 2).

(2.43)
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The inhomogeneous D-module reps of the centerless superVirasoro algebras are only encountered for N = 1, 2, 3
but not for N = 4:

N = 1 SVir : (1, 1)0,ρ,

N = 2 SVir : (2, 2, 0)0,ρ and (1, 2, 1)0,ρ,

N = 3 SVir : (1, 3, 3, 1)0,ρ,

N = 4 SVir : none. (2.44)

It is instructive to show the reason for the absence of the inhomogeneous D-module reps for the centerless N = 4
superVirasoro. It is due to the fact that, in particular, the closure of the algebra requires the commutators [J3

n, Q
3
r]

to be proportional to the Q4
n+r generators. Let’s take, as an example, the (4, 4, 0)λ,ρ supermultiplet. We are led to

a system of equations to be solved:

2λ− 1
2 = A,

(1
2 − 2λ)∂t + λ(−n+ r(1− 4λ)) = A(−∂t − 2(n+ r)λ),

−(n+ r(4λ− 1))ρ = −2A(n+ r)ρ, (2.45)

where A is a proportionality constant.
To solve the system for all n, r, either one has to set λ = 1

2 and ρ arbitrary (which is equivalent to the homogeneous
representation (4, 4, 0) 1

2
) or λ = ρ = 0.

By restricting the conditions to n = 0 and r = ±r (the case of the A(1, 1) subalgebra), the system is solved for
arbitrary values of λ and ρ.

The inspection of the consistency conditions induced by all (anti)commutators leads to the results that we have
presented in this Section.

It is worth pointing out, as a last comment, that the inhomogeneous D-module reps discussed here consist of a
different and inequivalent class of linear transformations with respect to the inhomogenous D-module reps discussed
in [2] and [3]. There, the sl(2) generators act homogeneously and the representations are only obtained at the critical
value λ = −1.

2.8 Some examples of N = 1, 2 superconformal actions in d = 1, 2 di-
mensions

We illustrate here an application of supersymmetry with the construction of some N = 1, 2 superconformal actions
in d = 1, 2 dimensions.

In d = 1 we obtain the following osp(1|2)-invariant actions for the N = 1 supermultiplet (1, 1) (a single boson ϕ
and a single fermion ψ):

I - for the homogeneous parabolic case the Lagrangian is

L = Cϕ−
1+2λ
λ (ϕ̇2 + ψψ̇), (2.46)

with dimensions [ϕ] = λ, [ψ] = λ+ 1
2 , [C] = [λ] = 0;

II - for the inhomogeneous parabolic case the Lagrangian is

L = Ce−
ϕ
ρ (ϕ̇2 + ψψ̇), (2.47)

with dimensions [ϕ] = [ρ] = s, [ψ] = s+ 1
2 , [C] = −1− 2s;

III - for the homogeneous hyperbolic case the Lagrangian is

L = C[ϕ−
1+2λ
λ (ϕ̇2 + µψψ̇) + µ2λ2ϕ−

1
λ ], (2.48)

with dimensions [ϕ] = [ψ] = λ, [µ] = 1, [C] = [λ] = 0;
IV - for the inhomogeneous hyperbolic case the Lagrangian is

L = Ce−
ϕ
ρ (ϕ̇2 + µψψ̇ + µ2ρ2), (2.49)

with dimensions [ϕ] = [ψ] = [ρ] = s, [µ] = 1, [C] = −1− 2s.
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We note a similarity and a difference with respect to the purely bosonic results. Just like the bosonic actions,
the hyperbolic cases present a potential term, proportional to C1µ

2, which is absent in the parabolic cases. On
the other hand, the potential terms proportional to C2 and appearing in (2.24-2.27) are now excluded due to the
supersymmetry constraint.

In d = 2, for a single boson ϕ and a single fermion ψ, we obtain N = 1 chiral (antichiral) actions, invariant under
a single (chiral/antichiral) copy of the centerless superVirasoro algebra. The Lagrangians are given by

L± = C

ϕ2 (ϕ+ϕ− + ψψ∓), (2.50)

for the homogeneous case and

L± = C(ϕ+ϕ− + ψψ∓) (2.51)

(the constant kinetic term) for the inhomogeneous case.
It should be pointed out that, in order to get the superLiouville extension, a second fermion needs to be added,

see [36] and [37].
As an N = 2 example in d = 1 we present the sl(2|1)-invariant actions for the supermultiplet (1, 2, 1) (a propa-

gating boson ϕ, two fermions ψ1, ψ2 and an auxiliary bosonic field g). The Lagrangians are:

I - for the homogeneous parabolic case

L = A(ϕ̇2 + ψiψ̇i + g2)− 1
2Aϕε

ijψiψjg, A = Cϕ−
1+2λ
λ ; (2.52)

II - for the inhomogeneous parabolic case

L = A(ϕ̇2 + ψiψ̇i + g2)− 1
2Aϕε

ijψiψjg, A = Ce−
ϕ
ρ ; (2.53)

III - for the homogeneous hyperbolic case

L = A(ϕ̇2 + µψiψ̇i + µ2g2)− 1
2µ

2Aϕε
ijψiψjg + µ2λ2Aϕ2, A = Cϕ−

1+2λ
λ ; (2.54)

IV - for the inhomogeneous hyperbolic case

L = A(ϕ̇2 + µψiψ̇i + µ2g2)− 1
2µ

2Aϕε
ijψiψjg + µ2ρ2A, A = Ce−

ϕ
ρ . (2.55)

2.9 On N = 4 d = 1 superconformal actions with exceptional D(2, 1;α)
invariance

The supermultiplet (1, 4, 3)λ consists of a single propagating boson ϕ, four fermions ψ0, ψi and three auxiliary bosons
gi (here i = 1, 2, 3; in the formulas below we also use the index I = 0, 1, 2, 3). For this supermultiplet, see formula
(2.36), we have α = λ. We list here its superconformally invariant actions.
For homogeneous transformations the Lagrangians of the D(2, 1;α)-invariant actions are,
in the homogeneous parabolic case,

L = A(ϕ̇2 + ψI ψ̇I + g2
i ) +Aϕ(ψ0ψigi + 1

2ε
ijkψiψjgk) + 1

6Aϕϕε
ijkψ0ψiψjψk,

with A = Cϕ−
1+2α
α (2.56)

and, in the homogeneous hyperbolic case,

L = A(ϕ̇2 + µψI ψ̇I + µ2g2
i ) + µ2Aϕ(ψ0ψigi + 1

2ε
ijkψiψjgk) +

1
6µ

2Aϕϕε
ijkψ0ψiψjψk + µ2α2Aϕ2,

with A = Cϕ−
1+2α
α . (2.57)

For inhomogeneous transformations, the requirement that ρ 6= 0 with λ = 0 implies that the superconformal actions
are only invariant under the A(1, 1) superalgebra.
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For inhomogeneous transformations the Lagrangians of the A(1, 1)-invariant actions are,
in the inhomogeneous parabolic case,

L = A(ϕ̇2 + ψI ψ̇I + g2
i ) +Aϕ(ψ0ψigi + 1

2ε
ijkψiψjgk) + 1

6Aϕϕε
ijkψ0ψiψjψk,

with A = Ce−
ϕ
ρ (2.58)

and, in the inhomogeneous hyperbolic case,

L = A(ϕ̇2 + µψI ψ̇I + µ2g2
i ) + µ2Aϕ(ψ0ψigi + 1

2ε
ijkψiψjgk) +

1
6µ

2Aϕϕε
ijkψ0ψiψjψk + µ2ρ2A,

with A = Ce−
ϕ
ρ . (2.59)

2.10 Conclusions
We summarize the results of the paper. For what concerns representations, besides the results on the bosonic sl(2)
and Witt algebras, we introduced the new class of linear inhomogeneous D-module reps for the finite simple Lie
superalgebras osp(1|2), sl(2|1), B(1, 1) and A(1, 1). These new reps, at the scaling dimension λ = 0, depend on the
parameter ρ which measures the inhomogeneity.

D-module reps have also been constructed for the centerless superVirasoro algebras: homogeneous reps for the
N = 1, 2, 3, 4 extensions and inhomogeneous reps for the N = 1, 2, 3 extensions. They are based on the (k,N ,N −k)
supermultiplets (for N = 1, 2, 4) and on the (1, 3, 3, 1) supermultiplet (for N = 3).

We pointed out that, for both homogeneous and inhomogeneous reps, two variants of the D-module reps can be
presented: parabolic and hyperbolic/trigonometric. They are mutually related by a singular transformation.

We ended up with four different types of active (super)conformal transformations (hom. par., inhom. par., hom.
hyp. and inhom. hyp.) that can be used, in the Lagrangian setting, to construct (super)conformal actions in d = 1
and d = 2 dimensions.

For systems with N = 0, 1, 2, 4 we presented the four types of d = 1 actions invariant under their respective finite
(super)conformal algebra.

In d = 2 a non-linear field redefinition relates the two classes of homogeneous and inhomogeneous conformal
actions exemplified by (2.31) and by the Liouville action (2.32).

The d = 1 (super)conformal actions contain no dimensional constants only in the homogeneous parabolic case.
This is the class of theories discussed in the [14] review. New classes of superconformally invariant theories can
therefore be constructed from the three remaining types of transformations.

It is rather straightforward to extend the results here presented to more complicated cases. For N = 4, for in-
stance, one can investigate multi-particle systems by applying our construction to a certain number of supermultiplets
in interactions. The provision is that the supermultiplets should carry a representation of the same superconformal
algebra (either A(1, 1) or D(2, 1;α) for a fixed α).

One of the possible interesting applications of our work concerns the investigations on the CFT (1)/AdS(2) corre-
spondence (see [38] and [39]). Our results shed a new light on the left side (the conformal side) of the correspondence.

A very promising field of investigation concerns the extension to non-relativistic conformal Galilei or conformal
Newton-Hooke systems (see [40, 41]). Recently, a lot of activity in constructing models for this kind of theories
has been motivated by the CFT/AdS correspondence applied to non-relativistic systems like the ones appearing
in condensed matter (see, e.g., [42, 43]). Unlike the (1 + 0)-dimensional theories considered here, these conformal
systems live in (1 + d)-dimension, d being the number of space coordinates. A recent paper [44] proved how the
(homogeneous parabolic) N = 2 superconformal D-module reps in (1 + 0) can be enlarged to induce N = 2 `-
conformal Galilei superalgebras in (1 + d) dimensions. It is tempting to extend the new class of one-dimensional
superconformal D-module reps discussed here to the (1 + d)-dimensional case.

Appendix A: On D-module reps and the interpolation of Hom and
Inhom conformal actions

In principle one can “mix" the homogeneous and inhomogeneous D-module reps of the Witt algebra by allowing
the couple of parameters (λ, ρ) being simultaneously non-vanishing. In the parabolic case, for instance, the general
Witt algebra transformations applied on the field ϕ are

Lparm (ϕ) = −tm+1ϕ̇− λ(m+ γ)tmϕ− ρ(m+ β)tm. (A.1)
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Lpar−1 is proportional to the Hamiltonian if we set γ = 1 and β = 1.
For λ 6= 0 we can write

Lparm (ϕ) = −tm+1ϕ̇− λ(m+ 1)tm(ϕ+ ρ

λ
), (A.2)

so that the action of the homogeneous transformation with scaling dimension λ 6= 0 is recovered for the shifted field
ϕ = ϕ+ ρ

λ . Therefore the (λ, ρ) transformations with λ 6= 0 are equivalent to the pure homogeneous transformations
with scaling parameter λ and ρ = 0. The same is true in the hyperbolic case.

(A.1) fails to interpolate the two cases, leaving us with the two inequivalent classes of
i) (λ, 0) homogeneous and
ii) (0, ρ) inhomogeneous transformations.
The (A.1) transformations, on the other hand, are useful to interpolate the conformally invariant actions. An

sl(2)-invariant action (for m = ±1, 0) based on (A.1) is given by the Lagrangian

L = K1(λϕ+ ρ)−
1+2λ
λ ϕ̇2 +K2(λϕ+ ρ) 1

λ , (A.3)

with K1,K2 arbitrary constants.
The homogeneous Lagrangian (2.24) is recovered for ρ = 0.
The inhomogeneous Lagrangian (2.25) is recovered in the λ→ 0 limit by suitably rescaling the constants K1,K2.

This is accomplished by expressing the (A.3) Lagrangian as

L = K1ρ
− 1+2λ

λ

(
1 + λϕ

ρ

)− 1
λ−2

ϕ̇2 +K2ρ
1
λ

(
1 + λϕ

ρ

) 1
λ

and by taking K1 = C1ρ
1+2λ
λ and K2 = C2ρ

− 1
λ .

The possibility offered by the interpolation allows simplifying the constructions of the homogeneous and inhomo-
geneous conformally invariant actions, since both actions can be derived at one stroke.

The extension of the properties here discussed to the supersymmetric cases is immediate.

Appendix B: Explicit presentation of the new supersymmetric D-
module reps

We present here, for completeness, the explicit constructions of the new D-module reps introduced in Section 7.
They are

i) the inhomogeneous D-module reps of the finite d = 1 superconformal algebras osp(1|2), sl(2|1), B(1, 1), A(1, 1)
and

ii) the (both homogeneous and inhomogeneous) D-module reps of the centerless N = 1, 2, 3, 4 superVirasoro
algebras.

The D-module reps with N = 1, 2, 4 act on the (N + 1|N ) supermultiplets m,
mT = (ϕ1, . . . , ϕk, g1, . . . , gN−k, 1|ψ1, . . . , ψN ), with component fields ϕa, gi, ψα and constant entry 1 in the (N + 1)-
th position. The N = 3 D-module rep acts on a (5|4) supermultiplet with 1 in the 5-th position. The homogeneous
D-module reps are recovered by deleting the row and the column associated with the constant entry 1 in the
supermultiplet.

For N = 1, in matrix form and in the hyperbolic presentation, we can write for the centerless superVirasoro
generators

Q0
r = ert

 0 0 1
0 0 0

−∂t − 2rλ −2rρ 0

 ,

Ln = ent

 −∂t − nλ −nρ 0
0 0 0
0 0 −∂t − 1

2n(1 + 2λ)

 .

(B.1)

The inhomogeneous D-module rep of osp(1|2) is recovered for n = 0,±1, r = ± 1
2 and by setting λ = 0.

To save space, in the remaining cases we limit to present here the odd generators (the even generators are
recovered, see (2.40), from their anticommutators) and write them in terms of the Eij matrices, whose entries are 1
in the i-th row, j-th column and vanishing otherwise. We have,
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for N = 2:
the (2, 2, 0) rep is constructed from

Q0
r = ert[E14 + E25 − 2(E43 + E53)rρ− (E41 + E52)(∂t + 2rλ)],

Q1
r = ert[E15 − E24 + 2(E43 − E53)rρ+ (E42 − E51)(∂t + 2rλ)]; (B.2)

the (1, 2, 1) rep is constructed from

Q0
r = ert[E14 + E52 − 2E43rρ− E25r − (E25 + E41)(∂t + 2rλ)],

Q1
r = ert[E15 − E42 − 2E53rρ+ E24r + (E24 − E51)(∂t + 2rλ)]; (B.3)

the (0, 2, 2) rep is constructed from

Q0
r = ert[E41 + E52 − (E14 + E25)(∂t + r + 2rλ)],

Q1
r = ert[E51 − E42 + (E24 − E15)(∂t + r + 2rλ)]; (B.4)

for N = 4:
the (4, 4, 0) rep is constructed from

Q0
r = ert[E16 + E27 + E38 + E49 − 2(E65 + E75 + E85 + E95)rρ

−(E61 + E72 + E83 + E94)(∂t + 2rλ)],
Q1
r = ert[E17 − E26 − E39 + E48 + 2(E65 − E75 − E85 + E95)rρ

+(E62 − E71 − E84 + E93)(∂t + 2rλ)],
Q2
r = ert[E18 + E29 − E36 − E47 + 2(E65 + E75 − E85 − E95)rρ

+(E63 + E74 − E81 − E92)(∂t + 2rλ)],
Q3
r = ert[E19 − E28 + E37 − E46 + 2(E65 − E75 + E85 − E95)rρ

+(E64 − E73 + E82 − E91)(∂t + 2rλ)]; (B.5)

the (3, 4, 1) rep is constructed from

Q0
r = ert[E16 + E27 + E38 + E94 − 2(E65 + E75 + E85)rρ− E49r

−(E49 + E61 + E72 + E83)(∂t + 2rλ)],
Q1
r = ert[E17 − E26 − E39 + E84 + 2(E65 − E75 + E95)rρ− E48r

+(E62 − E48 − E71 + E93)(∂t + 2rλ)],
Q2
r = ert[E18 + E29 − E36 − E74 + 2(E65 − E85 − E95)rρ+ E47r

+(E47 + E63 − E81 − E92)(∂t + 2rλ)],
Q3
r = ert[E19 − E28 + E37 − E64 + 2(E85 − E75 − E95)rρ+ E46r

+(E46 − E73 + E82 − E91)(∂t + 2rλ)]; (B.6)

the (2, 4, 2) rep is constructed from

Q0
r = ert[E16 + E27 + E83 + E94 − 2(E65 + E75)rρ− (E38 + E49)r

−(E38 + E49 + E61 + E72)(∂t + 2rλ)],
Q1
r = ert[E17 − E26 + E84 − E93 + 2(E65 − E75)rρ+ (E39 − E48)r

+(E39 − E48 + E62 − E71)(∂t + 2rλ)],
Q2
r = ert[E18 + E29 − E63 − E74 − 2(E85 + E95)rρ+ (E36 + E47)r

+(E36 + E47 − E81 − E92)(∂t + 2rλ)],
Q3
r = ert[E19 − E28 − E64 + E73 + 2(E85 − E95)rρ+ (E46 − E37)r

+(E46 − E37 + E82 − E91)(∂t + 2rλ)]; (B.7)
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the (1, 4, 3) rep is constructed from

Q0
r = ert[E16 + E72 + E83 + E94 − 2E65rρ

−(E27 + E38 + E49)r − (E27 + E38 + E49 + E61)(∂t + 2rλ)],
Q1
r = ert[E17 − E62 + E84 − E93 − 2E75rρ+ (E26 + E39 − E48)r

+(E26 + E39 − E48 − E71)(∂t + 2rλ)],
Q2
r = ert[E18 − E63 − E74 + E92 − 2E85rρ+ (E36 − E29 + E47)r

+(E36 − E29 + E47 − E81)(∂t + 2rλ)],
Q3
r = ert[E19 − E64 + E73 − E82 − 2E95rρ+ (E28 − E37 + E46)r

+(E28 − E37 + E46 − E91)(∂t + 2rλ)]; (B.8)

the (0, 4, 4) rep is constructed from

Q0
r = ert[E61 + E72 + E83 + E94 − (E16 + E27 + E38

+E49)(∂t + r + 2rλ)],
Q1
r = ert[E71 − E62 + E84 − E93

+(E26 − E17 + E39 − E48)(∂t + r + 2rλ)],
Q2
r = ert[E81 − E63 − E74 + E92

+(E36 − E18 − E29 + E47)(∂t + r + 2rλ)],
Q3
r = ert[E73 − E64 − E82 + E91

+(E28 − E19 − E37 + E46)(∂t + r + 2rλ)]. (B.9)

The above operators produce D-module reps for the respective superalgebras only at the critical values, which have
been presented in Section 7, for λ and ρ. The inhomogeneous D-module reps of the finite d = 1 superconformal
algebras are obtained for r = ± 1

2 and λ = 0.
The N = 3 D-module rep of the centerless superVirasoro algebra (2.41) exists for arbitrary values of λ and ρ. At

λ = 0 the restriction to the B(1, 1) subalgebra generators produces the (1, 3, 3, 1)0,ρ inhomogeneous D-module rep
of B(1, 1).

To reconstruct the full D-module rep is sufficient to present the three Qi’s operators.
The N = 3 SuperVirasoro (1, 3, 3, 1) rep is obtained from

Q1
r = ert[E17 − E39 − E62 + E84 − 2E75rρ

+(E26 − E48 + 2E93)r + (E26 − E48 − E71 + E93)(∂t + 2rλ)],
Q2
r = ert[E18 + E29 − E63 − E74 − 2E85rρ

+(E36 + E47 − 2E92)r + (E36 + E47 − E81 − E92)(∂t + 2rλ)],
Q3
r = ert[E16 + E49 + E72 + E83 − 2E65rρ− (E27 + E38 + 2E94)r

−(E27 + E38 + E61 + E94)(∂t + 2rλ)]. (B.10)

Appendix C: Homogeneous versus Inhomogeneous actions: the N = 4
cases revisited

The subtle issues of the relation of the homogeneous versus inhomogeneous actions is already encountered in
systems with N = 0, 1, 2 supersymmetries. It is, however, of particular relevance for N = 4 models due to the
criticality of the scaling dimension λ. Indeed, for the (1, 4, 3) superconformal actions of Section 9, λ coincides with
α, the parameter specifying the superconformal symmetry algebra D(2, 1;α).

One should note that the homogeneous actions (2.56) and (2.57) are not defined at α = 0 and that even their
α→ 0 limit produces a trivial vanishing Lagrangian (limα→0 L(α) = 0) if the normalization factor C is kept constant.
On the other hand, the inhomogeneous actions (2.58) and (2.59) are defined at λ = 0 (therefore, at α = 0).

In order to facilitate the comparison of the different actions it is convenient to bring them into a standard form,
with the help of fields redefinitions. For this purpose we require the kinetic part of the action being expressed, in
terms of the new fields, (denoted as ϕ,ψI , gi, with i = 1, 2, 3 and I = 0, 1, 2, 3) as a constant kinetic term. For this
reason the new basis of fields will be called the “constant kinetic basis".
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For the two homogeneous (both parabolic and hyperbolic) actions, the fields redefinition is accomplished by the
transformations

φ = −2αφ− 1
2α ,

ψI = φ−
1+2α

2α ψI ,

gi = φ−
1+2α

2α gi. (C.1)

For the two inhomogeneous (both parabolic and hyperbolic) actions, the fields redefinition is given by the trans-
formations

φ = −2ρe−
φ
2ρ ,

ψI = e−
φ
2ρψI ,

gi = e−
φ
2ρ gi. (C.2)

The actions (2.56), (2.57), (2.58), (2.59), in their respective “constant kinetic basis", are expressed by

i) Homogeneous parabolic case:

L = C( ˙̄φ2 + ψ̄I
˙̄ψI + ḡi

2) + 2(1 + 2α)C
φ̄

(
ψ̄0ψ̄iḡi + 1

2ε
ijkψ̄iψ̄j ḡk

)
+

2(1 + 2α)(1 + 3α)C
3φ̄2

εijkψ̄0ψ̄iψ̄jψ̄k, (C.3)

ii) Homogeneous hyperbolic case:

L = C( ˙̄φ2 + µψ̄I
˙̄ψI + µ2ḡi

2) + 2(1 + 2α)µ2C

φ̄

(
ψ̄0ψ̄iḡi + 1

2ε
ijkψ̄iψ̄j ḡk

)
+

2(1 + 2α)(1 + 3α)µ2C

3φ̄2
εijkψ̄0ψ̄iψ̄jψ̄k + µ2C

4 φ̄2, (C.4)

iii) Inhomogeneous parabolic case:

L = C( ˙̄φ2 + ψ̄I
˙̄ψI + ḡi

2) + 2C
φ̄

(
ψ̄0ψ̄iḡi + 1

2ε
ijkψ̄iψ̄j ḡk

)
+

2C
3φ̄2

εijkψ̄0ψ̄iψ̄jψ̄k, (C.5)

iv) Inhomogeneous hyperbolic case:

L = C( ˙̄φ2 + µψ̄I
˙̄ψI + µ2ḡi

2) + 2µ2C

φ̄

(
ψ̄0ψ̄iḡi + 1

2ε
ijkψ̄iψ̄j ḡk

)
+

2µ2C

3φ̄2
εijkψ̄0ψ̄iψ̄jψ̄k + µ2C

4 φ̄2. (C.6)

We see that, in this new basis, the α → 0 limit of the homogeneous actions are well-defined and coincide with
the actions obtained from the inhomogeneous transformations. The extra potential term of the hyperbolic case is an
oscillator potential.

In the constant kinetic basis the superconformal transformations are realized non-linearly. The actions of the
eight odd generators (the whole superconformal algebra is recovered through their repeated anticommutators) are
given by (here r = ± 1

2 ; in the parabolic case r = − 1
2 corresponds to the four supersymmetry transformations, while

r = 1
2 corresponds to their four superconformal partners):
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- in the parabolic case (here fr = tr−
1
2 ):

Qirφ̄ = tfrψ̄i,

Qirḡj = frε
ijk[t ˙̄ψk + (2r + 1)(α+ 1

2)ψ̄k] + frδ
ij [t ˙̄ψ + (2r + 1)(α+ 1

2)ψ̄] +

(1 + 2α) tfr
φ̄

[ψ̄iḡj − εijk ˙̄φψ̄k − δij ˙̄φψ̄],

Qirψ̄ = −tfr ḡi − (1 + 2α)tfr
ψ̄ψ̄i

φ̄
,

Qirψ̄j = tfrε
ijkḡk − frδij

[
t ˙̄φ+ (2r + 1)αφ̄

]
+ (1 + 2α)fr[t

ψ̄iψ̄j

φ̄
+ δij(r + 1

2)φ̄],

Q0
rφ̄ = tfrψ̄,

Q0
r ḡi = −fr[t ˙̄ψi + (2r + 1)(α+ 1

2)ψ̄i] + (1 + 2α) tfr
φ̄

[ ˙̄φψ̄i + ψ̄ḡi],

Q0
rψ̄ = −fr[t ˙̄φ+ (2r + 1)αφ̄] + (1 + 2α)fr(r + 1

2)φ̄,

Q0
rψ̄i = tfr ḡi + (1 + 2α)tfr

ψ̄ψ̄i

φ̄
. (C.7)

- in the hyperbolic case (here fr = eµrt

µ ):

Qirφ̄ = µfrψ̄i,

Qir ḡj = frε
ijk[ ˙̄ψk + 2rµ(α+ 1

2)ψ̄k] + frδ
ij [ ˙̄ψ + 2rµ(α+ 1

2)ψ̄] +

(1 + 2α)fr
φ̄

[µψ̄iḡj − εijk ˙̄φψ̄k − δij ˙̄φψ̄],

Qirψ̄ = −µfr ḡi − (1 + 2α)µfr
ψ̄ψ̄i

φ̄
,

Qirψ̄j = µfrε
ijkḡk − frδij [ ˙̄φ+ 2rµαφ̄] + (1 + 2α)µfr[

ψ̄iψ̄j

φ̄
+ δijrφ̄],

Q0
rφ̄ = µfrψ̄,

Q0
r ḡi = −fr[ ˙̄ψi + 2rµ(α+ 1

2)ψ̄i] + (1 + 2α)fr
φ̄

[ ˙̄φψ̄i + µψ̄ḡi],

Q0
rψ̄ = −fr[ ˙̄φ+ 2rµαφ̄] + (1 + 2α)µfrrφ̄,

Q0
rψ̄i = µfr ḡi + (1 + 2α)µfr

ψ̄ψ̄i

φ̄
. (C.8)

The superconformal transformations corresponding to the inhomogeneous cases are recovered by setting α = 0.
Some comments are in order. Contrary to the “linear supersymmetry basis of fields" discussed in Section 9, the

inhomogeneous actions are now recovered as a non-singular α→ 0 limit. On the other hand, the linearization of the
supersymmetry transformations (given by the inverse of formula (C.2)), is not recovered from the inverse of (C.1) in
the α→ 0 limit. In other words, the linearization of the α = 0 supersymmetry (C.7,C.8) requires the new notion of
inhomogeneous superconformal transformations.

The special α = − 1
2 point implies that the Lagrangian coincides with a free kinetic term (with the addition of

the oscillator potential in the hyperbolic case). At this special point the “constant kinetic basis" coincides with the
“linear supersymmetry basis".

This makes clear why we had to discuss the generalization of the Papadopoulos construction for arbitrary values of
λ in the first place. To obtain the actions (C.3, C.4,C.5,C.6) based on the non-linear superconformal transformations
(C.7,C.8) we formulated at first the linear superconformal problem (for arbitrary λ’s). In the linear case the situation
is under control and, for low values of N , the linear superconformal transformations are classified.

Appendix D: Note on the hyperbolic/trigonometric superconformally
invariant one-dimensional models
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It is worth pointing out explicitly that the one-dimensional superconformally invariant hyperbolic or trigonometric
theories (contrary to their parabolic counterparts) discussed in this paper are not supersymmetric theories (at least
if we assume the ordinary sense of the word “supersymmetry").

The ordinary supersymmetry requires, for a given N , that a set of N fermionic symmetry generators Qi closes
the supersymmetry algebra {Qi, Qj} = 2δijH, [H,Qi] = 0 (i, j = 1, . . . ,N ), where H is the time-derivative operator
(the “Hamiltonian").

In the hyperbolic/trigonometric cases, N fermionic symmetry generators can be found. They are the square roots
of a symmetry generator (let’s call it Z), which does not coincide with the Hamiltonian H. As a matter of fact,
in the hyperbolic/trigonometric cases, two independent symmetry subalgebras {Q±i , Q

±
j } = 2δijZ±, [Z±, Q±i ] = 0

(with Z+ 6= H and Z− 6= H) are encountered. In the parabolic cases two independent symmetry subalgebras are
also encountered and one of them can be identified with the ordinary supersymmetry (Z− = H, Z+ 6= H).

In the hyperbolic/trigonometric cases the Hamiltonian H continues to be a symmetry operator. It belongs,
however, to the 0-grading sector of the superconformal algebra and is not the square of any fermionic symmetry
operator (contrary to the operators Z±, which belong to the ±1 grading sectors, respectively).

These points can be illustrated with the simplest hyperbolic example, the N = 1 theory based on the (1, 1)
supermultiplet (a single bosonic field ϕ and a single fermionic field ψ) admitting constant kinetic term and osp(1|2)
invariance. This hyperbolic action can be written as

S =
∫
dt(ϕ̇2 − ψψ̇ + ϕ2). (D.1)

The five invariant operators (closing the osp(1|2) algebra) are given by

Q±ϕ = e±tψ, Q±ψ = e±t(ϕ̇∓ ϕ),
Z±ϕ = e±2t(ϕ̇∓ ϕ), Z±ψ = e±2tψ̇,

Hϕ = ϕ̇, Hψ = ψ̇. (D.2)

One shoulde note that Z± = (Q±)2.
No change of time variable t 7→ τ(t) allows to represent either Z+ or Z− as a time-derivative operator with

respect to the new time τ .
The same considerations immediately apply to the other hyperbolic cases with N > 1 and to all the trigonometric

cases (possessing a well-defined, bounded below, potential) which, as discussed in Section 2, can be recovered from
their hyperbolic counterparts.

It could be perhaps useful to employ the notion of weak supersymmetry to describe the nature of systems that,
like (D.1), possess a symmetry invariance Z which is the square of fermionic symmetry operators and such that
(in contrast with the ordinary, strong supersymmetry) Z 6= H, H being the Hamiltonian. The notion of “weak
supersymmetry”, in a different but related context, has already been introduced in [45] (see also [46, 47]).
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Chapter 3

Worldline topological conformal
mechanics

3.1 Introduction
In this paper, using constraints from world-line pseudo-supersymmetry and some of the results in [1] and [2], we
generalize the class of one-dimensional sl(2|1)-invariant conformal topological σ-models of [3]. Specifically, we con-
struct invariant actions for any real value λ of the scaling dimension, for both chiral and real supermultiplets and in
both parabolic and hyperbolic/trigonometric cases of the D-module representations of the sl(2|1) superalgebra. For
λ 6= − 1

2 the invariant actions possess an interacting term (only the free actions were discussed in [3]).
A further result of this paper is the extension of the criticality condition of the D-module representations of

one-dimensional superconformal algebras from the case of positive supersymmetry (analyzed in [4, 5, 2]) to the case
of pseudo-supersymmetry N = (p, q) with both p, q > 0. The extension to pseudo-supersymmetry has non-trivial
consequences. Unlike the positive supersymmetry, criticality of D-module representation is already encountered for
supermultiplets with two bosonic and two fermionic component fields, the D(2, 1;α) superalgebras being induced by
N = (2, 2) acting on the chiral supermultiplet. Furthermore, free parameters enter the construction of topological
charges, which are nilpotent operators obtained from linear combinations of the pseudo-supersymmetry generators.
We will see in which cases these parameters have to be fixed in order to guarantee the existence of superconformally
invariant actions. Some other interesting features appear w.r.t. the positive superconformal case. The boost operator
K (the sl(2) conformal partner of the Hamiltonian H), for instance, can be non-diagonal (a non-diagonal K operator
is required by superconformal invariance of the real supermultiplet actions).

The framework of our paper is that of (one-dimensional) topological quantum field theory, realized as an N = 2
supersymmetric quantum mechanics with twisted superalgebra, see [6, 7, 8, 9]. Different from our worldline approach,
a construction based on target manifold restrictions [10, 11, 12, 13, 14] has been discussed for (n, n) superconformal
mechanics in [15].

There is a vast literature on (positive, i.e. untwisted) superconformal mechanics [16, 17], its model building and
its applications (which range from AdS2/CFT1 correspondence, near-horizon geometry of extremal black holes, etc.).
One can consult the two review papers [18, 19] and the references therein.

It is useful to present our terminology and notations.
The N = (p, q) pseudo-supersymmetry algebra is given by p + q fermionic operators QI and a single bosonic

operator H (the Hamiltonian), as

{QI ,QJ} = ηIJH, [H,QI ] = 0, (D.1)

where p entries of the diagonal matrix ηIJ are +1 and q entries are −1 (we write, accordingly, {QI} ≡ {Q+
i , Q

−
j }

for i = 1, . . . , p, j = 1, . . . q, so that Q±?
2 = ±H). For q = 0 we recover the (p-extended) superalgebra of the

Supersymmetric Quantum Mechanics [20]. The q = 0 case is called the “positive” or “untwisted” supersymmetry.
The D-module representations of (D.1), in terms of differential operators in one variable (the “time” coordinate)

have been constructed in [21, 22]. They act on supermultiplets of time-dependent component fields with different
scaling dimensions. For the case of interest here the supermultiplets are of the form (k, n, n− k), namely possessing
k bosons of scaling dimension λ, n fermions of scaling dimension λ+ 1

2 , n− k bosons of scaling dimension λ+ 1. As
customary, with a slight abuse of language (this is only true when invariant actions are constructed), the first set of
bosons will be referred to as the “propagating bosons”, the remaining ones are referred to as the “auxiliary fields”.

For N = (2, 2) the irreducible supermultiplets are (2, 2, 0) (also known as the “chiral supermultiplet”) and (1, 2, 1)
(also known as the “real supermultiplet”).
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The finite one-dimensional superconformal algebras are the simple Lie superalgebras [23, 24] G which can be
decomposed according to the grading G = G−1 ⊕ G− 1

2
⊕ G0 ⊕ G 1

2
⊕ G1 and whose even sector is Geven = sl(2) ⊕ R

(the subalgebra R is known as R-symmetry). The odd sector (G 1
2
⊕G− 1

2
) is spanned by 2m generators. The positive

sector G>0 is isomorphic to the (D.1) superalgebra for m = p+ q. If D,H,K are the sl(2) generators, with D being
the Cartan element, G1 (G−1) is spanned by H (K), while G0 = DC⊕R.

Since (D.1) is the G>0 subalgebra, under certain (critical) conditions, the D-module representations of (D.1) can
be extended to a differential realization for an associated superconformal algebra, see [4, 5, 2] for the q = 0 case.
Following [2], the “parabolic” D-module reps of [4, 5] can be mapped into “hyperbolic/trigonometric” D-module reps
via a similarity transformation and a change of the time coordinate. These D-module reps are written in terms of
hyperbolic/trigonometric functions (hence, a dimensional parameter µ is introduced). The presence of µ allows for
extra potential terms (absent in the parabolic case) in the invariant actions [1, 2]. What characterizes the parabolic
versus the hyperbolic/trigonometric D-module reps is the fact that, in the latter case, the Cartan generator D is
proportional to the time-derivative operator, while in the parabolic case the time-derivative operator is proportional
to H, the sl(2) positive root. Since trigonometric D-module reps are recovered from the hyperbolic D-module reps
via an analityc continuation of µ [2], from now on, for simplicity, we just call “hyperbolic” this class of D-module
reps.

The twisted supersymmetry is the presentation of a superalgebra in terms of nilpotent fermionic generators.
Following [9] a nilpotent operator Q can be constructed as a linear combination of the pseudo-supersymmetry
generators QI in (D.1) as Q =

∑
I cIQI . The coefficients cI have to be chosen to guarantee Q2 = 0. All cI ’s have

to be real to respect the reality condition of the superalgebra. Therefore, the nilpotency of Q requires a pseudo-
supersymmetry with both p, q > 0. In the case of the sl(2|1) superalgebra its twisted version is expressed with two
nilpotent operators Q1, Q2 (Q2

1 = Q2
2 = 0, {Q1, Q2} = H) and their two superconformal partners.

In the functional integral approach, via path-integral, to twisted supersymmetry, the passage from a 2n positive
supersymmetry to a (n, n) pseudo-supersymmetry is formally realized via complex transformations. When dealing,
as here, with representation theory, this passage is not allowed because we need to respect the real form of the
superalgebras. The connection between twisted and untwisted versions of supersymmetric theories has been discussed
in [9]. Getting nilpotent supersymmetry generators provides a good viewpoint for investigating the properties of
supersymmetry since many questions can be reduced to cohomological questions, with Q-invariance often realized as
Q-exactness. Depending on which problem one considers, various interesting properties of supersymmetric theories
can be better understood either in the twisted or in the untwisted formulation.

Starting from the (D.1) pseudo-supersymmetry operators acting on a given supermultiplet, the following steps
have to be fulfilled in order to obtain a one-dimensional, topological, conformally invariant, σ-model:
i) at first a set of nilpotent operators Qi’s has to be chosen by properly selecting, for any given i, the cI ’s coefficients
(a certain arbitrariness can be reflected in the appearance of free parameters);
ii) next, the most general boost operator K which, together with the Qi’s operators, allow to construct a supercon-
formal algebra, must be determined;
iii) finally, the superconformal algebra is implemented as a symmetry by constructing an action manifestly invariant
under the Qi’s transformations (for positive supersymmetry this procedure is discussed in [22]) and by imposing
(following [5, 4, 2]), the invariance under the K transformation as a constraint.

These three steps are presented in Sections 2 and 3. We postpone to the Conclusions the discussion of the results
here obtained.

The scheme of the paper is as follows. In Section 2 we discuss the D-module representations of the sl(2|1)
superconformal algebra realized on supermultiplets with two bosons and two fermions. Even if it is not the largest
superalgebra acting on these supermultiplets, sl(2|1) is the largest symmetry superalgebra of the invariant actions. We
present in Section 3 the construction of the sl(2|1)-invariant σ-models. In Section 4 we extend the results of [4, 5, 2],
presenting the list of D-module reps of superconformal algebras induced by the supermultiplets associated with the
pseudo-supersymmetry. In Appendix A the smallest topological conformal algebra and its invariant actions are
introduced. In Appendix B the D-module reps discussed in Section 4 are explicitly constructed. In the Conclusions
we comment our results and point out the directions of future development.

3.2 Symmetry algebra of the topological conformal σ-models
For the models under consideration the superconformal symmetry algebra contains in the bosonic sector 4 generators,
H, D, K and G, which close the sl(2)⊕ u(1) algebra. Its non-vanishing commutators are

[H,D] = H, [K,D] = −K, [H,K] = 2D. (D.2)

H,D,K generates the one-dimensional conformal algebra sl(2), while the u(1) charge G is the R-symmetry operator.
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The topological conformal extension of sl(2) ⊕ u(1) requires the introduction of 4 extra nilpotent fermionic
generators (the twisted supersymmetry operators Q1, Q2 and their superconformal partners Q̄1 and Q̄2, so that
Q2

1 = Q2
2 = Q̄2

1 = Q̄2
2 = 0). The consistency condition, provided by the graded-Jacobi identities [24], determines the

structure constants of the superalgebra. The extra non-vanishing (anti)commutators are

{Qk, Qj} = (σ1)kjH, {Qk, Q̄j} = −(σ1)kjD + i(σ2)kjG, {Q̄k, Q̄j} = (σ1)kjK, (D.3)

together with
[K,Qk] = Q̄k, [H, Q̄k] = −Qk,

[Qk, D] = Qk
2 , [Q̄k, D] = − Q̄k2 ,

[Qk, G] = (σ3)kj
Qj
2 , [Q̄k, G] = (σ3)kj

Q̄j
2 . (D.4)

In the r.h.s. the Pauli matrices σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
have been used. One should note

that the structure constants of the superalgebra are real.
The commutator with D defines the standard conformal weights: +1 (H), 0 (D,G), −1 (K) and + 1

2 (Q1, Q2),
− 1

2 (Q̄1, Q̄2).
Interestingly enough, the topological superalgebra also possesses a conserved bigrading, defined for each operator

as follows
H1,−1, D0,0, G0,0, K−1,1, Q1,0

1 , Q0,−1
2 , Q̄−1,0

1 , Q̄0,1
2 .

The sum of both values of the indices of the bigrading can be called the ghost number. Operators and fields with
even (odd) ghost number are commuting (anticommuting). If the bigrading is enforced, the operation of untwisting
the (D.2-D.4) algebra (namely, presenting the fermionic generators in a pseudo-supersymmetry diagonal basis) is
not allowed, because linear combinations of the fermionic generators do not preserve the bigrading. On the other
hand, the untwisting operation is allowed if we just impose the conservation of the ghost number (modulo two). The
duality relating H and K, Qk and Q̄k, corresponds to a parity transformation which preserves the bigrading.

One should note that, once the conformal boost operator K and the Qk’s operators have been determined in a
given representation, the conformal partners Q̄k’s are obtained from the relation [K,Qk] = Q̄k.

When computing, in Section 3, invariant actions we assume for the Lagrangians the vanishing of the ghost number.
Other invariants (such as anomalies and cocycles of higher degrees), possessing different values of the ghost number,
exist. These invariants can be called the “topological observables".

The topological conformal algebra (D.2-D.4) is a real form of the A(1, 0) ≈ sl(2|1) superalgebra. A(1, 0) is
contained as a subalgebra in the superalgebras D(2, 1;α) and A(1, 1) with its central extension. In appendix B it is
shown that the irreducible D-module representations of these superalgebras are realized on supermultiplets with 2
bosonic and 2 fermionic component fields. Clearly, on the same set of fields, a D-module rep of A(1, 0) is induced.
The key point is that A(1, 0) is the largest subalgebra which can emerge as a symmetry algebra of a topological
action constructed with this basic set of 2 + 2 component fields.

In this Section we pave the way for the construction of the topological conformal σ-models of Section 3 by
discussing the properties of the induced A(1, 0) D-module representations. As mentioned in the Introduction, the
representations can be either parabolic or hyperbolic; the basic supermultiplets in this case are either (2, 2, 0) (the
chiral supermultiplet) or (1, 2, 1) (the real one).

3.2.1 The (2, 2, 0) D-module reps of the sl(2|1) superalgebra
The operators are assumed to act upon the (2, 2, 0) supermultiplet (x, x̄;ψ, ψ̄), with x, x̄ propagating bosons. In
the parabolic case the representation is constructed as follows. One starts with the four fermionic operators, see
Appendix B, Q±1 , Q

±
2 of the N = (2, 2) superconformal algebra (2, 2, 0) D-module rep. Explicitly,

Q
+
1 =

(
0 0 0 1
0 0 1 0
0 ∂t 0 0
∂t 0 0 0

)
, Q

−
1 =

(
0 0 0 1
0 0 −1 0
0 ∂t 0 0
−∂t 0 0 0

)
,

Q
+
2 =

(
0 0 1 0
0 0 0 −1
∂t 0 0 0
0 −∂t 0 0

)
, Q

−
2 =

(
0 0 1 0
0 0 0 1
−∂t 0 0 0

0 −∂t 0 0

)
.

They are the square roots of the ±H operator. The following two nilpotent operators can be constructed for an
arbitrary real value of the parameter β,

Q1 = Q+
1 +Q−1

2 , Q
(β)
2 = Q+

1 −Q
−
1

2 + β
Q+

2 +Q−2
2 . (D.5)
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The next step is considering the most general realization of the sl(2) algebra which is compatible with the scaling
dimension of the fields. Let I4 be the 4×4 identity matrix and Λ the matrix Λ = diag(λ, λ, λ+ 1

2 , λ+ 1
2 ), expressed in

terms of the real scaling dimension parameter λ. We can assume without loss of generality that the Borel generators
H,D are realized in a diagonal form:

H = I4 · ∂t, D = I4 · t∂t + Λ. (D.6)

The most general form of the operator K which preserves the dimensionality of the fields is

K =

(
t2∂t + 2λt a12t2∂t + b12t 0 0

a21t2∂t + b21t t2∂t + 2λt 0 0
0 0 t2∂t + (2λ + 1)t a34t2∂t + b34t
0 0 a43t2∂t + b43t t2∂t + (2λ + 1)t

)
.

The dimensionless parameters aij ’s and bij ’s are allowed by power counting. Nevertheless, the closure of the sl(2)
algebra, and particularly the condition [H,K] = 2D, forces us to set all the parameters aij ’s, bij ’s equal to zero.

Therefore, the (2, 2, 0) D-module rep requires a diagonal K, given by

K = I4 · t2∂t + 2Λt. (D.7)

The two extra fermionic operators Q̄1, Q̄2 are obtained from the commutators Q̄1 = [K,Q1], Q̄2 = [K,Q2], while
the R-symmetry generator G is recovered from, e.g., the anticommutator {Q1, Q̄2}, see (D.3) and (D.4). It is a
straightforward exercise to verify, for any real λ, the closure of the sl(2|1) superalgebra on this set of operators.

Following [1] and [2] a hyperbolic D-module representation can be constructed by
i) performing a similarity transformation on the operators of the parabolic D-module rep and
ii) performing a change of the time coordinate.
What characterizes the hyperbolic rep with respect to the parabolic rep is the fact that in this case the time-
derivative operator is H, the positive root of sl(2). In the hyperbolic case the time-derivative operator (for the new
time coordinate) is D, the Cartan generator of sl(2) (as a consequence, the energy spectrum of the invariant theories
is continuous in the parabolic case and discrete in the hyperbolic case).

We present here a set of operators which allows to reconstruct the full set of (2, 2, 0) D-module rep generators in
the hyperbolic case. For arbitrary λ and at the special value β = 0 (in Section 3 we prove that this is the unique
value of β which produces sl(2|1)-invariant actions for the (2, 2, 0) supermultiplet) we have

Q1 = e−
µt
2


0 0 0 1
0 0 0 0
0 1

µ∂t − λ 0 0
0 0 0 0

 , Q2 = e−
µt
2


0 0 0 0
0 0 1 0
0 0 0 0

1
µ∂t − λ 0 0 0

 . (D.8)

The sl(2) algebra operators are

H = e−µt(I4 ·
1
µ
∂t − Λ), D = I4 ·

1
µ
∂t, K = eµt(I4 ·

1
µ
∂t + Λ). (D.9)

Here again Λ = diag(λ, λ, λ + 1
2 , λ + 1

2 ). The remaining operators are obtained from the (anti)commutators in
(D.3,D.4). The parameter µ is a dimensional parameter which can be set equal to 1 without loss of generality.

3.2.2 The (1, 2, 1) D-module reps of the sl(2|1) superalgebra
The construction is similar to the previous case. The operators now act on the supermultiplet (x, b;ψ, ψ̄), where x is
a propagating boson and b an auxiliary field. In the parabolic case we start with the four fermionic operators given
in Appendix B,

Q
+
1 =

(
0 0 0 1
0 0 ∂t 0
0 1 0 0
∂t 0 0 0

)
, Q

−
1 =

(
0 0 0 1
0 0 −∂t 0
0 1 0 0
−∂t 0 0 0

)
,

Q
+
2 =

(
0 0 1 0
0 0 0 −∂t
∂t 0 0 0
0 −1 0 0

)
, Q

−
2 =

(
0 0 1 0
0 0 0 ∂t
−∂t 0 0 0

0 −1 0 0

)
.

These are the square roots of ±H in the (1, 2, 1) D-module rep. Two nilpotent operators (the second one depending
on an arbitrary parameter γ) are constructed as follows

Q1 = Q+
1 +Q−1

2 , Q
(γ)
2 = Q+

1 −Q
−
1

2 − γQ
+
2 +Q−2

2 . (D.10)
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As in the previous case and without loss of generality the H,D generators of the sl(2) Borel subalgebra can be
assumed to be diagonal

H = I4 · ∂t, D = I4 · t∂t + Λ. (D.11)
The matrix Λ is now Λ = diag(λ, λ+ 1, λ+ 1

2 , λ+ 1
2 ).

The most general form of the operator K, preserving the dimensionality of the fields, is now

K =

(
t2∂t + 2λt a12t3∂t + b12t2 0 0
a21t∂t + b21 t2∂t + 2(λ + 1)t 0 0

0 0 t2∂t + (2λ + 1)t a34t2∂t + b34t
0 0 a43t2∂t + b43t t2∂t + (2λ + 1)t

)
.

Contrary to the previous case, the closure of the sl(2) algebra allows a non-diagonal form for the operator K. Indeed,
its most general solution is

K = I4 · t2∂t + 2Λt+ δE21, (D.12)
where E21 denotes the matrix whose only non-vanishing entry is 1 in the (2, 1) position. The parameter δ is arbitrary.
At δ = 0 we obtain a diagonal form for K.

As in the previous case, the remaining generators are computed from the (anti)commutators given in (D.3,D.4).
The (1, 2, 1) D-module rep of the sl(2|1) superalgebra depends on three arbitrary real parameters, the scaling
dimension λ, the parameter γ entering (D.10) and the parameter δ entering (D.12). In Section 3 we prove that the
sl(2|1)-invariant actions require δ 6= 0 (therefore, a non-diagonal form of K). In the invariant actions the parameter
γ can be rescaled so that, without loss of generality, one can set γ = 1. In its turn δ has to be fixed at δ = −λ.

For these special values, the operators which induce the hyperbolic (1, 2, 1) D-module rep of sl(2|1) are the
following. The two nilpotent operators Q1, Q2 are

Q1 = e−
µt
2


0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

 , Q2 = e−
µt
2


0 0 −1 0
0 0 1

µ∂t − λ−
1
2 0

0 0 0 0
1
µ∂t − λ 1 0 0

 . (D.13)

The sl(2) algebra generators are

H = e−µt(I4 ·
1
µ
∂t − Λ), D = I4 ·

1
µ
∂t, K = eµt(I4 ·

1
µ
∂t + Λ− λE21), (D.14)

with Λ = diag(λ, λ + 1, λ + 1
2 , λ + 1

2 ). The remaining sl(2|1) generators are derived from the (anti)commutators
(D.3,D.4).

3.3 One-dimensional topological conformal σ-models
We present here the conformal topological actions which are sl(2|1)-invariant. We require global (twisted) super-
symmetry and impose the conformal invariance as a constraint. The procedure repeats the one adopted in [2] and
[3] for deriving one-dimensional superconformal σ-models from the supermultiplets of the untwisted supersymmetry.
Contrary to the untwisted case, besides the scaling dimension λ, extra free parameters enter and label the twisted
superconformal representations. As shown in Section 2, one extra parameter, β, enters the (2, 2, 0) D-module rep-
resentation. Two extra parameters, γ and δ, enter the (1, 2, 1) D-module representation. The requirement of the
existence of superconformally invariant actions implies assigning a fixed value to the parameters β and δ while,
without loss of generality, γ can be rescaled to 1.

3.3.1 Superconformal models for the (2, 2, 0) supermultiplet
By construction, a global twisted supersymmetry invariance is obtained in terms of the Lagrangian

L = Q1Q
(β)
2 (Fψ̄ψ)

where F = F (x, x̄) and Q1, Q
(β)
2 are defined in (D.5). This yields, up to a total time derivative,

L = Fẋ ˙̄x+ Fψ̇ψ̄ + Fx̄ ˙̄xψψ̄ − β(F ˙̄x2 + Fx ˙̄xψ̄ψ). (D.15)

The superconformal invariance requires that the action of the operator K on L produces a total derivative. The
bosonic and the fermionic parts of the actions can be treated separately and generate the same constraint. As an
example, we have for the bosonic sector

K(Fẋ ˙̄x− βF ˙̄x2) = 2t[λFxx+ λFx̄x̄+ (1 + 2λ)F ](ẋ ˙̄x+ β ˙̄x2) + 2λFx ˙̄x+ 2λF x̄ẋ+ 4βλF x̄ ˙̄x.



58 CHAPTER 3. WORLDLINE TOPOLOGICAL CONFORMAL MECHANICS

We are led to simultaneously satisfy the system of equations

λFxx+ λFx̄x̄+ (1 + 2λ)F = 0,

2λFx ˙̄x+ 2λF x̄ẋ+ 4βλF x̄ ˙̄x = d

dt
(. . .). (D.16)

The only solution for the above system is obtained for β = 0, with

F (x, x̄) = C(xx̄)−
1+2λ

2λ . (D.17)

Therefore, the Lagrangian producing the twisted superconformally invariant σ-model,

L = F (ẋ ˙̄x+ ψ̇ψ̄) + Fx̄ ˙̄xψψ̄, (D.18)

with F given in (D.17), is only recovered at the special critical value β = 0. It is worth pointing out that, for this
value, the (2, 2, 0) D-module rep obtained from (D.5, D.6, D.7) is reducible.

The action derived from (D.17,D.18) is only defined for λ 6= 0. It was pointed out in [2] that a consistent
λ → 0 limit exists if the propagating bosons are suitably shifted. In the present case this corresponds to replace
x, x̄ with the shifted fields x + ρ

λ , x̄ + ρ̄
λ , for ρ, ρ̄ constants with the same dimensionality as x, x̄. In the λ →

0 limit, a representation of the superconformal algebra which only depends on ρ, ρ̄ emerges. The corresponding
supermultiplet which emerges in this limit has been called the inhomogeneous supermultiplet in [2] (see also [25]).
The construction of the inhomogeneous superconformal actions has been discussed at length in that paper; since
it can be straightforwardly applied to the present twisted case, it is sufficient to present here the final results.
The inhomogeneous invariant superconformal action is expressed by the same Lagrangian (D.18), but with the
identification of F given by

F (x, x̄) = Ce−
x+x̄
2ρ . (D.19)

The construction of the twisted superconformal action, invariant under the hyperbolic representation, proceeds on
similar lines. In the homogeneous λ 6= 0 case the Lagrangian is

L = F (ẋ ˙̄x+ µψ̇ψ̄ + µ2λ2xx̄) + µFx̄ψψ̄ ˙̄x, (D.20)

with the same identification of F as in (D.17). In the inhomogeneous λ = 0 case the invariant Lagrangian is

L = F (ẋ ˙̄x+ µψ̇ψ̄ + µ2ρ2) + µFx̄ψψ̄ ˙̄x, (D.21)

with F given by (D.19).
As it happens for the untwisted superconformal case [1, 2], the difference between parabolic versus hyperbolic

superconformal actions consists in the presence, in the latter case, of an extra potential term.

3.3.2 Superconformal models for the (1, 2, 1) supermultiplet
The construction of the twisted superconformal actions for the (1, 2, 1) supermultiplet proceeds along similar lines.
A global supersymmetric action is obtained from the Lagrangian L = Q1Q

(γ)
2 (Fψ̄ψ), with Q1, Q

(γ)
2 given in (D.10).

We get
L = Fbẋ+ Fψ̇ψ̄ + γFb2 + γFxψ̄ψb, (D.22)

where F = F (x).
The superconformal invariance is guaranteed if the constraint generated by K is satisfied. In the (1, 2, 1) case

the generator K carries a dependence on a off-diagonal parameter δ, see (D.12) (for clarity reason, it is therefore
convenient to write K ≡ K(δ)). The action of K(δ) on the purely bosonic part of the Lagrangian reads as follows

K(δ)(Fbẋ+ γFb2) = 2t[λFxx+ (1 + 2λ)F ](γb2 + bẋ) + 2(λ+ γδ)Fxb.

The superconformal invariance requires simultaneously satisfying the system (no further constraint is obtained from
the fermionic part of the Lagrangian)

λFxx+ (1 + 2λ)F = 0,
γδ = −λ. (D.23)

The homogeneous case λ 6= 0 implies that both γ and δ are non-vanishing. This means, in particular, that the
(1, 2, 1) representation of the twisted superconformal algebra entering the invariant action is irreducible.
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Without loss of generality γ can be set to 1 (γ = 1) via the rescaling of the fields and of the prepotential F :
γb→ b, γψ̄ → ψ̄, Fγ → F . The Lagrangian can indeed be written as

L = 1
γ

[F (γb)2 + F (γb)ẋ+ Fψ̇(γψ̄) + Fx(γψ̄)ψ(γb)]. (D.24)

With the choice γ = 1, δ = −λ, the Lagrangian of the parabolic homogeneous case is

L = F (b2 + bẋ+ ψ̇ψ̄) + Fxψ̄ψb, with F (x) = Cx−
1+2λ
λ . (D.25)

The parabolic inhomogeneous case is obtained in the λ→ 0 limit for operators acting on the shifted supermultiplet
(x+ ρ

λ , b;ψ, ψ̄). It produces an invariant action whose Lagrangian is

L = F (b2 + bẋ+ ψ̇ψ̄) + Fxψ̄ψb, with F (x) = Ce−
x
ρ . (D.26)

In the hyperbolic homogeneous case the invariant action is given by the Lagrangian

L = F (µ2b2 + µbẋ+ µψ̇ψ̄ − µ2λxb) + Fx(µ2ψ̄ψb+ 1
2µ

2λxψψ̄), with F (x) = Cx−
1+2λ
λ . (D.27)

In the hyperbolic inhomogeneous case the invariant action is given by the Lagrangian

L = F (µ2b2 + µbẋ+ µψ̇ψ̄ − µ2ρb) + Fx(µ2ψ̄ψb+ 1
2µ

2ρψψ̄), with F (x) = Ce−
x
ρ . (D.28)

3.3.3 Superconformal models in the constant kinetic basis
It is convenient to compare the four inequivalent superconformal actions introduced above by making field redefini-
tions. Under such redefinitions the superconformal symmetry is realized non-linearly. The Lagrangians, on the other
hand, have a simpler form, being recast as a constant kinetic term plus (for λ 6= − 1

2 ) an interaction.
For the (2, 2, 0) supermultiplet, in both parabolic and hyperbolic cases, the following field redefinitions are made:

i) in the homogeneous case

y = −2λx− 1
2λ , ȳ = −2λx̄− 1

2λ , χ = ψ, χ̄ = (xx̄)−
1+2λ

2λ ψ̄; (D.29)

ii) in the inhomogeneous case

y = −2ρe−
x
2ρ , ȳ = −2ρe−

x̄
2ρ , χ = ψ, χ̄ = e−

x+x̄
2ρ ψ̄. (D.30)

For the (1, 2, 1) supermultiplet, in both parabolic and hyperbolic cases, the field redefinitions are
i) in the homogeneous case

y = −2λx− 1
2λ , a = x−

1+2λ
2λ b, χ = ψ, χ̄ = x−

1+2λ
λ ψ̄; (D.31)

ii) in the inhomogeneous case

y = −2ρe−
x
2ρ , a = e−

x
2ρ b, χ = ψ, χ̄ = e−

x
ρ ψ̄. (D.32)

In terms of the redefined fields the Lagrangians of the superconformally invariant σ-models are very compactly
written. Without loss of generality, in the hyperbolic case the dimensional parameter µ can be set µ = 1 (if needed,
we can restore the µ-dependence by dimensional analysis).

Associated with the (2, 2, 0) supermultiplet we have the Lagrangian

L = ẏ ˙̄y + χ̇χ̄+ ε

4yȳ + (1 + 2λ)χχ̄
˙̄y

ȳ
. (D.33)

Associated with the (1, 2, 1) supermultiplet we have the Lagrangian

L = a2 + aẏ + χ̇χ̄+ ε

2ya+ ε

2(1 + 2λ)χ̄χ+ 2(1 + 2λ) χ̄χa
y
. (D.34)

In the above Lagrangians the parameter ε takes the value ε = 0 in the parabolic case and ε = 1 in the hyperbolic
case. The inhomogeneous case corresponds to the special (non-singular) value λ = 0. Another special value, λ = − 1

2 ,
corresponds to the non-interacting theory. It is interesting to note that the same twisted superconformal invariance
is possessed by actions, even in the presence of an interaction (for λ 6= − 1

2 ). The coupling constant labels a class of
superconformally invariant σ-models and is expressed as 2λ+ 1.
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3.4 SCA D-module reps from pseudo-supersymmetry
In this Section we summarize the results about inducing D-module representations of semi-simple finite supercon-
formal algebras, recovered from pseudo-supersymmetry supermultiplets. This Section extends the results of [4, 5, 2].
Some of the D-module representations below were used to construct the topological conformal algebras discussed in
Section 2. In the Appendix B the D-module representations are explicitly given (in terms of operators which allow
to reconstruct the complete set of superconformal algebra generators). We have

- The N = (1, 1)-induced superconformal algebra

The superalgebra is sl(2|1). The D-module rep is recovered from the (1, 1, 0) supermultiplet for any value of the
scaling dimension λ.

- The N = (2, 2)-induced superconformal algebras

The D-module reps are recovered from the (k, 2, 2 − k) supermultiplets, with k = 0, 1, 2, for any value of the
scaling dimension λ.

The corresponding superconformal algebras are
- D(2, 1;α), for (2, 2, 0) and (0, 2, 2). The relation between α and λ is α = 2(1− k)λ;
- A(1, 1) for (1, 2, 1) and at the critical value λ = 0;
- the centrally extended algebra Â(1, 1) for (1, 2, 1) and λ 6= 0.

- The N = (3, 3)-induced superconformal algebras

These superconformal algebras are induced by the supermultiplets (k, 4, 4− k), for k 6= 2, at the critical values of
the scaling dimension λ given by λcr = 1

2(k−2) .
The identification of the superconformal algebras goes as follows:

- D(3, 1), recovered from the supermultiplets (4, 4, 0) and (0, 4, 4);
- A(2, 1), recovered from the supermultiplets (3, 4, 1) and (1, 4, 3).

One should note that in the Kac list of semisimple Lie superalgebras [23] besides D(3, 1) and A(2, 1) there exists
an extra superalgebra, B(1, 2), which has the property of being one-dimensionally superconformal (see [26]) with
6 + 6 fermionic generators. This superalgebra, however, is not recovered from the (k, 4, 4 − k)-induced D-module
reps.

- The N = (4, 4)-induced superconformal algebra

The only supermultiplets inducing a D-module rep of a superconformal algebra are (8, 8, 0) and (0, 8, 8). The
other values of k (k = 1, 2, . . . , 7) fail to induce a D-module rep of a superconformal algebra. In both cases, the
induced superalgebra is D(4, 1) and is only recovered at the critical values of the scaling dimension λ, λcr = 1

4 for
(8, 8, 0) and λcr = − 1

4 for (0, 8, 8). This case should be compared with the induced D-module reps from positive
N = (8, 0) supersymmetry. In that case, see [5], the four superconformal algebras D(4, 1), D(2, 2), A(3, 1) and F (4)
are induced from D-module reps of the (k, 8, 8− k) supermultiplets for different values of k 6= 4 at the given critical
scaling dimensions.

- The N = (5, 1)-induced superconformal algebra

In this case the only supermultiplets inducing a D-module rep of a superconformal algebra are (8, 8, 0) and
(0, 8, 8). The other values of k (k = 1, 2, . . . , 7) fail to induce a D-module rep of a superconformal algebra. In both
cases, the induced superalgebra is D(3, 1), recovered at the critical values of the scaling dimension λ, λcr = 1

4 for
(8, 8, 0) and λcr = − 1

4 for (0, 8, 8).

3.5 Conclusions
The sl(2|1)-invariant topological actions are presented in (D.33) and (D.34) for the (2, 2, 0) chiral and the (1, 2, 1)
real supermultiplet, respectively. The parameter ε = 0, 1 discriminates the parabolic versus the hyperbolic case. A
coupling constant is given by 2λ+ 1; at the λ = − 1

2 value the actions are free.
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The construction of topological sl(2|1)-invariant actions for several supermultiplets in interactions is straightfor-
ward. It can be done by adapting to the twisted supersymmetry the construction discussed in [5] for the untwisted
superconformal invariance.

At least two approaches can be used to construct topological actions invariant under a larger superalgebra, let’s
say D(2, 1;α). One can start with sl(2|1)-invariant actions from supermultiplets in interactions and then search
which values in the space of parameters characterize the enhanced superconformal invariance. To give an example,
the (4, 4, 0) supermultiplet is expected to possess D(2, 1;α)-invariant actions, with α linked to its scaling dimension.
Under sl(2|1), the (4, 4, 0) supermultiplet is decomposed into the direct sum of two (2, 2, 0) supermultiplets: (4, 4, 0) =
(2, 2, 0)⊕ (2, 2, 0).

The other approach is more direct. It requires the construction of the nilpotent operators (which, together with the
boost operator K, induce a D(2, 1;α) superalgebra) from the linear combination of the 3 + 3 pseudo-supersymmetry
operators acting (see Appendix B) on four bosons and four fermions. We leave this construction for a future work.

In this paper we proved the flexibility of the world-line framework to investigate one-dimensional topological
conformal σ-models [27]. A natural question, which goes under the name of “oxidation” [28] or “enhancement” [29],
is whether data from one-dimensional (twisted) supersymmetry can encode information of higher dimensional theories
and whether they allow to reconstruct them. From the [30] paper it is known that two-dimensional topological σ-
models are at the core of the geometric Langlands program. An approach to enhance world-line supersymmetry to
world-sheet supersymmetry has been presented in [31]. It looks promising investigating its application to topological
(i.e. twisted supersymmetric) theories.
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Appendix A: the smallest topological conformal algebra
One can easily recognize that the smallest invariant topological conformal algebra is a subalgebra of the N = (1, 1)

superconformal algebra sl(2|1). This invariant algebra, sl(2)⊃+gr(2), is realized on the (1, 1) supermultiplet. It consists
of the bosonic sl(2) subalgebra acting on the Grassmann algebra gr(2) (see [24]) of two anticommuting nilpotent
operators Q, Q̄. In the parabolic realization the operator Q can be constructed from the positive and negative square
roots of H,

Q+ =
(

0 1
∂t 0

)
, Q− =

(
0 1
−∂t 0

)
, (A.1)

either as
i) Q = Q+ +Q−

2 =
(

0 1
0 0

)
or ii) Q = Q+ −Q−

2 =
(

0 0
∂t 0

)
. (A.2)

The sl(2) generators are
H = I2 · ∂t, D = I2 · t∂t + Λ, K = I2 · t2∂t + 2tΛ, (A.3)

where Λ = diag(λ, λ + 1
2 ). In both cases, the nilpotent partner Q̄ is given by Q̄ = [K,Q]. The invariant action

is given by S =
∫
dt · L, where the Lagrangian is L = Q(G(x)ψ̇). In the following it is convenient to introduce

G(x) =
∫ x

dx′F (x′). We have
i) for the first choice,

L = Fψψ̇, (A.4)

where for the homogeneous/inhomogeneous cases discussed in Section 3 we have, respectively, F (x) = Cx−
1+2λ
λ and

F (x) = Ce−
x
ρ ;

ii) for the second choice,
L = Fẋ2 + V (x), (A.5)

with F (x) = Cx−
1+2λ
λ , V (x) = kx

1
λ in the homogeneous case and F (x) = Ce−

x
ρ , V (x) = ke

x
ρ in the inhomogeneous

case .
In the second case the potential term V (x) is automatically invariant, up to a time derivative, so that the

parameter k is arbitrary.
The construction can be repeated for the hyperbolic realization. We obtain in this case

i) Q = e−
µt
2

(
0 1
0 0

)
or ii) Q = e−

µt
2

(
0 0

1
µ∂t − λ 0

)
. (A.6)

The invariant actions are given by the Lagrangians
i) for the first choice,

L = µFψψ̇, (A.7)

with F (x) = Cx−
1+2λ
λ in the homogeneous case and F (x) = Ce−

x
ρ in the inhomogeneous case;

ii) for the second choice,
L = F [ẋ2 + µ2(λx+ ρ)2] + V (x), (A.8)

with F (x) = Cx−
1+2λ
λ , V (x) = kx

1
λ and ρ = 0 in the homogeneous case and F (x) = Ce−

x
ρ , V (x) = ke

x
ρ and λ = 0

in the inhomogeneous case.

Appendix B: explicit D-module reps of the topological superconformal
algebras

We explicitly give here, for each representation discussed in Section 4, a set of operators which allows to recover
(via repeated mutual commutators/anticommutators) the complete set of superconformal algebra generators. It is
sufficient to present the parabolic case. In the following In denotes the n × n identity matrix, while Eij stands for
the matrix whose only non-vanishing entry is 1 at the crossing of the i-th row with the j-th column.

For all the D-module representations below the generators H,D of the sl(2) Borel subalgebra have the form

H = In · ∂t,
D = In · t∂t + Λ, (B.1)

for a given integer n and a given diagonal matrix Λ.
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One can prove that the remaining sl(2) generator, K, is in diagonal form for the (1, 1, 0) D-module reps of
the N = (1, 1) superconformal algebra and the (2, 2, 0), (0, 2, 2) D-module reps of the N = (2, 2) superconformal
algebras. K admits a consistent non-diagonal form (parametrized by the free, off-diagonal parameter δ, the diagonal
case being recovered at δ = 0) for the (1, 2, 1) D-module reps of the N = (2, 2) superconformal algebras. In this case
K is given by formula (D.12), that is K = I4 · t2∂t + 2Λt+ δE21, with Λ = diag(λ, λ+ 1, λ+ 1

2 , λ+ 1
2 ).

In all remaining cases with extended number of supersymmetries, N = (3, 3), N = (4, 4) and N = (5, 1), we
investigated the closure of the representations for diagonalK. Therefore, in the following, apart the (1, 2, 1) D-module
rep of the N = (2, 2) superconformal algebra with K given by (D.12), we have, in all other cases,

K = In · t2∂t + 2Λt. (B.2)

The N = (1, 1) superconformal algebra

In this case the unique supermultiplet is (1, 1, 0), with component fields (x;ψ).
We have n = 2, while the matrix Λ is given, for an arbitrary λ, by Λ = diag(λ, λ+ 1

2 ).
The square roots of ±H are the operators
Q+ = E12 + E21∂t,
Q− = E12 − E21∂t.

The N = (2, 2) superconformal algebras
In this case n = 4. Different superconformal algebras, see Section 4, are associated with different values of the scaling
dimension λ. The representations are labeled by the supermultiplets

- (2, 2, 0):
Here Λ = diag(λ, λ, λ+ 1

2 , λ+ 1
2 ). The component fields are (x, x̄;ψ, ψ̄), where x, x̄ are propagating bosons.

The square roots of ±H are the operators
Q+

1 = E14 + E23 + (E32 + E41)∂t,
Q+

2 = E13 − E24 + (E31 − E42)∂t,
Q−1 = E14 − E23 + (E32 − E41)∂t,
Q−2 = E13 + E24 − (E31 + E42)∂t.

- (1, 2, 1):
Here Λ = diag(λ, λ+ 1, λ+ 1

2 , λ+ 1
2 ). The component fields are (x, b;ψ, ψ̄), where x is the propagating boson.

The square roots of ±H are the operators
Q+

1 = E14 + E32 + (E23 + E41)∂t,
Q+

2 = E13 − E42 + (−E24 + E31)∂t,
Q−1 = E14 + E32 − (E23 + E41)∂t,
Q−2 = E13 − E42 + (E24 − E31)∂t.

- (0, 2, 2):
Here Λ = diag(λ+ 1, λ+ 1, λ+ 1

2 , λ+ 1
2 ). This supermultiplet has no propagating bosons. The component fields are

(b, b̄;ψ, ψ̄).
The square roots of ±H are the operators
Q+

1 = (E14 + E23)∂t + E32 + E41,
Q+

2 = (E13 − E24)∂t + E31 − E42,
Q−1 = (E14 − E23)∂t + E32 − E41,
Q−2 = (E13 + E24)∂t − E31 − E42.

The N = (3, 3) superconformal algebras
In this case n = 8. Different superconformal algebras, see Section 4, are associated with different critical values of
the scaling dimension λ. The representations are labeled by the supermultiplets

- (4, 4, 0):
This superalgebra is critical at λ = 1

4 . We have Λ = diag(λ, λ, λ, λ, λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 ).
The square roots of ±H are the operators



64 CHAPTER 3. WORLDLINE TOPOLOGICAL CONFORMAL MECHANICS

Q+
1 = E18 − E27 − E36 + E45 + (E54 − E63 − E72 + E81)∂t,

Q+
2 = E17 + E28 + E35 + E46 + (E53 + E64 + E71 + E82)∂t,

Q+
3 = E15 + E26 − E37 − E48 + (E51 + E62 − E73 − E84)∂t,

Q−1 = E18 + E27 − E36 − E45 + (E54 + E63 − E72 − E81)∂t,
Q−2 = E17 − E28 − E35 + E46 + (E53 − E64 − E71 + E82)∂t,
Q−3 = E15 + E26 + E37 + E48 − (E51 + E62 + E73 + E84)∂t.

- (3, 4, 1):
This superalgebra is critical at λ = 1

2 . We have Λ = diag(λ, λ, λ, λ+ 1, λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 ).
The square roots of ±H are the operators
Q+

1 = E18 − E27 − E36 + E54 + (E45 − E63 − E72 + E81)∂t,
Q+

2 = E17 + E28 + E35 + E64 + (E46 + E53 + E71 + E82)∂t,
Q+

3 = E15 + E26 − E37 − E84 + (−E48 + E51 + E62 − E73)∂t,
Q−1 = E18 + E27 − E36 + E54 + (−E45 + E63 − E72 − E81)∂t,
Q−2 = E17 − E28 − E35 − E64 + (E46 + E53 − E71 + E82)∂t,
Q−3 = E15 + E26 + E37 − E84 + (E48 − E51 − E62 − E73)∂t.

- (1, 4, 3):
This superalgebra is critical at λ = − 1

2 . We have Λ = diag(λ, λ+ 1, λ+ 1, λ+ 1, λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 ).
The square roots of ±H are the operators
Q+

1 = (−E27 − E36 + E45 + E81)∂t + E18 + E54 − E63 − E72,
Q+

2 = (E28 + E35 + E46 + E71)∂t + E17 + E53 + E64 + E82,
Q+

3 = (E26 − E37 − E48 + E51)∂t + E15 + E62 − E73 − E84,
Q−1 = (E27 − E36 − E45 − E81)∂t + E18 + E54 + E63 − E72,
Q−2 = (−E28 − E35 + E46 − E71)∂t + E17 + E53 − E64 + E82,
Q−3 = (E26 + E37 + E48 − E51)∂t + E15 − E62 − E73 − E84.

- (0, 4, 4):
The superalgebra is critical at λ = − 1

4 . We have Λ = diag(λ+ 1, λ+ 1, λ+ 1, λ+ 1, λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 ).
The square roots of ±H are the operators
Q+

1 = (E18 − E27 − E36 + E45)∂t + E54 − E63 − E72 + E81,
Q+

2 = (E17 + E28 + E35 + E46)∂t + E53 + E64 + E71 + E82,
Q+

3 = (E15 + E26 − E37 − E48)∂t + E51 + E62 − E73 − E84,
Q−1 = (E18 + E27 − E36 − E45)∂t + E54 + E63 − E72 − E81,
Q−2 = (E17 − E28 − E35 + E46)∂t + E53 − E64 − E71 + E82,
Q−3 = (E15 + E26 + E37 + E48)∂t − E51 − E62 − E73 − E84.

The N = (4, 4) superconformal algebra
In this case n = 16. There is a unique superconformal algebra, see Section 4. Its two representations are given by
the supermultiplets

- (8, 8, 0):
We have Λ = diag(λ, λ, λ, λ, λ, λ, λ, λ, λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 ), at the critical value, due

to the closure conditions, λ = 1
4 .

The square roots of ±H are the operators
Q+

1 = E1,16 + E2,15 + E3,14 + E4,13 + E5,12 + E6,11 + E7,10 + E8,9 + (E9,8 + E10,7 + E11,6 + E12,5 + E13,4 + E14,3 +
E15,2 + E16,1)∂t,
Q+

2 = E1,15 − E2,16 + E3,13 − E4,14 + E5,11 − E6,12 + E7,9 − E8,10 + (E9,7 − E10,8 + E11,5 − E12,6 + E13,3 − E14,4 +
E15,1 − E16,2)∂t,
Q+

3 = E1,13 + E2,14 − E3,15 − E4,16 + E5,9 + E6,10 − E7,11 − E8,12 + (E9,5 + E10,6 − E11,7 − E12,8 + E13,1 + E14,2 −
E15,3 − E16,4)∂t,
Q+

4 = E1,9 + E2,10 + E3,11 + E4,12 − E5,13 − E6,14 − E7,15 − E8,16 + (E9,1 + E10,2 + E11,3 + E12,4 − E13,5 − E14,6 −
E15,7 − E16,8)∂t,
Q−1 = E1,16 − E2,15 + E3,14 − E4,13 + E5,12 − E6,11 + E7,10 − E8,9 + (E9,8 − E10,7 + E11,6 − E12,5 + E13,4 − E14,3 +
E15,2 − E16,1)∂t,
Q−2 = E1,15 + E2,16 − E3,13 − E4,14 + E5,11 + E6,12 − E7,9 − E8,10 + (E9,7 + E10,8 − E11,5 − E12,6 + E13,3 + E14,4 −
E15,1 − E16,2)∂t,
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Q−3 = E1,13 + E2,14 + E3,15 + E4,16 − E5,9 − E6,10 − E7,11 − E8,12 + (E9,5 + E10,6 + E11,7 + E12,8 − E13,1 − E14,2 −
E15,3 − E16,4)∂t,
Q−4 = E1,9 + E2,10 + E3,11 + E4,12 + E5,13 + E6,14 + E7,15 + E8,16 − (E9,1 + E10,2 + E11,3 + E12,4 + E13,5 + E14,6 +
E15,7 + E16,8)∂t.

- (0, 8, 8):
We have Λ = diag(λ+1, λ+1, λ+1, λ+1, λ+1, λ+1, λ+1, λ+1, λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 )

at the critical value λ = − 1
4 .

The square roots of ±H are the operators
Q+

1 = (E1,16 +E2,15 +E3,14 +E4,13 +E5,12 +E6,11 +E7,10 +E8,9)∂t +E9,8 +E10,7 +E11,6 +E12,5 +E13,4 +E14,3 +
E15,2 + E16,1,
Q+

2 = (E1,15−E2,16 +E3,13−E4,14 +E5,11−E6,12 +E7,9−E8,10)∂t +E9,7−E10,8 +E11,5−E12,6 +E13,3−E14,4 +
E15,1 − E16,2,
Q+

3 = (E1,13 +E2,14−E3,15−E4,16 +E5,9 +E6,10−E7,11−E8,12)∂t +E9,5 +E10,6−E11,7−E12,8 +E13,1 +E14,2−
E15,3 − E16,4,
Q+

4 = (E1,9 +E2,10 +E3,11 +E4,12−E5,13−E6,14−E7,15−E8,16)∂t +E9,1 +E10,2 +E11,3 +E12,4−E13,5−E14,6−
E15,7 − E16,8,
Q−1 = (E1,16−E2,15 +E3,14−E4,13 +E5,12−E6,11 +E7,10−E8,9)∂t +E9,8−E10,7 +E11,6−E12,5 +E13,4−E14,3 +
E15,2 − E16,1,
Q−2 = (E1,15 +E2,16−E3,13−E4,14 +E5,11 +E6,12−E7,9−E8,10)∂t +E9,7 +E10,8−E11,5−E12,6 +E13,3 +E14,4−
E15,1 − E16,2,
Q−3 = (E1,13 +E2,14 +E3,15 +E4,16−E5,9−E6,10−E7,11−E8,12)∂t +E9,5 +E10,6 +E11,7 +E12,8−E13,1−E14,2−
E15,3 − E16,4,
Q−4 = (E1,9 +E2,10 +E3,11 +E4,12 +E5,13 +E6,14 +E7,15 +E8,16)∂t− (E9,1 +E10,2 +E11,3 +E12,4 +E13,5 +E14,6 +
E15,7 + E16,8).

The N = (5, 1) superconformal algebra
In this case n = 16. There is a unique superconformal algebra, see Section 4. Its two representations are given by
the supermultiplets

- (8, 8, 0):
We have Λ = diag(λ, λ, λ, λ, λ, λ, λ, λ, λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 ) at the critical value λ = 1

4 .
The square roots of ±H are the operators
Q+

1 = E1,9 + E2,10 + E3,11 + E4,12 − E5,13 − E6,14 − E7,15 − E8,16 + (E9,1 + E10,2 + E11,3 + E12,4 − E13,5 − E14,6 −
E15,7 − E16,8)∂t,
Q+

2 = E1,16 − E2,15 + E3,14 − E4,13 − E5,12 + E6,11 − E7,10 + E8,9 + (E9,8 − E10,7 + E11,6 − E12,5 − E13,4 + E14,3 −
E15,2 + E16,1)∂t,
Q+

3 = E1,15 + E2,16 − E3,13 − E4,14 − E5,11 − E6,12 + E7,9 + E8,10 + (E9,7 + E10,8 − E11,5 − E12,6 − E13,3 − E14,4 +
E15,1 + E16,2)∂t,
Q+

4 = E1,14 − E2,13 − E3,16 + E4,15 − E5,10 + E6,9 + E7,12 − E8,11 + (E9,6 − E10,5 − E11,8 + E12,7 − E13,2 + E14,1 +
E15,4 − E16,3)∂t,
Q+

5 = E1,13 + E2,14 + E3,15 + E4,16 + E5,9 + E6,10 + E7,11 + E8,12 + (E9,5 + E10,6 + E11,7 + E12,8 + E13,1 + E14,2 +
E15,3 + E16,4)∂t,
Q−1 = E1,9 + E2,10 + E3,11 + E4,12 + E5,13 + E6,14 + E7,15 + E8,16 − (E9,1 + E10,2 + E11,3 + E12,4 + E13,5 + E14,6 +
E15,7 + E16,8)∂t.

- (0, 8, 8):
We have Λ = diag(λ+1, λ+1, λ+1, λ+1, λ+1, λ+1, λ+1, λ+1, λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 , λ+ 1

2 , λ+ 1
2 )

at the critical value λ = − 1
4 .

The square roots of ±H are the operators
Q+

1 = (E1,9 +E2,10 +E3,11 +E4,12−E5,13−E6,14−E7,15−E8,16)∂t +E9,1 +E10,2 +E11,3 +E12,4−E13,5−E14,6−
E15,7 − E16,8,
Q+

2 = (E1,16−E2,15 +E3,14−E4,13−E5,12 +E6,11−E7,10 +E8,9)∂t +E9,8−E10,7 +E11,6−E12,5−E13,4 +E14,3−
E15,2 + E16,1,
Q+

3 = (E1,15 +E2,16−E3,13−E4,14−E5,11−E6,12 +E7,9 +E8,10)∂t +E9,7 +E10,8−E11,5−E12,6−E13,3−E14,4 +
E15,1 + E16,2,
Q+

4 = (E1,14−E2,13−E3,16 +E4,15−E5,10 +E6,9 +E7,12−E8,11)∂t +E9,6−E10,5−E11,8 +E12,7−E13,2 +E14,1 +
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E15,4 − E16,3,
Q+

5 = (E1,13 +E2,14 +E3,15 +E4,16 +E5,9 +E6,10 +E7,11 +E8,12)∂t +E9,5 +E10,6 +E11,7 +E12,8 +E13,1 +E14,2 +
E15,3 + E16,4,
Q−1 = (E1,9 +E2,10 +E3,11 +E4,12 +E5,13 +E6,14 +E7,15 +E8,16)∂t− (E9,1 +E10,2 +E11,3 +E12,4 +E13,5 +E14,6 +
E15,7 + E16,8).
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Chapter 4

From worldline to quantum SUSY

4.1 Introduction
In this paper we quantize superconformal σ-models defined by worldline supermultiplets. We consider two types of
superconformal mechanics, parabolic or trigonometric [1], namely in the absence or, respectively, in the presence of
an oscillatorial DFF term [2].

In the absence of a DFF term the systems under consideration possess only a Calogero potential [3]; they are
supersymmetric and with a continuous spectrum. In the presence of a DFF term they correspond to deformed (if the
Calogero potential is present) or undeformed oscillators with a discrete, bounded from below, spectrum. For these
(un)deformed oscillators the classical invariant superconformal algebra acts as a spectrum-generating algebra of the
quantum theory.

We illustrate at first our method with two osp(1|2)-invariant examples, the ordinary one-dimensional harmonic
oscillator being recovered in the trigonometric case. Later we explicitly quantize the superconformally-invariant
worldine σ-models defined by
i) the N = 4 (1, 4, 3) supermultiplet with scaling dimension α 6= 0,−1 (these models are classically invariant under
the exceptional D(2, 1;α) Lie superalgebra) and
ii) the N = 2 (2, 2, 0) supermultiplet of scaling dimension λ (these models present a two-dimensional target and
classical sl(2|1)-invariance).

For the (1, 4, 3) supermultiplet, at the special α = − 1
2 value, the Calogero potential terms are vanishing. For this

value the invariant superalgebra is D(2, 1;− 1
2 ) = D(2, 1) ≈ osp(4|2).

An interesting result, in the (1, 4, 3) trigonometric case, consists in the direct and simple interpretation of α as a
vacuum energy (if α is regarded as an external control parameter, it determines the Casimir energy of the system).

For the sl(2|1) models the scaling dimension λ is quantized (either λ = 1
2 + Z or λ = Z). In the trigonometric

case the ordinary two-dimensional oscillator (without Calogero potential terms) is recovered from the special λ = − 1
2

value after a superselection of the spectrum, defined by a projection operator, is imposed. The spectrum of the
theory turns out to be decomposed into an infinite set of lowest weight representations of sl(2|1). By construction,
the role of sl(2|1) as a spectrum-generating algebra is expected. What is quite unexpected and surprising is the
further result that extra fermionic raising operators, not belonging to the sl(2|1) superalgebra, allow to construct the
whole spectrum from the single λ = 1

2 + Z bosonic vacuum (in Appendix A this action is visualized in diagrams).
Models of superconformal mechanics have been investigated in [4]–[12] (see, e.g., the review [13] and references

therein). For superconformal actions with oscillator potentials see [14, 15, 1]. (Super)conformal mechanics is cur-
rently a very active area of research; among the motivations for this interest one can mention the AdS2/CFT1
correspondence [16, 17], or the possibility to apply it to test particles moving in the proximity of the horizon of
certain black holes, see [11].
N = 4 superconformal models based on the exceptional (see [18]) Lie superalgebra D(2, 1;α) were investigated

in [19]–[26]. The models considered in those works, mostly classical, are supersymmetric; for that reason they do
not allow the presence of the oscillatorial DFF terms (in Appendix C we comment about the “soft" supersymmetry
property of the oscillatorial models). The recognition in [28] that conformal mechanics could allow new potentials,
permitted the introduction in [1] of the trigonometric (read, oscillatorial) classical D(2, 1;α) models.

The scheme of the paper is the following.
Sections 2, 3, 4 are propaedeutic. In Section 2 we discuss the change of coordinates from linear to non-linear

realizations of the superconformal algebras (the “constant kinetic basis") which allows us to present the worldline
superconformal σ-models in the Hamiltonian framework. A detailed description of the passage from classical La-
grangians to Hamiltonians is given in Section 3. In Section 4 the quantization procedure and the construction of the
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Noether charges is explained for two examples, the parabolic and trigonometric osp(1|2)-invariant σ-models. Section
5 contains the main results for the quantization of the parabolic (i.e. both superconformal and supersymmetric)
quantum models with D(2, 1;α)-invariance, based on the N = 4 worldline supermultiplet (1, 4, 3), and sl(2, 1)-
invariance, based on the N = (2, 2, 0) worldline supermultiplet. In Section 6 the main results of their quantum
trigonometric versions are derived. These systems contain DFF terms and are “softly supersymmetric". They cor-
respond to (un)deformed oscillators. The main results are the derivation of the vacuum energy in terms of the α
scaling dimension for the (1, 4, 3) supermultiplet and the derivation of the spectrum-generating superalgebra for the
(un)deformed two-dimensional oscillator with quantized scaling dimension λ. In Appendix A diagrams are presented
illustrating the decomposition of the two-dimensional oscillators in terms of the sl(2|1) lowest weight representations,
interconnected by the puzzling extra fermionic raising and lowering operators introduced in Section 6. For complete-
ness in Appendix B the classical version of the trigonometric N = 2 (2, 2, 0) superconformal σ-model is presented.
Finally, in Appendix C we discuss the “soft supersymmetry" of the (un)deformed oscillators and the role, for these
theories, of the spectrum generating superalgebras. In the Conclusions we present the open questions raised by our
analysis.

4.2 Worldline (super)conformal σ-models in constant kinetic basis
A convenient approach, in constructing one-dimensional superconformal σ-models, consists in starting from a linear
D-module representation of the superconformal algebra. Once such a representation is known, the Lagrangian
defining the superconformally invariant action can be systematically constructed by applying fermionic generators to
a prepotential function which depends only on the propagating bosons. The requirement of superconformal invariance,
imposed as a constraint, determines the specific form of the prepotential. This method (and its applications) has
been discussed in [1].

The kinetic term Φ(~x) 1
2δij(ẋiẋj + . . .) of the derived Lagrangian is an ordinary constant kinetic term multiplied

by a conformal factor Φ(~x) which is a function of the propagating bosons. In order to apply the standard methods
of quantization we need to reabsorb the conformal factor. One way to do this consists in introducing a new set of
fields. In the new basis of fields the kinetic term is expressed as a constant coefficient (hence the name “constant
kinetic basis" given in [1]); the superalgebra, on the other hand, is realized non-linearly.

In [1] the procedure of changing the basis (from the “linear" to the “constant kinetic" basis) was sketched for
certain D-module representations acting on supermultiplets consisting of a single propagating boson. We discuss it
here in a more general framework.

Let us consider a D-module irrep of a N -extended superconformal algebra (for our purposes N = 1, 2, 4, 8) acting
on a (k,N ,N − k) supermultiplet [29, 30, 31, 32] (namely, k propagating bosons, N fermions and N − k bosonic
auxiliary fields). In the linear basis the propagating bosons are labeled as x1, ..., xk, the fermions as ψ1, ..., ψN and
the auxiliary bosons as b1, ..., bN−k. The kinetic term in the Lagrangian is given by

1
2r
− 1+2λ

λ (ẋmẋm + iωψβψ̇β − ω2bnbn). (4.1)

In the above equation the convention over repeated indices is used. The constant ω is dimensionless (and can be
set equal to unity) in the parabolic case, while it is dimensional, see [1], in the hyperbolic/trigonometric case. The
function r is r = (xmxm) 1

2 and the parameter λ is the scaling dimension of the supermultiplet. At λ = − 1
2 the

kinetic term is constant. For the remaining λ 6= − 1
2 values a change to a constant kinetic basis is required in order

to present a kinetic term with constant coefficients. Let us denote the propagating bosons in the constant kinetic
basis as y1, ..., yk, the fermions as χ1, ..., χN and the auxiliary bosons as a1, ..., aN−k. The transformations passing
from the “linear" to the “constant kinetic" basis are given by:
i) for the (1,N ,N − 1) supermultiplets we have

y = −2λx− 1
2λ , χβ = x−

1+2λ
2λ ψβ , an = x−

1+2λ
2λ bn; (4.2)

in terms of the new fields equation (4.1) is expressed as

1
2(ẏẏ + iωχβχ̇β − ω2anan); (4.3)

ii) when N ≥ 2, for the (2,N ,N − 2) supermultiplets it is convenient to use a complex notation for the propagating
bosons and set

y = −2λ(x1 + ix2)− 1
2λ , y∗ = −2λ(x1 − ix2)− 1

2λ ,

χβ = r−
1+2λ

2λ ψβ , an = r−
1+2λ

2λ bn, (4.4)
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so that the kinetic term can be expressed as
1
2(ẏẏ∗ + iωχβχ̇β − ω2anan); (4.5)

iii) when N = 4, 8 it is possible to construct a constant kinetic basis for any (k,N ,N − k) supermultiplet at the
specific λ = 1/2 value of the scaling dimension via the transformations

ym = xm
r2 , χβ = ψβ

r2 , an = bn
r2 , (4.6)

leading to the kinetic term
1
2(ẏmẏm + iωχβχ̇β − ω2anan). (4.7)

For N = 4 and k 6= 2, irreps of the exceptional superalgebras D(2, 1;α) are recovered, see [25, 26, 1], from the
(k, 4, 4− k) supermultiplets according to the relation

α = (2− k)λ. (4.8)

At the special λ = 1
2 value the associated superalgebra is A(1, 1) for the (4, 4, 0) supermultiplet and D(2, 1) for the

(3, 4, 1) supermultiplet.
For N = 8 and k 6= 4, irreps of superconformal algebras are recovered for each supermultiplet (k, 8, 8− k) at the

critical values of the scaling dimension given by

λk = 1
k − 4 . (4.9)

The special value λ = 1
2 yields an irrep of A(3, 1) acting on the supermultiplet (6, 8, 2). The reader is referred to

[25, 26] for a detailed discussions on the criticality of the scaling dimension of the N = 4, 8 superconformal algebras.

4.3 From Lagrangians to classical Hamiltonians: an application to the
osp(1|2)-invariant σ-models

The quantization of the 1D superconformal σ-models follows the canonical procedure formalized by Dirac and based
on the classical Hamiltonian formalism. Since these σ-models have fermionic degrees of freedom, the passage from
the Lagrangian to the classical Hamiltonian formalism requires the use of Dirac brackets (see, e.g., [33]). The need
for Dirac brackets becomes clear after inspecting equations (4.3), (4.5) and (4.7); it is due to the fact that the linear
dependence on the fermionic velocities χ̇β forces us to extend the phase space of the system and treat the fermionic
canonical momenta as constraints in this extended phase space. In Dirac’s language these constraints are both
primary (they hold even without using the equations of motion) and second class (namely, a constraint that has a
non-vanishing Poisson brackets with at least one of the constraints).

This procedure, used throughout the paper, will be illustrated in detail for the simplest possibility given by the
osp(1|2)-invariant σ-models (their two variants, parabolic and hyperbolic/trigonometric, see [1]). In the parabolic case
the Hamiltonian is identified with a bosonic root of the superconformal algebra, while in the hyperbolic/trigonometric
case it is associated with a Cartan element. The parabolicD-module reps describe systems which are supersymmetric,
while the hyperbolic/trigonometric reps furnish only a soft version of supersymmetry, see the discussion in the
Introduction. The hyperbolic and trigonometric models are interrelated via a Wick rotation of the dimensional
parameter ω. The trigonometric case is here emphasized with respect to the hyperbolic one because it yields a
bounded from below Hamiltonian.

In the rest of this Section we discuss in detail the Hamiltonian formulation of both parabolic and trigonometric
osp(1|2)-invariant σ-models. The method, notations and conventions here presented are later applied to models with
larger superconformal symmetry.

4.3.1 The osp(1|2)-invariant parabolic σ-model
In the constant kinetic basis the generators of the osp(1|2) parabolic D-module rep read as

H =
(
∂t 0
0 ∂t

)
, D =

(
t∂t − 1

2 0
0 t∂t

)
, K =

(
t2∂t − t 0

0 t2∂t

)
,

Q =
(

0 1
i∂t 0

)
, Q̄ =

(
0 t

it∂t − i 0

)
. (4.10)
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The above generators act on the column vector supermultiplet (y, χ)T possessing the scaling dimension λ = − 1
2 .

The bosonic generators H, D, K span the sl(2) Lie subalgebra, while the fermionic generators Q, Q̄ span the
odd sector of osp(1|2).

The associated osp(1|2)-invariant action is simply

S =
∫
dtL =

∫
dt 1

2 (ẏ2 + iχχ̇). (4.11)

Unlike the N ≥ 2 superconformal algebras discussed in the following, for osp(1|2) the same action is recovered by
starting from a generic D-module rep with scaling dimension λ 6= − 1

2 and applying the (4.2) change of basis.
For a theory possessing bosons and fermions a conserved Noether charge is expressed, for a symmetry generator

O, as

CO = (δOφI)
∂L
∂φ̇I
− JO, (4.12)

where JO stems from the variation δOL = dJO
dt ; the sum over the repeated index I labeling the fields is understood.

The given ordering of the right hand side of (4.12) is essential in dealing with Grassmann variables and derivatives.
For the case at hand the classical Noether charges are

CH = ẏ2

2 , CD = tẏ2

2 −
yẏ
2 , CK = t2ẏ2

2 − tyẏ + y2

2 , CQ = ẏχ, CQ̄ = tẏχ+ yχ. (4.13)

The Euler-Lagrange equations

∂L
∂φ

= d

dt
(∂L
∂φ̇

) (4.14)

lead to the equations of motion

ÿ = 0, χ̇ = 0. (4.15)

The Grassmann variable in the classical osp(1|2) model is a constant and plays essentially no physical role besides
ensuring the osp(1|2) invariance.

To introduce the Hamiltonian formalism we have to compute the conjugate momenta given by

p = ∂L
∂ẏ = ẏ, π = ∂L

∂χ̇ = − iχ2 . (4.16)

In the Hamiltonian framework the classical charges (4.13) are rewritten as

CH = p2

2 , CD = tp2

2 −
yp

2 , CK = t2p2

2 − typ+ y2

2 , CQ = pχ, CQ̄ = tpχ+ yχ. (4.17)

The last step requires defining the Dirac brackets. The second equation in (4.16) makes clear why Dirac brackets
need to be introduced. The conjugate momentum π to the Grassmann variable χ is not an invertible function of the
velocity χ̇. The second equation in (4.16) should therefore be viewed as a second class constraint on the phase space,

u = π + iχ

2 . (4.18)

The super-Poisson bracket involving even or odd f , g functions is given by

{f, g}P =
∑
I

(−1)deg(f)·deg(g) ∂f

∂φI

∂g

∂πI
− ∂f

∂πI

∂g

∂φI
, (4.19)

where the degree function deg is 0 if evaluated on bosons and 1 on fermions.
Denoting with ui the set of all second class contraints, the Dirac bracket reads as

{f, g}D = {f, g}P −
∑
k,l

{f, uk}PU−1
kl {ul, g}P , (4.20)

where Ukl = {uk, ul}P is a matrix constructed from the super-Poisson brackets of all second class constraints.
u entering (4.18) is a second class constraint, since it satisfies

{u, u}P = −i.
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A straightforward computation gives the non-vanishing Dirac brackets

{y, p}D = 1, {χ, χ}D = −i. (4.21)

We can derive, with the use of the Dirac brackets, the equations of motion in the Hamiltonian formalism and compute
(recovering osp(1|2)) the superalgebra satisfied by the (4.17) conserved charges.

In terms of Dirac brackets the Hamilton’s equations are

φ̇ = ∂φ

∂t
+ {φ,CH}D. (4.22)

For the case at hand we get

ṗ = 0, χ̇ = 0, (4.23)

which, together with the p = ẏ position, allow to recover (4.15).

4.3.2 The osp(1|2)-invariant trigonometric σ-model
In the trigonometric case the passage from the Lagrangian to the Hamiltonian formalism follows the same steps as
before. We therefore skip unnecessary comments.

In the constant kinetic basis the generators of the osp(1|2) trigonometric D-module rep are

H = eiωt
( 1

ω∂t −
i
2x 0

0 1
ω∂t

)
, D =

( 1
ω∂t 0
0 1

ω∂t

)
, K = e−iωt

( 1
ω∂t + i

2x 0
0 1

ω∂t

)
,

Q = e
iωt
2

(
0 1

i
ω∂t + 1

2x 0

)
, Q̄ = e−

iωt
2

(
0 1

i
ω∂t −

1
2x 0

)
. (4.24)

The osp(1|2)-invariant action is

S =
∫
dtL =

∫
dt

1
2(ẏ2 + iωχχ̇)− ω2

8 y2. (4.25)

The derived conserved Noether charges are

CH = eiωt( 1
2ω ẏ

2 − i

2yẏ −
ω

8 y
2), CD = 1

2ω ẏ
2 + ω

8 y
2, CK = e−iωt( 1

2ω ẏ
2 + i

2yẏ −
ω

8 y
2),

CQ = e
iω
2 t(ẏχ− iω

2 yχ), CQ̄ = e−
iω
2 t(ẏχ+ iω

2 yχ). (4.26)

The Euler-Lagrange equations of motion are

ÿ = −ω
2y

4 , χ̇ = 0. (4.27)

The conjugate momenta are given by

p = ∂L
∂ẏ = ẏ, π = ∂L

∂χ̇ = − iωχ2 . (4.28)

In the Hamiltonian formulation, the (4.26) conserved charges are

CH = eiωt( 1
2ωp

2 − i

2yp−
ω

8 y
2), CD = 1

2ωp
2 + ω

8 y
2, CK = e−iωt( 1

2ωp
2 + i

2yp−
ω

8 y
2),

CQ = e
iω
2 t(pχ− iω

2 yχ), CQ̄ = e−
iω
2 t(pχ+ iω

2 yχ). (4.29)

The second equation in (4.28) gives the constraint in phase space

u = π + iωχ

2 , (4.30)

which allows to compute the Dirac brackets as before. The non-vanishing Dirac brackets are

{y, p}D = 1, {χ, χ}D = − i
ω
. (4.31)
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The Hamilton’s equations of motion are now written as

φ̇ = ω{φ,CD}D + ∂φ

∂t
. (4.32)

One should note that, while in the parabolic σ-model the charge CH is the physical Hamiltonian and the symmetry
operator H is the generator of the time translations, in the trigonometric σ-model the physical hamiltonian is given
by ωCD, the Cartan generator ωD being the generator of the time translations. One can readily check that equation
(4.32) leads to

ṗ = −ω
2y

4 , χ̇ = 0, (4.33)

which reproduce (4.27) by taking into account that p = ẏ.

4.4 The quantization. Quantum versus classical Noether charges and
the osp(1|2) models

The canonical quantization of the models presented in Section 3 is realized by substituting the Dirac Brackets by the
appropriate (based on the superalgebra structure) (anti)commutators, that we will denote with the “[., .}" symbol:

{A,B}D → 1
i~

[A,B}. (4.34)

By applying (4.34) to (4.21) and (4.31) we get, respectively, the parabolic and trigonometric osp(1|2)-invariant
quantum superconformal models.

We point out that, since the observables must be Hermitian operators, the parabolic and trigonometric quantum
models correspond to different real forms (read, conjugations) of the invariant superalgebra. We illustrate in detail
this feature, which is also valid for N ≥ 2 invariant theories.

4.4.1 The parabolic osp(1|2)-invariant quantum σ-model
The non-vanishing (anti)commutators recovered from (4.21) are

[ŷ, p̂] = i~, {χ̂, χ̂} = ~. (4.35)

In the position-space representation the above operators are given by

ŷ = y, p̂ = −i~∂y, χ̂ =
√

~
2 . (4.36)

The last equation is particularly important because it tells us that the fermionic field χ, classically represented by a
Grassmann variable, becomes a Clifford variable χ̂ in the quantum version. The choice in (4.36) of representing χ̂ as
a real number (that we can think of as the generator of the Cl(1, 0) Clifford algebra), is not unique. An alternative
choice, which respects the Z2-graded structure of the super-vector space acted upon by the operators ŷ, p̂, χ̂, consists
in picking χ̂ as the 2 × 2 matrix element corresponding to the antidiagonal Clifford algebra generator Cl(2, 1) with
positive square. In this Z2-graded representation, the operators ŷ, p̂, χ̂ are

ŷ =
(
y 0
0 y

)
, p̂ =

(
−i~∂y 0

0 −i~∂y

)
, χ̂ =

√
~
2

(
0 1
1 0

)
, Nf =

(
1 0
0 −1

)
, (4.37)

while Nf is the Fermion number operator.
The possibility, offered by the Z2-graded structure, of doubling the vector space, will be used in the following in

constructing the trigonometric and N = 2, 4 quantum models.
The parabolic quantum osp(1|2) superalgebra obtained by the (4.34) quantization of the classical counterpart,

leads to

[Ĥ, D̂] = i~Ĥ, [Ĥ, K̂] = 2i~D̂, [K̂, D̂] = −i~K̂

[Ĥ, ˆ̄Q] = i~Q̂, [K̂, Q̂] = −i~ ˆ̄Q, [Q̂, D̂] = i~
2 Q̂, [ ˆ̄Q, D̂] = − i~2

ˆ̄Q,

{Q̂, Q̂} = 2~Ĥ, {Q̂, ˆ̄Q} = 2~D, { ˆ̄Q, ˆ̄Q} = 2~K. (4.38)
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The remaining (anti)commutators are vanishing.
The above superalgebra is realized by the quantum charges

Ĥ = 1
2 p̂

2, D̂ = t

2 p̂
2 − 1

4(ŷp̂+ p̂ŷ), K̂ = t2

2 p̂
2 − t

2(ŷp̂+ p̂ŷ) + 1
2 ŷ

2,

Q̂ = χ̂p̂, ˆ̄Q = tχ̂p̂− ŷχ̂. (4.39)

They are, up to symmetrization, identical to the classical charges. This is a unique feature of the N = 1 osp(1|2)-
invariant models. From N ≥ 2 the models explicitly depend on the scaling dimension λ. As a result, the quantum
versions of these theories require corrections which are traced backed to the mapping of the classical Grassmann
variables into quantum Clifford generators.

The Hamiltonian Ĥ in (4.39) corresponds to the one-dimensional free particle. The operators Ĥ, D̂ K̂ close the
sl(2) bosonic symmetry algebra of the system. Ĥ and Q̂ gives the N = 1 algebra of the Supersymmetric Quantum
Mechanics. In terms of the (4.36) realization (χ̂ is a real number) the parabolic osp(1|2)-invariant model admits
no fermionic degrees of freedom. This is no longer the case (fermions are present) if the model is expressed via the
(4.37) realization.

In the parabolic model all charges entering (4.39) are observables. The superalgebra (4.38) can be re-expressed
in terms of the canonical osp(1|2) Cartan-Weyl basis H,F±, E± (such that all the structure constants are real), see
[18], through the identifications

Ĥ = −E−, D̂ = iH, K̂ = −E+, Q̂ = 2F−, ˆ̄Q = 2iF+. (4.40)

The computation of the osp(1|2) structure constants in the new basis is immediate.
The superalgebra conjugation corresponding to (4.39) reads, in the Cartan-Weyl basis, as

(E±)† = E±, H† = −H, (F±)† = ∓(F±). (4.41)

Concerning the dimensional analysis of the model we can set, without loss of generality, [∂t] = 1. If we set the
Planck constant ~ and the action S to be dimensionless, we therefore get [ŷ] = − 1

2 , [p̂] = 1
2 , [χ̂] = [S] = 0.

4.4.2 The trigonometric osp(1|2)-invariant quantum σ-model
The quantization of the trigonometric model follows the same lines of the parabolic one. Without loss of generality
we can set ω = 1, reproducing the non-vanishing (anti)commutators (4.35) and the (4.36) and (4.37) position-space
representations for the operators ŷ, p̂, χ̂.
The quantum trigonometric generators, identical to the classical ones up to symmetrization, are

Ĥ = eit(1
2 p̂

2 − i

4(ŷp̂+ p̂ŷ)− 1
8 ŷ

2), K̂ = e−it(1
2 p̂

2 + i

4(ŷp̂+ p̂ŷ)− 8 ŷ
2),

D̂ = 1
2 p̂

2 + 1
8 ŷ

2, Q̂ = e
it
2 (χ̂p̂− i

2 χ̂ŷ), ˆ̄Q = e−
it
2 (χ̂p̂+ i

2 χ̂ŷ). (4.42)

In the (4.42) realization, the osp(1|2) non-vanishing brackets reads as

[Ĥ, D̂] = ~Ĥ, [Ĥ, K̂] = 2~D̂, [K̂, D̂] = −~K̂,

[Ĥ, ˆ̄Q] = ~Q̂, [K̂, Q̂] = −~ ˆ̄Q, [Q̂, D̂] = ~
2 Q̂, [ ˆ̄Q, D̂] = −~

2
ˆ̄Q,

{Q̂, Q̂} = 2~Ĥ, {Q̂, ˆ̄Q} = 2~D, { ˆ̄Q, ˆ̄Q} = 2~K. (4.43)

The osp(1|2) Cartan-Weyl basis is recovered, from the (4.42) trigonometric charges, via the identifications

Ĥ = E−, D̂ = H, K̂ = −E+, Q̂ = 2iF−, ˆ̄Q = −2iF+. (4.44)

We obtain a different conjugation with respect to the parabolic case, given by

(E±)† = −E∓, H† = H, (F±)† = F∓. (4.45)

In the trigonometric case the Hamiltonian is given by the osp(1|2) Cartan generator ωD̂.
By taking into account the presence of the dimensional parameter ω that we set, for convenience, equal to 1 in

the formulas above, the dimensional analysis of the trigonometric model gives us the dimensions [t] = −1, [ŷ] = − 1
2 ,

[p̂] = 1
2 , [χ̂] = − 1

2 , [ω] = 1, [S] = 0.
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4.5 Superconformal Quantum Mechanics with Calogero potentials: 1D
D(2, 1;α) and 2D sl(2|1) models

In this Section we quantize the worldline superconformal σ-models recovered from the N = 4 (1, 4, 3) (i.e., one-
dimensional target) and N = 2 (2, 2, 0) (i.e., two-dimensional target) parabolic supermultiplets. Unlike the N = 1
parabolic model analyzed in Section 4, non-trivial potential terms and non-trivial quantum corrections to the classical
Hamiltonians, appear.

The N = 4 (1, 4, 3) parabolic model possesses a D(2, 1;α) invariance, where α 6= 0,−1 is identified with the
scaling dimension of the supermultiplet. The Hamiltonian describes a particle moving on a line under an inverse
square potential and includes spin-like degrees of freedom.

The N = 2 (2, 2, 0) parabolic model possesses an sl(2|1) invariance. Its Hamiltonian describes a particle moving
on a plane under an inverse square potential and with a spin-orbit coupling.

4.5.1 The N = 4 (1, 4, 3) parabolic model with D(2, 1;α) invariance
A discussion of the classical N = 4 (1, 4, 3) superconformal worldline model can be found, e.g., in [1]. We present
here the quantization of this model repeating the same steps discussed in Section 4 for the osp(1|2)-invariant model.

The non-vanishing (anti)commutators obtained from quantizing the Dirac brackets are

[ŷ, p̂] = i, {χ̂α, χ̂β} = δαβ , (4.46)

with α, β = 0, ..., 3. The above equations define the superalgebra h1⊕C4, with the one-dimensional Heisenberg algebra
h1 in its even sector and the four C`(4, 0) Clifford algebra gamma-matrices in its odd sector. These gamma-matrices
can be expressed as 4 × 4 complex matrices. We choose, to respect the Z2-graded structure of the superalgebra,
block-antidiagonal gamma matrices, while representing the Heisenberg generators as block-diagonal operators.

The position-space representation of (4.46) is

ŷ = yI4, p̂ = −i∂yI4,

χ̂0 = 1√
2
σ2 ⊗ I2, χ̂1 = − 1√

2
σ1 ⊗ σ1, χ̂2 = − 1√

2
σ1 ⊗ σ2, χ̂3 = − 1√

2
σ1 ⊗ σ3, (4.47)

where In is the n x n identity matrix and the σi’s (i = 1, 2, 3) are the Pauli matrices.
The quantum charges are given by

Ĥ = ( p̂
2

2 + (1 + 2α)2

8ŷ2 )I4 + 1 + 2α
4ŷ2 F4,

D̂ = ( tp̂
2

2 −
1
4(ŷp̂+ p̂ŷ) + t(1 + 2α)2

8ŷ2 )I4 + t(1 + 2α)
4ŷ2 F4,

K̂ = ( t
2p̂2

2 − t

2(ŷp̂+ p̂ŷ) + ŷ2

2 + t2(1 + 2α)2

8ŷ2 )I4 + t2(1 + 2α)
4ŷ2 F4,

Q̂0 = χ̂0p̂+ i(1 + 2α)
6 εijk

χ̂iχ̂jχ̂k
ŷ

,

Q̂i = χ̂ip̂−
i(1 + 2α)

2 εijk
χ̂0χ̂jχ̂k

ŷ
,

ˆ̄Q0 = tχ̂0p̂− χ0ŷ + it(1 + 2α)
6 εijk

χ̂iχ̂jχ̂k
ŷ

,

ˆ̄Qi = tχ̂ip̂− χiŷ −
it(1 + 2α)

2 εijk
χ̂0χ̂jχ̂k

ŷ
,

Ĵi = −i(1
2εijkχ̂jχ̂k + χ̂0χ̂i),

L̂i = −i(1
2εijkχ̂jχ̂k − χ̂0χ̂i). (4.48)

In the above formulas we used the Fermi number operator F4, defined by F2n =
(

In 0
0 −In

)
.

One should note that the quantum operators Ĥ, D̂, K̂ contain an Ehrenfest quantum correction term, proportional
to ~2(1+2α)2

ŷ2 I4, which is not present in the classical charges. Its appearance can be traced to the change from classical
Grassmann to quantum Clifford variables.
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At a given value α 6= 0,−1, the above operators close the exceptional superalgebra D(2, 1;α). The R-symmetry
generators Ĵi and L̂i, i = 1, 2, 3, close two independent ([Ĵi, L̂j ] = 0) su(2) subalgebras.

In the Cartan-Weyl basis the non-vanishing D(2, 1;α) brackets are given by

[H,E±] = ±E±, [E+, E−] = 2H, [H,F±β ] = ±1
2F
±
β , [E±, F∓β ] = −F±β ,

{F±0 , F
∓
j } = − i4(λJj + (1 + λ)Lj), {F+

j , F
−
k } = εjkl(−

iλ

4 Jl + i(λ+ 1)
4 Ll),

{F±β , F
±
γ } = ±1

2δβγE
±, [Jj , F±0 ] = iF±j , [Jj , F±k ] = i(−δjkF±0 + εjklF

±
l ),

[Lj , F±0 ] = −iF±j , [Lj , F±k ] = i(δjkF±0 + εjklF
±
l ),

[Jj , Jk] = 2iεjklJl, [Lj , Lk] = 2iεjklLl. (4.49)

The above superalgebra is realized by the (4.48) quantum operators via the identifications

Ĥ = −E−, D̂ = iH, K̂ = −E+, Q̂β = 2F−β ,
ˆ̄Qβ = 2iF+

β , Ĵj = Jj , K̂j = Kj . (4.50)

The Hamiltonian operator Ĥ, explicitly written in 4× 4 supermatrix form, is given by

Ĥ =
(

( p̂
2

2 + 4α2+8α+3
8ŷ2 )I2 0

0 ( p̂
2

2 + 4α2−1
8ŷ2 )I2

)
. (4.51)

It is the Hamiltonian of the N = 4 super-Calogero model with D(2, 1;α) invariance.
It contains a (purely bosonic) Calogero Hamiltonian in both its upper and lower diagonal blocks. We recall that

the Calogero Hamiltonian HC is given by

HC = 1
2 p̂

2 + g2

ŷ2 . (4.52)

The self-adjointness of the Calogero Hamiltonian HC depends on the value of the coupling parameter g. We refer to
the [34, 35] papers for a thorough discussion of this subtle point.

For our purposes it is important to note here the relation between the coupling constant g and the scaling
dimension parameter α. From [34] we know that HC is self-adjoint, provided that the inequality g2 > − 1

8 is satisfied.
Under this condition the boundary value problem

HCφk = Ekφk, φk(0) = 0,

gives a continuous positive spectrum, 0 ≤ Ek <∞, the eigenfunctions and eigenvalues being

φk(y) = 2µ− 1
2 Γ(µ+ 1

2)(ky)−(µ− 1
2 )Jµ− 1

2
(ky)yµ, Ek = 1

2k
2,

for
g2 = 1

2µ(µ− 1). (4.53)

Let us set

g2
b = 4α2 + 8α+ 3

8 , g2
f = 4α2 − 1

8 , (4.54)

for the Calogero parameters entering, respectively, upper and lower diagonal blocks of the blocks of the (4.51)
Hamiltonian. It is quite rewarding that imposing, simultaneously, the g2

b , g
2
f > − 1

8 condition, we end up with the
α 6= 0,−1 inequality for the scaling dimension. The class of exceptional D(2, 1;α) superalgebras guarantee the
existence of a well-defined Hamiltonian with a continuous positive spectrum bounded from below.

At the special α = − 1
2 value the Calogero potential terms (in both upper and lower blocks) vanish. Therefore,

this special point corresponds to a free theory. At this given value, see [18], we have D(2, 1;− 1
2 ) = D(2, 1), so that

the invariant superalgebra coincides with the classical D(2, 1) ≈ osp(4|2) superalgebra.
We can express, from (4.53), gb, gf in term of their respective µb, µf parameters. From (4.54) µb, µf can be given

in terms of α. The result is the linear relations

µb = 1
2 ± (α+ 1), µf = 1

2 ± α. (4.55)

In quantum mechanics the continuity conditions are also imposed imposed on the probability currents. Since the
zero-energy wave functionis (up to a normalizing factor) φ0(y) = yµ, these conditions imply that both µb, µf must
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satisfy µb, µf > 1
2 to ensure continuity at the origin. The (4.55) equations show that any α 6= 0,−1 is suitable to

fulfill these constraints.
As a final comment we point out that the energy levels of both bosonic (upper) and fermionic (lower) blocks

are doubly degenerated. This degeneracy is removed by taking into account the hermitian operators Ĵ3, L̂3 which
commute with Ĥ. Indeed,

Ĵ3 =
(
σ3 0
0 0

)
, L̂3 =

(
0 0
0 σ3

)
, (4.56)

are both diagonal and specify spin-like quantum numbers in the bosonic and fermionic sectors, respectively. We can
say that the bosonic states have 1

2 Ĵ-spin and 0 L̂-spin, while the fermionic states have 0 Ĵ-spin and 1
2 L̂-spin .

4.5.2 The N = 2 (2, 2, 0) parabolic model with sl(2|1) invariance
The classical sl(2|1)-invariant action based on the parabolic D-module rep of the (2, 2, 0) supermultiplet is presented
in Appendix B. Its quantization is performed with the techniques previously outlined (introduction of the “constant
kinetic basis", Dirac brackets, etc.). For this model it is convenient to express the two propagating bosons in terms
of a complex field y.

We obtain the non-vanishing (anti)commutators

[y∗, py∗ ] = [y, py] = i~, {χ, χ†} = ~
C . (4.57)

The fermions can be expressed as χ =
√

~
C

(
0 1
0 0

)
and χ† =

√
~
C

(
0 0
1 0

)
.

Let us fix, for simplicity, ~ = 1 and C = 1
2 . The quantum operators Q̂1

−, Q̂2
− can be written as

Q̂1
− = i

(
0 −A

A† 0

)
, Q̂2

− =
(

0 A
A† 0

)
, (4.58)

where

A† = − i√
2e
−i2λθ (∂r + i

r∂θ + 2λ+1
2r
)
, A = − i√

2e
i2λθ (∂r − i

r∂θ + 2λ+1
2r
)
, (4.59)

are expressed in polar coordinates (y = reiθ, y∗ = re−iθ).
The quantum hamiltonian is

Ĥ = − 1
2
(
∂2
r + 1

r∂r + 1
r2 ∂

2
θ

)
+ i (2λ+1)

2r2 σz∂θ + (2λ+1)2

8r2 , (4.60)

with σz the diagonal Pauli matrix. (2λ+1)2

8r2 is the Ehrenfest term resulting from quantization.
The remaining quantum Noether charges are

L̂0 = tĤ + i
2 (r∂r + 1) , L̂1 = t2Ĥ + it (r∂r + 1) + r2

2 , Ĵ = − i
2∂θ −

2λ−1
4 σz,

Q̂1
+ = tQ̂1

− − i r√2

(
0 ei2λθ

−e−i2λθ 0

)
, Q̂2

+ = tQ̂2
− − r√

2

(
0 ei2λθ

e−i2λθ 0

)
. (4.61)

The non-vanishing (anti)commutators, closing the sl(2|1) superalgebra are (m,n = 0,±1):

[L̂n, L̂m] = i (m− n) L̂m+n, [L̂0, Q̂
a
±] = i

2 Q̂
a
±, [L̂±1, Q̂

a
∓] = ∓iQ̂a±,

[Ĵ , Q̂a±] = i

2εabQ̂
b
±, {Q̂a±, Q̂b±} = 2δabL̂±1, {Q̂a±, Q̂b∓} = 2δabL̂0, {Q̂a±, Q̂b∓} = ±2εabĴ ,

(4.62)

where L̂−1 = Ĥ, a, b = 1, 2 and ε12 = −ε21 = 1.
The eigenvalue equation ĤψEm± = Em±ψEm± , for Em± > 0, produces a continuum spectrum with eigenfunctions

ψEm+(r, θ) = J| 2λ+1
2 −m|(αr)e

imθ
(

1
0

)
,

ψEm−(r, θ) = J| 2λ+1
2 +m|(αr)e

imθ
(

0
1

)
, (4.63)
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where J| 2λ+1
2 −m|(αr) and J| 2λ+1

2 +m|(αr) are Bessel functions and α =
√

2E.

To conclude the analysis of this model, we present it as a Supersymmetric Quantum Mechanics. Let us introduce

Q̂ =
Q̂2
− + iQ̂1

−
2 =

(
0 A
0 0

)
, Q̂† =

Q̂2
− − iQ̂1

−
2 =

(
0 0

A† 0

)
. (4.64)

We get {Q̂, Q̂†} = 2Ĥ and Q̂2 = (Q̂†)2 = 0.

From the expressions (4.59), it follows that Q̂ψEm− = ψE(m+2λ)+ and Q̂†ψEm+ = ψE(m−2λ)− . Since m + 2λ
and m − 2λ need to be intege numbersr, Q̂ψEm− and Q̂†ψEm+ belong to the Hilbert space only if 2λ is an integer
number. A supersymmetric pair is therefore only encountered for the quantized values of the scaling dimension,
either λ ∈ 1

2 + Z or λ ∈ Z.

4.6 Superconformal Quantum Mechanics with DFF oscillator potential
terms: 1D D(2, 1;α) and 2D sl(2|1) models

In this Section we quantize the worldline trigonometric σ-models obtained from the N = 4 (1, 4, 3) and N = 2 (2, 2, 0)
supermultiplets (see Appendix B). They contain (besides a Calogero potential) an oscillatorial (DFF term) which fur-
nishes a discrete, bounded from below, spectrum. The associated D(2, 1;α) and, respectively, sl(2|1)superconformal
algebras act as spectrum-generating algebras for these models.

The D(2, 1;α) (1, 4, 3) trigonometric σ-models shed some new light on the results of Calogero [3] and de Alfaro,
Fubini and Furlan [2]. Indeed, their Casimir energy linearly depends (in two regions) on the scaling dimension
parameter α (in contrast with the complicated dependence expressed in terms of the Calogero coupling constant, see
[34]).

Interesting features are also presented by the sl(2|1) (2, 2, 0) trigonometric σ-models. The scaling dimension λ
needs to be quantized (either λ = 1

2 + Z or λ ∈ Z). At the special λ = − 1
2 value the ordinary two-dimensional

oscillator (since the Calogero potential vanishes at this special point) can be recovered. The Hilbert space of these
class of models is decomposed into an infinite direct sum of sl(2|1) lowest weight representations. An unexpected
feature is the existence of fermionic raising operators (not entering the sl(2|1) superalgebra) which allow, together
with the sl(2|1) raising operators, for λ = 1

2 + Z to recover the whole Hilbert space of the theory from the single
bosonic vacuum. The existence of these extra fermionic operators is traced to the presence of a discrete symmetry.

4.6.1 The quantum D(2, 1;α) trigonometric model from N = 4 (1, 4, 3)

The quantization of this model follows the same steps as the quantization of the osp(1|2)-invariant trigonometric
model described in Section 4. We end up, just like its N = 4 (1, 4, 3) parabolic counterpart of Section 5, with
(anti)commutators defining the the h1⊕C4 superalgebra (4.46). We set, for convenience and without loss of generality,
the dimensional parameter ω (its presence in the equations can be restored by means of dimensional analysis).



80 CHAPTER 4. FROM WORLDLINE TO QUANTUM SUSY

The quantum operators are (F4 is the Fermion Number operator introduced in (4.48))

Ĥ = eit( p̂
2

2 −
i

4(ŷp̂+ p̂ŷ)− ŷ2

8 + (1 + 2α)2

8ŷ2 )I4 + eit
1 + 2α

4ŷ2 F4,

D̂ = ( p̂
2

2 + ŷ2

8 + (1 + 2α)2

8ŷ2 )I4 + (1 + 2α)
4ŷ2 F4,

K̂ = e−it( p̂
2

2 + i

4(ŷp̂+ p̂ŷ)− ŷ2

8 + (1 + 2α)2

8ŷ2 )I4 + e−it
1 + 2α

4ŷ2 F4,

Q̂0 = e
it
2 (χ̂0p̂−

i

2 χ̂0ŷ + i(1 + 2α)
6 εijk

χ̂iχ̂jχ̂k
ŷ

),

Q̂i = e
it
2 (χ̂ip̂−

i

2 χ̂iŷ −
i(1 + 2α)

2 εijk
χ̂0χ̂jχ̂k

ŷ
),

ˆ̄Q0 = e−
it
2 (χ̂0p̂+ i

2 χ̂0ŷ + i(1 + 2α)
6 εijk

χ̂iχ̂jχ̂k
ŷ

),

ˆ̄Qi = e−
it
2 (χ̂ip̂+ i

2 χ̂iŷ −
i(1 + 2α)

2 εijk
χ̂0χ̂jχ̂k

ŷ
),

Ĵi = −i(1
2εijkχ̂jχ̂k + χ̂0χ̂i),

L̂i = −i(1
2εijkχ̂jχ̂k − χ̂0χ̂i). (4.65)

The above operators realize the D(2, 1;α) superalgebra (4.49) with the identifications

Ĥ = E−, D̂ = H, K̂ = −E+, Q̂β = 2iF−β ,
ˆ̄Qβ = −2iF+

β , Ĵj = Jj , K̂j = Kj . (4.66)

The quantum Hamiltonian Ĥ ≡ D̂ is, explicitly,

D̂ =
(

( p̂
2

2 + 4α2+8α+3
8ŷ2 + ŷ2

8 )I2 0
0 ( p̂

2

2 + 4α2−1
8ŷ2 + ŷ2

8 )I2

)
. (4.67)

Both upper (bosonic) and lower (fermionic) diagonal blocks of D̂ contain a Calogero Hamiltonian with the DFF
oscillatorial potential,

ĤDFF = 1
2 p̂

2 + g2

ŷ2 + ŷ2

8 . (4.68)

A detailed analysis of this Hamiltonian can be found in [3, 34]. Just like the parabolic case, the inequality g2 > − 1
8

guarantees the existence of physically acceptable solutions. The boundary value problem

ĤDFFφn = Enφn, φn(0) = 0, n = 0, 1, 2, . . . , (4.69)

implies the discrete spectrum
En = 1

2(n+ ν + 1), (4.70)

with eigenfunctions given (up to normalizion) by

φn(y) = yν+ 1
2 exp(−y

2

4 )Lνn(1
2y

2). (4.71)

In the right hand side Lνn stands for the modified Laguerre polynomials. The parameter ν entering the Casimir
energy 1

2 (ν + 1) is

ν = 1
2(1 + 8g2) 1

2 . (4.72)

Comparing equations (4.67) and (4.68) we see that gb, gf are again given by equations (4.54), so that α 6= 0,−1 to
ensure that both g2

b and g2
f are greater than − 1

8 .
Since the Hamiltonian is a Cartan generator of the (4.65) superalgebra, the whole spectrum can be recovered from

a lowest weight representation of D(2, 1;α), where the Qβ ’s are the lowering and the Q̄β ’s are the raising operators.
The vacuum |Λ〉 is introduced from

Qβ |Λ〉 = 0, β = 0, 1, 2, 3. (4.73)
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From the definition of theQβ ’s in (4.65) the four differential equations (4.73) can be recasted into the single differential
equation

(p̂− i

2 ŷ −
i(1 + 2α)

2ŷ F4) |Λ〉 = 0. (4.74)

In position-space representation, (4.74) splits into two separate equations for the bosonic (+) and respectively
fermionic (−) subspaces,

dφ0,σ

dy
= −1

2(y ± 1 + 2α
y

)φ0,σ. (4.75)

The label σ accounts, just as in the parabolic case, for the Ĵ ,L̂-spin degrees of freedom.
Integrating the above equation we get, up to normalization, the vacuum solutions

φ0,σ = y∓( 1+2α
2 ) exp(−y

2

4 ). (4.76)

This result is in agreement with (4.71) provided that we set

νb = −(1 + α), νf = α. (4.77)

This analysis forces us to conclude that two degenerate lowest energy vacua exist for α 6= − 1
2 . They are bosonic for

α < − 1
2 and fermionic for α > − 1

2 . This is implied by equation (4.71) which tells us that any bosonic (fermionic)
vacuum should be such that νb + 1

2 > 0 (νf + 1
2 > 0).

At the special α = − 1
2 value we have that D(2, 1;− 1

2 ) ≡ D(2, 1) ≈ osp(4|2). The Calogero potential terms vanish
both in the upper and lower diagonal blocks. At α = − 1

2 we recover four undeformed harmonic oscillator equations.
All the states of the theory (including the minimal energy states) are four times degenerated, with two bosonic and
two fermionic states of same energy.

The energy levels of the system are given by

Eb,n = 1
2(n− α), Ef,n = 1

2(n+ α+ 1), n = 0, 1, 2, . . . . (4.78)

Eb,n (Ef,n) are the energy levels of the bosonic (fermionic) states (they coincide for α = − 1
2 ).

The energy of the degenerate vacua is

Eb,vac = −1
2α, (α ≤ −1

2) ; Ef,vac = 1
2(α+ 1), (α ≥ −1

2). (4.79)

the fermionic degenerate vacua (α < − 1
2 ) Eb,n applies to the bosonic states, Ef,n to the fermionic degenerate vacua.

The scaling dimension α can be regarded as an external control parameter of the theory, so that the vacuum
energy can be interpreted as a Casimir energy. The Casimir energy of the (1, 4, 3) D(2, 1;α) (un)deformed oscillator
admits a very nice expression in terms of α, being simply given by

Evac = 1
4(1 + |2α+ 1|). (4.80)

This expression should be compared with the much more complicated expression of the vacuum energy in terms
of the Calogero coupling constant g and derived from (4.72). This result suggests that the scaling dimension α has
a more direct physical interpretation of the Calogero coupling constant g. One should also note that, contrary to g,
α directly enters the spectrum-generating superalgebra D(2, 1;α).

4.6.2 The N = 2 (2, 2, 0) trigonometric model with sl(2|1) invariance
As in the parabolic case, we obtain from quantization the non-vanishing (anti)commutators

[y∗, py∗] = [y, py] = i~, {χ, χ†} = ~
ωC

, (4.81)

with χ =
√

~
ωC

(
0 1
0 0

)
and χ† =

√
~
ωC

(
0 0
1 0

)
. We work with ~ = 1, C = 1

2 , ω = 2.

The fermionic operators Q̂(I)
± , I = 1, 2, entering sl(2|1) are

Q̂
(1)
± = ie∓it

(
0 −A±
B± 0

)
, Q̂

(2)
± = e∓it

(
0 A±
B± 0

)
, (4.82)
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where, using the polar coordinates as in the parabolic case, we have

A± = − i2e
i2λθ

(
∂r −

i

r
∂θ + 2λ+ 1

2r ± r
)
,

B± = − i2e
−i2λθ

(
∂r + i

r
∂θ + 2λ+ 1

2r ± r
)
. (4.83)

In the trigonometric case the Hamiltonian H is the Cartan generator D̂, given by

D̂ = [−1
2(∂2

r + 1
r
∂r + 1

r2 ∂
2
θ ) + i

(2λ+ 1)
2r2 σz∂θ + (2λ+ 1)2

8r2 + r2

2 ]I2. (4.84)

In the r.h.s. σz is the diagonal Pauli matrix.
The three remaining bosonic symmetry operators which close the sl(2|1) superalgebra are

L̂±1 = i
e∓2it

2 [−1
2(∂2

r + 1
r
∂r + 1

r2 ∂
2
θ ) + i

(2λ+ 1)
2r2 σz∂θ + (2λ+ 1)2

8r2 − r2

2 ± (r∂r + 1)]I2,

Ĵ = − i2 I2∂θ −
2λ− 1

4 σz. (4.85)

One can easily check that the sl(2|1) superalgebra is recovered from the (anti)commutators of the operators (4.82,4.84,4.85).
The differential equation for the radial part of the eigenfunctions ψ = eimθR±(r)e± of D̂, where e+ =

(
1
0

)
and

e− =
(

0
1

)
, is

[−1
2(∂2

r + 1
r
∂r) + 1

2r2 (m∓ 2λ+ 1
2 )2 + r2

2 − E]R±(r) = 0. (4.86)

E is the energy. In [3] the same equation is found and solved for the problem of three bodies in a line. Furthermore,
the issue of selfadjointness of the differential operator acting on R± was investigated in [36]; since

√(
m± 2λ+1

2
)2 ≥ 0,

the existence of a selfadjoint extension for the Halmiltonian (4.84) is ensured.
The requirement of single-valuedness for the operators Q̂(I)

± on the R2-plane implies, from the exponents in
(4.83), that the constraint 4λπ = 2kπ, with k integer, must be satisfied. Therefore the scaling dimension λ has to be
quantized, either λ = 1

2 +Z or λ = Z. We discuss in detail the half-integer case, with side remarks about the models
with integer values of λ.

One should note that at λ = − 1
2 one obtains (two copies of) the Hamiltonian of the undeformed two-dimensional

bosonic oscillator.
For half-integer λ the Q̂(I)

± operators act as raising/lowering operators. Let us take, e.g., Q̂(2)
± ; it follows, from

the commutators [D̂, Q̂(2)
± ] = ∓Q̂(2)

± , that an energy eigenstate ψ with eigenvalue En is mapped into an eigenstate
Q̂

(2)
± ψ with eigenvalue En ∓ 1 (provided that En ∓ 1 6= 0):
D̂ψ = Enψ → D̂Q̂

(2)
± ψ = (En ∓ 1) Q̂(2)

± ψ.
Therefore, starting from a lowest weight state satisfying Q̂(2)

+ ψ = 0, an infinite tower of higher energy eigenstates
are constructed by repeatedly applying Q̂(2)

− . The solutions of the lowest weight equation Q̂(2)
+ ψ = 0 are given by the

eigenfunctions

ψm+ (r, θ) = Amr
(m− 2λ+1

2 )e−r
2
eimθ

(
1
0

)
,

ψm−(r, θ) = Bmr
−(m+ 2λ+1

2 )e−r
2
eimθ

(
0
1

)
, (4.87)

where Am, Bm are normalization constants given by

Am = 2
α+1

2
1√

πΓ(α+ 1)
, α = m− 2λ+ 1

2 ,

Bm = 2
β+1

2
1√

πΓ(β + 1)
, β = −(m+ 2λ+ 1

2 ) (4.88)

and Γ is the gamma function.
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In order to have finite lowest weight eigenfunctions at the origin, the integer m is constrained. From the bosonic
states the necessary condition is

m ≥ 2λ+ 1
2 , (4.89)

while from the fermionic states the necessary condition is

m ≤ −2λ+ 1
2 . (4.90)

The energy eigenvalue equation of the bosonic and fermionic lowest weight eigenstates is respectively given by

D̂ψm+ = (1 +m− 2λ+ 1
2 )ψm+,

D̂ψm− = (1− (m+ 2λ+ 1
2 ))ψm−. (4.91)

Two minimal vacua, one bosonic and the other fermionic, are obtained with vacuum energy 1. They are recovered
from the “saturated" bosonic and fermionic lowest weight eigenstates with, respectively, m = 2λ+1

2 and m = − 2λ+1
2 .

The lowest weight condition obtained from the lowering operator Q(1)
+ (Q(1)

+ ψ = 0) produces the same set of
lowest weight states (4.87). The application of the raising operator Q(1)

− produces, up to a phase, the higher energy
states obtained from the raising operator Q(2)

− .
The theory therefore possesses a degenerate vacuum, one vacuum state being bosonic, the other one fermionic.

As discussed in Appendix A it is possible to impose a superselection rule, imposed by a projector, which selects
half of the states being physical. The superselected theory possesses a unique bosonic vacuum and, for λ = − 1

2 , its
spectrum coincides with the spectrum of the ordinary two-dimensional (undeformed) oscillator, which can therefore
be recovered as the superselected, λ = − 1

2 , sl(2|1) acting on (2, 2, 0), quantum trigonometric model.
We conclude this Section with two important remarks. Contrary to the two vacua of the (not superselected)

λ = 1
2 + Z theory, the λ ∈ Z quantum deformed oscillators possess four vacuum states (two bosonic and two

fermionic states). The construction of the Hilbert space follows the same lines as the half-integer λ case. The main
difference lies in the fact that the necessary conditions (4.89) and (4.90) for the integer m cannot be satisfied as
equalities when λ ∈ Z. It is beyond the scope of this work to present the detailed analysis of the λ ∈ Z deformed
oscillators, which will be presented elsewhere.

The second important remark concerns the fact that, for the superselected λ = 1
2 + Z theory, the Hilbert space

cannot be recovered by repeatedly acting with the sl(2|1) raising operators from the vacuum state. The Hilbert
space is decomposed (this point is discussed in Appendix A) in a infinite direct sum of the sl(2|1) lowest weight
representations. This is in sharp contrast with respect to the one-dimensional harmonic oscillator, whose single
irreducible lowest weight representation of the osp(1|2) spectrum-generating superalgebra allows to recover the whole
Hilbert space.

One can note, however, that it is possible to construct an extra set of fermionic symmetry operators, Q(I)
± , which

also act as raising/lowering operators. The construction goes as follows. At first a discrete symmetry operator Ĉ,
playing the role of a charge conjugation operator, is introduced. It is given by

Ĉ =
(

0 ei(2λ+1)θ

e−i(2λ+1)θ 0

)
. (4.92)

One can verify that [D̂, Ĉ] = 0 and that Ĉ2 = I. This operator also commutes with the L̂±1 operators in (4.85). It
does not commute, however, with Ĵ and the sl(2|1) fermionic operators.

With the help of Ĉ we can introduce the new symmetry operators

ĈQ̂
(1)
± Ĉ = Q

(1)
± = ie∓it

(
0 C±
−D± 0

)
, ĈQ̂

(2)
± Ĉ = Q

(2)
± = e∓it

(
0 C±
D± 0

)
, (4.93)

where

C± = − i2e
i2(λ+1)θ(∂r −

i

r
∂θ −

2λ+ 1
2r ± r),

D± = − i2e
−i2(λ+1)θ(∂r + i

r
∂θ −

2λ+ 1
2r ± r), (4.94)

and

ĈĴĈ = J = − i
2∂θ −

2λ+3
4 σz. (4.95)
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As discussed in Appendix A (where a schematic presentation in diagrams, the dashed lines, of the action of the QI±
operators is given), QI± act as raising/lowering operators for the eigenstates of the Hilbert space of the theory. Any
given eigenstate can be reached by repeatedly applying to the vacuum both sets of Q̂I+, Q

I

+ raising operators.
In terms of Ĉ we can also introduce the new quantum operators

J = Ĵ + J = −i∂θ − 2λ+1
2 σz, Nf = σz = Ĵ − J, (4.96)

which allows us to define the new quantum numbers (used in Appendix A, see Figure 4):

D̂ |n, j, ε〉 = (n+ 1) |n, j, ε〉 , J |n, j, ε〉 = j |n, j, ε〉 , σz |n, j, ε〉 = ε |n, j, ε〉 . (4.97)

4.7 Conclusions
In this paper we presented a framework for quantizing the large class of classical worldline superconformal σ-models
derived from supermultiplets. These systems are defined in [25] (for the parabolic case) and [1] (for the trigonometric
case). We applied the quantization prescription to derive explicitly theN = 4 (1, 4, 3) and theN = 2 (2, 2, 0) quantum
superconformal mechanics (with D(2, 1;α) and sl(2|1) dynamical symmetry, respectively). The parameter α 6= 0,−1
is the scaling dimension of the (1, 4, 3) supermultiplet, while the scaling dimension of the (2, 2, 0) supermultiplet is
quantized and given by λ = 1

2 + Z or λ ∈ Z.
The results concerning the trigonometric models are particularly relevant. These systems are only “softly super-

symmetric", see the discussion in Appendix C. As such they have not received much attention like the parabolic
models. The trigonometric models correspond to superconformal mechanics in the presence of the DFF damping
oscillatorial term; stated otherwise, they are oscillators where Calogero potential terms are possibly present. Their
spectrum is discrete and bounded from below.

For the (1, 4, 3) trigonometric models (i.e., the D(2, 1;α) oscillators) we derive the following nice formula for the
vacuum energy:

Evac = 1
4(1 + |2α+ 1|). (4.98)

If α is interpreted as a physical external parameter, then (4.98) can be interpreted as a Casimir energy.
Concerning the (2, 2, 0) trigonometric models, at the special value λ = − 1

2 one recovers, after imposing a supers-
election rule derived by a projector, see Appendix A, the spectrum of the ordinary two-dimensional oscillator.

It has been noted very recently, see [37], that the ordinary two-dimensional quantum oscillator possesses an
sl(2|1) dynamical symmetry. As a byproduct of our framework we can further point out that the spectrum of the
two-dimensional oscillator is decomposed into an infinite direct sum of sl(2|1) lowest weight representations.

In our approach the existence of sl(2|1) as a dynamical symmetry, not only of the undeformed λ = − 1
2 , but also

of the deformed (λ ∈ 1
2 + Z and λ ∈ Z) two-dimensional oscillators, is a natural consequence of the construction

of these models from the N = 2 (2, 2, 0) (trigonometric) supermultiplet. The decomposition of the spectrum in a
direct sum of sl(2|1) lowest weight representations comes as a bonus and is not surprising. What is really puzzling
and unexpected is another feature, discussed at length in Section 6 and in Appendix A and C, the presence of the
extra fermionic symmetry generators which act as raising and lowering operators. They allow to reach each state
belonging to the Hilbert space of the two-dimensional oscillator by repeatedly applying the raising operators to the
vacuum state.

This result is very puzzling. It is quite possible that, in order to recover the spectrum of the two-dimensional
oscillator from a single, irreducible, lowest weight representation, one needs to extend the concept of superalgebra,
possibly by making use of the notion of generalized supersymmetry. In a related context the appearance of a
generalized superalgebra as a symmetry of a dynamical system has been noted in [38].

In a forthcoming paper we will present a detailed investigation of the puzzling properties of the deformed λ ∈ 1
2 +Z

and λ ∈ Z two-dimensional oscillators.
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Appendix A: Diagrams of the spectrum-generating superalgebra for
the N = 2, (2, 2, 0), λ = 1

2 + Z trigonometric cases.

It is convenient, for the two-dimensional cases based on the N = 2 (2, 2, 0) trigonometric reps, to encode in
diagrams the action of the raising and lowering operators of the spectrum-generating superalgebra. We explicitly
present three such diagrams, Figures 1, 2 and 3, respectively associated with three values of the scaling dimension,
λ = 1

2 , λ = − 1
2 , λ = − 3

2 . In a further diagram the general features of the λ = 1
2 + Z case are presented.

In the diagrams the bosonic (fermionic) states are denoted by white (black) dots. Grey dots denote the presence of
both bosonic and fermionic states. The vertical axis represents the energy level, labeled by n, while the horizontal axis
represents the angular momentum, labeled by m. We denote with ε the eigenvalues of the Fermion Number operator
(ε = +1 for bosons, ε = −1 for fermions). Solid (dashed) lines represent states connected by Q̂(I)

± (respectively, Q(I)
± )

raising and lowering operators with I = 1, 2, see (4.82) and (4.93) (for simplicity we drop here the indices).
The sl(2|1) lowest weight states appear, in the diagrams, as the dots where the solid lines originate (in the upward

direction). In Figure 2 and 4 the existence of such lowest weight states is not immediately evident, this is however
just a side effect of the condensed notation used (a grey dot being associated with two states).

The operators Q̂(1)
± , Q̂

(2)
± (and, similarly, Q(1)

± , Q
(2)
± ), applied to a |n,m, ε〉 state which does not coincide with a

lowest weight state produce, apart a normalization factor, the same state. We can write, for I = 1, 2,

Q̂
(I)
± |n,m, ε〉 ∝ |n∓ 1,m− ε2λ,−ε〉 ,

Q
(I)
± |n,m, ε〉 ∝ |n∓ 1,m− ε2 (λ+ 1) ,−ε〉 . (A.1)

From the three diagrams, Figures 1, 2 and 3, we can immediately read several important features. In particular,
in all three cases, the n > 0 higher energy states are produced via repeated applications of the Q̂’s, Q’s raising
operators from the two (one bosonic and one fermionic) n = 0 fundamental level states. As a corollary, we need
both types (Q̂’s, Q’s) of raising operators to recover the Hilbert space of the associated model. This means, stated
otherwise, that the Hilbert space is reducible with respect to the sl(2|1) superalgebra defined by the Q̂(I)

± operators
alone. In terms of a sl(2|1) decomposition, an infinite tower (one state at each given integer value n) of lowest weight
states need to be introduced to recover the Hilbert space of the theory. Therefore, in order to have an irreducible
description, the Q(I)

+ operators need to enter the picture.
One shoud note that the λ = − 1

2 case corresponds to the undeformed (namely, without the extra Calogero
potential term) two-dimensional harmonic oscillator. The Hilbert space defined by Figure 2 contains a double
degeneracy. Two eigenstates (one bosonic, the other one fermionic) are associated with each n,m pair of eigenvalues.
The introduction of a suitable projection allows to remove the double degeneracy and recover the Hilbert space of the
ordinary two-dimensional harmonic oscillator. The superselection rule is defined in terms of the projection operator
P̂ (P̂ 2 = I), given by

P̂ = Nfe
iπH, (A.2)

where Nf is the fermion number operator and H = D̂ is the Hamiltonian (its eigenvalues are the non-negative
integers n). The

P̂ |Ψ〉 = |Ψ〉 (A.3)

superselection rule implies that the Hilbert space of the superselected theory is given by bosonic states at even energy
eigenvalues (n = 2k, with k = 0, 1, 2, . . .) and fermionic states at odd energy eigenvalues (n = 2k + 1).

The superselection removes, in particular, the degeneracy of the vacuum, the single vacuum state being now
bosonic. The spectrum of the ordinary two-dimensional harmonic oscillator is therefore recovered from the superse-
lected N = 2 (2, 2, 0) model at scaling dimension λ = − 1

2 .
For any half-integer value λ = 1

2 + Z the Hilbert space of the two-dimensional deformed (due to the presence,
besides the quadratic potential, of a Calogero potential term) harmonic oscillator, can be formally recovered from
the λ = − 1

2 Figure 2 diagram, by replacing the angular momentum m with the j eigenvalues of the J operator
introduced in (4.96) (this is also true for the λ = 1

2 ,−
3
2 cases explicitly introduced in Figure 1 and 3).

Let us introduce the basis defined by the quantum numbers

D̂ |n, j, ε〉 = (n+ 1) |n, j, ε〉 ; Ĵ |n, j, ε〉 = j |n, j, ε〉 , (j ∈ Z); Nf |n, j, ε〉 = ε |n, j, ε〉 , (ε = ±1).
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m=0 21 3-1-2-3-4

1

2

3

4

-5 4 5

n=0

Figure 4.1: λ = 1
2 diagram of Q̂’s, Q’s raising and lowering operators.

m=0 21 3 4-1-2-3-4
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1
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4

Figure 4.2: λ = − 1
2 diagram of Q̂’s, Q’s raising and lowering operators..

In this basis the action of Q̂(I)
± , Q(I)

± on a state which does not coincide with a lowest weight state, reads as follows

Q̂
(I)
± |n, j, ε〉 ∝ |n∓ 1, j + ε,−ε〉 , Q

(I)
± |n, j, ε〉 ∝ |n∓ 1, j − ε,−ε〉 . (A.4)

The λ = 1
2 + Z associated diagrams are presented in Figure 4.

This makes clear that the superselection rule induced by (A.2) can be imposed on any λ = 1
2 + Z deformed

oscillator, guaranteeing in all these cases the existence of a Hilbert space with a single bosonic vacuum.
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Figure 4.3: λ = − 3
2 diagram of Q̂’s, Q’s raising and lowering operators.
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Figure 4.4: the λ = 1
2 + Z general diagram.
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Appendix B: The classical (2, 2, 0) sl(2|1)-invariant models.

We present, for completeness, the construction of the sl(2|1)-invariant classical actions obtained from, respectively,
the parabolic and the trigonometric D-module reps acting on the (2, 2, 0) supermultiplet.

The parabolic D-module rep is given by the transformations

Lnxi = tn (tẋi + (n+ 1)λxi) , Lnψi = tn(tψ̇i + (n+ 1) (2λ+ 1
2 )ψi), n = 0,±1;

Jxi = −λεijxj , Jψi = −2λ− 1
2 εijψj ,

Q1
±xi = t

1±1
2 εijψj , Q1

±ψi = −it
1±1

2 εij (tẋj + (1± 1)λxj) ,

Q2
±xi = t

1±1
2 ψi, Q2

±ψi = it
1±1

2 (tẋi + (1± 1)λxi) , (B.1)

where the xi’s (i = 1, 2) are the propagating bosons and the ψi’s the fermionic fields.
The above transformations close the sl (2|1) superalgebra.
The sl(2|1)-invariant action is obtained from the Lagrangian L = Q2

+Q
1
+( 1

2Fεijψiψj), with the operators Q2
+, Q

1
+

acting on the prepotential F = C(xixi)−
2λ+1

2λ (C is a normalization constant). Explicitly, the invariant action of the
classical (2, 2, 0) parabolic model is

S =
∫
dtL =

∫
dt(F (ẋiẋi − iψ̇iψi)− iFiẋjψiψj). (B.2)

The trigonometric D-module rep is given by the transformations

Lnxi = e−inωt

−iω
(ẋi − inλωxi) , Lnψi = e−inωt

−iω
(ψ̇i − in(2λ+ 1

2 )ωψi), n = 0,±1;

Jxi = −λεijxj , Jψi = −2λ− 1
2 εijψj ,

Q1
±xi = e∓i

ω
2 tεijψj , Q1

±ψi = e∓i
ω
2 t

iω
εij (ẋj ∓ iλωxj) ,

Q2
±xi = e∓i

ω
2 tψi, Q2

±ψi = e∓i
ω
2 t

−iω
(ẋi ∓ iλωxi) . (B.3)

Without loss of generality we can set ω = 1. The classical action, sl(2|1)-invariant under the (B.3) trigonometric
transformations, is therefore given by

S =
∫
dtL =

∫
dt(F (ẋiẋi − iψ̇iψi)− iFiẋjψiψj + Cλ2 (xixi)−

1
2λ ). (B.4)

Appendix C: On the “soft" supersymmetry of the oscillators.

We make here some comments on the role of superalgebras applied to oscillators (either the ordinary quantum
oscillators or the oscillators which are “deformed" by the presence of a Calogero potential term).

The starting point is the famous work of Wigner [39]. In modern terms, after the concept of superalgebra was
introduced in mathematics, Wigner’s results can be reinterpreted (see [40]) according to the following lines. For
the ordinary quantum oscillator, with creation/annihilation operators a, a† (satisfying [a, a†] = 1) and symmetrized
Hamiltonian H = {a, a†}, we can assign odd-grading to the operators a, a†, so that they belong to a set of 5 operators,
a, a†, a2, (a†)2,H = {a, a†}, closing the osp(1|2) superalgebra under (anti)commutations. The last three (bosonic)
operators close the sl(2) subalgebra. Under this construction we have an alternative point of view for describing the
computation of the the spectrum of the ordinary (one-dimensional) harmonic oscillator: we can state that, instead
of deriving it from the Fock vacuum |0〉, annihilated by a (a|0〉 = 0), the spectrum is obtained from a lowest weight
representation of osp(1|2), the Hamiltonian being the Cartan element. By adopting this viewpoint the superalgebra
osp(1|2) becomes a spectrum-generating superalgebra for the ordinary quantum oscillator, with its Hilbert space
being recovered from a single, irreducible, osp(1|2) lowest weight representation.
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One should note that the bosonic sl(2) subalgebra also acts as a spectrum-generating algebra for the harmonic
oscillator. The Hilbert space of the harmonic oscillator is, however, reducible under the sl(2) decomposition. It is
given by the direct sum of two irreducible sl(2) lowest-weight representations. The first lowest state is the vacuum of
the theory (proportional to the gaussian e−x2 under proper conventions and normalization). The other lowest state
is the first excited state, with eigenfunction proportional to xe−x2 and having odd-parity with respect to the x 7→ −x
transformation. The two sl(2) lowest weight reps correspond to, respectively, the even-parity and the odd-parity
energy eigenstates. The role of the fermionic operators in osp(1|2) consists in connecting energy eigenstates of even
and odd parity.

After the introduction and the subsequent classification of simple Lie superalgebras [41, 42], the Wigner’s approach
was advocated in [43], with special emphasis on parastatistics, prompting a series of investigations on lowest weight
representations of simple Lie superalgebras (for a recent review see, e.g., [44]).

On a separate development the DFF “trick" of introducing oscillator damping potentials in conformal mechanics
relates oscillators (with/without the Calogero potential term) to conformal algebras.

It was recognized in [28] that, due to the DFF “trick", the introduction of new potentials for conformal mechanics
became possible. The two aspects, superalgebra versus conformal algebra, were reconciled in [1]. The notion of
parabolic versus trigonometric/hyperbolic D-module reps of superconformal algebras was pointed out, with the latter
class describing the (deformed or undeformed) oscillators and bounded from below potentials in the trigonometric
case.

The main property shared by the two big classes of superconformal theories, parabolic versus trigonometric, is
that at the classical level their respective actions are superconformally invariant. Concerning their differences:
i) the parabolic models are, both classically and quantum, superconformal and supersymmetric. The supersymmetry
implies the existence of a symmetry operator Q which is the “square root" of the Hamiltonian H, namely Q2 = H;
ii) the trigonometric models, on the other hand, despite being superconformally invariant, are not supersymmetric.
In this case symmetry operators Q, Z exist such that Q2 = Z. The key point is that the operator Z does not
coincide with the Hamiltonian: Z 6= H.

One can easily say that the trigonometric models are “intermediate" between the supersymmetric and the non-
supersymmetric theories. This “intermediate notion of supersymmetry", namely Q2 = Z 6= H, has no special name
in the literature. In [1] the notion of “weak supersymmetry" was employed, borrowing the term from a construction
described in [45] which shares a similar feature. The use of the term “weak supersymmetry", however, could be
misleading since the models in [45] are not based on superconformal algebras. In that paper a “weak supersymmetric
oscillator" is discussed that has no relation with the oscillators derived from the trigonometric D-module reps of
superconformal algebras.

For this reason it seems more appropriate to denote this important class of trigonometric models (which include,
as shown in this paper, the ordinary one-dimensional and two-dimensional harmonic oscillators) as “softly supersym-
metric". As far as we know the term “soft supersymmetry" has not been employed in a different context, making this
term both suitable and available to describe the special properties of the trigonometric superconformal mechanics.

The softly supersymmetric trigonometric models are characterized by
i) classical superconformal invariance of the action;
ii) spontaneous breaking of the superconformal invariance. Indeed, in the simplest application, the Fock vacuum |0〉
of the harmonic oscillator is annihilated by a and not by the hermitian operator a+ a†: (a+ a†)|0〉 6= 0;
iii) in the quantum case the role of the superconformal algebra is that of a spectrum-generating superalgebra.

Concerning the last point, we indeed proved, see Appendix A, that the spectrum of the ordinary two-dimensional
oscillator is decomposed into an infinite tower of sl(2|1) irreducible lowest weight representations. The puzzling
presence of the extra fermionic generators (4.93) which connect eigenstates belonging to different lowest weight reps
reminds the role, just discussed above, played by the osp(1|2) fermionic generators in connecting the two sl(2) lowest
weight reps of the one-dimensional oscillator.
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Conclusion

At this point, all the main ideas have had their due time so we feel it is a good moment to call it a day. It is not to
be understood, however, that this work is complete. There is indeed a lot left to be done. In this final conclusion,
we will sketch some of the interesting issues that were left open or instigated by this work.

As should be clear by now, we have presented a general recipe to conformal mechanics in one dimension: starting
from Clifford algebras, construct d-module representations of superconformal algebras and their σ-models, and then
quantize them. In principle, this may be viewed as a top-down, abstract approach: it may seem that all we are
doing is algebraic manipulations to find σ-models of unknown physical content. Indeed, physicists are more used to
a bottom-up approach in which they model known systems from a Lagrangian, not to a Lagrangian. The important
thing to note is that the recipe we presented here is perfectly suited to this bottom-up approach. Given a σ-model,
construct its symmetry algebra and extend it using the SUSY techniques that were displayed here. We thus have a
procedure that leads to SUSY versions (or weak SUSY versions, as explained in appendix D of chapter 2) of a theory
quickly and effortlessly.

A good toy model to put these claims to proof is the quantum Hall effect. A simpler, more direct way to study
the quantum Hall effect with these techniques is to view it as a worldline model. It should, at least in principle,
be possible to extend its symmetry algebra using our tools. The Hall effect carries in itself the gauge freedom of
electromagnetic potential, which adds interest to this pursuit.

A more detailed analysis of the quantum Hall effect should look at it as a model in 2 + 1 dimensions. Such an
analysis would be based on finding the largest symmetry algebra of the Hall effect, similar to what Niederer has done
to the free particle and the harmonic oscillator (see references in the introduction). From the point of view of our
methods, this would have the added advantage of giving new insights in the oxidation problem, which amounts to
developing these techniques in higher dimensions.
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