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Abstract

In this thesis we present a collection of research results about the Unruh effect, the phenomena that
we can find at the interface between quantum physics and general relativity and its application in the
field of relativistic quantum information. One motivation behind our research work is to find other
ways to study the problem of a quantum theory of gravitation. Another motivation is to develop some
new techniques to tackle the problem of the quantum information processing in realistic situations and
formulate experimental devices for this purpose. In order to identify a conceptual approach for our
objective, a conceptual discussion about the two physical theories that conform the background for our
physical system, is presented throughout the different chapters in the text.

Finally we present the main results of this research work where we examine the entanglement
generation between uniformly accelerated two-level atoms weakly coupled with a massless scalar field in
Minkowski vacuum. We investigate this phenomenon in the framework of time-dependent perturbation
theory. We evaluate a finite-time response function and we identify the mutual influence of atoms via the
quantum field as a coherence agent in each response function terms. The associated thermal spectrum
perceived by the atoms is found for a long observational time interval. In addition, we study the mean
life of entangled states for different accelerations. The possible relevance of our results is discussed.
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À luta do povo brasileiro pela sua emancipação e libertação. Porque temos que queimar o céu se é necessário
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Chapter 1
Introduction

The vacuum holds the key to a full understanding
of the forces of nature.

P. C. W. Davies.

The vacuum has been a concept of great interest for scientist, philosophers, artists throughout the history. The
evolution of this concept has become focus of interest accompanied with other concepts as the nothing, the
emptiness, the To Be and Not To Be and the concept of the abstract zero. Discussions about this set of concepts
show that there is a considerable deepness and ampleness in the contemplation of the vacuum and the nothing,
show that the vacuum has been a topic that has fascinated the human mind and has served as the basis in the
search for answers for the fundamental questions such as why are we here? Where do we come from? Why is
the universe made in that way? Could those questions be the wrong questions?. As we shall see, each aspect in
the evolution of the knowledge contributes with a new significance of the vacuum, especially after the quantum
revolution of the 1900. According to the present ideas there is no vacuum in the ordinary sense of tranquil
nothingness. There is instead a fluctuating quantum vacuum [1].

Early studies of the complexity of the vacuum were made by theology searching if we come from it and if
we had the risk of coming back to the vacuum. The ancient Greek philosophy found certain of contradictions
from the process of application of pure logic to the concept of vacuum. On the other hand, while the occidental
philosophical traditions tried to scape from the vacuum and the Not To Be, the Buddhist and Hindus meditation
exercises, actively searched the zero and the Not To Be to achieve the unity with the cosmos [2]. This would be
one of the firsts inklings where we can observe the contrast between the classical structure of physics and the new
form of thinking given by quantum mechanics and relativity and their convergence in quantum field theory.

Classical atomism considered space as logically previous to its material content. Classical physics and mech-
anistic philosophy proclaimed that the material substance is the only true reality, however, for Democritus if the
To Be was the eternal and indestructible atoms, the Not To Be would be the space and then, how could the Not
To Be be logically previous to the To Be? Absurd conclusions were expressed, it is necessary to take in to account
that several texts highlighted the confusion between logical, ontological and temporal antecedence.

This confusion became apparent when Henry Moore on 1671 indicated that attributes of space become the
same as the scholastics generally assigned to the Supreme: One, Simple, Stationary, Eternal, Complete, Inde-
pendent, Existing within itself, subsisting per sé, Incorruptible, necessary, immense, uncreated, incompehensible,
omnipresent, formless, all-pervading, to be in essence, to be in act, pure act. This deification of space exerted
much influence on Newton’s nature philosophy. The logical and temporary antecedence of space above its physical
content was a dogma that few people dared to question. Another characteristic that was not made so explicit,
but was the source of the other two important ones (independence and immutability) was the homogeneity.
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The homogeneity comes from Greek atomism once they separated the space and its physical content. The
space supposed a non-qualitative differentiation principle, because the space allows to distinguish two feelings
qualitatively identical that could be different thanks to the space; these two feelings are different because of
its position; in words of Locke (contemporary to Newton) Two simultaneously perceived objects only can be
numerically distinct if they are in two different places [3].

Then, if we had a new differentiation principle that contrasted to the qualitative one, all the positions in
the space would be equivalent. The difference between all these positions was its juxtaposition or coexistence
relation. All the points are qualitatively similar, and are distinguished by the mere fact to be situated ones out of
others [4].

Now, if the homogeneity was establishing the equivalence of all points, those points that configure an extreme
or a boundary would disappear. The finitude of space contradicts the idea of its homogeneity, since if there is
an extreme, an end, a boundary, these points that belong to this extreme have a special character, are different
to the rest, breaking down any inkling of homogeneity, since, there will be a set of different points to the rest.
Then, the homogeneity must imply infinitude. As Bertran Rusell say How can some line, or some surface, form
an impenetrable barrier for the space, or have a different mobility in gender of the others lines or surfaces? In
philosophy, this notion can not be allow for one moment, because it destroys the most fundamental of all the
axioms, the homogeneity of the space [4]

When it is showed that homogeneity implies infinitude, automatically emerges the property of universality of
the coexistence of points. The coexistence relates any pair of points as close as they are. To affirm that some
space intervals are indivisible means that it is impossible to discover parts coexisting between them; since the
coexistence is the pure essence of the spatiality, it would mean that such intervals are lacking of spatiality [5].
In other words, if there is an interval where the process of infinite division cannot be performed, there is not
coexistent points between this interval and this implies that there is not spatiality. So, the indivisibility denies
the basic structure of mathematics, denies zero longitudes, denies the point.

Classical physics before 1900 was consolidated as the final and complete framework of the human cognitive
faculties in the understanding of the objective world. This completeness was achieved by the Newtonian and
Lagrangian mechanics, supported by the euclidean geometry. From those structures, were obtained certain results
that altered philosophically concepts such as space, time, matter, movement, energy and causality. Despite this
character, classical physics at the end of 19th century were fighting against some conflicts.

A wide set of intellectual and experimental efforts were performed to shield the classical physics in the face
of those conflicts. However, failures were countless. A solid and logic structure was not achieved because there
was not one that imply a contradiction inside whole theory.

It is so, in front of the arrival of Einstein’s theory of relativity (special and general) and quantum theory
of matter, and its precise adjust and exact predictions to experimental results, the classical concepts (space,
time, matter, movement, energy and causality) went to be radically transformed and with them, the different
philosophical lines that had its basis in these. Philosophy had lost its scientific base and science had lost its
philosophical base (built mutually with the physics for more than 200 years) in the 20th century by the research
about kinematic properties of light, black body radiation, atomic stability, etcetera. We shall deal with a dis-
cussions about the classical concepts in order to understand the revolutionary character of the events that would
consolidate modern physics and its impact in philosophy, understanding in what sense they differ from classical
concepts.

Following [6], to be situated in a boundary produces, in an unavoidable way, a go and comeback like a
pendulum, between the alternating surroundings located to each side of the boundary. The remarkable fact
of situating in a limit, forces the reason to live in an incessant dialectic between its inner territories and an
unattachable outer edge. It is clear, that our intuitive thinking is tightly related with the structure of thinking of
the classical physics. A great work in physics must be to identify that go and comeback of our reason between the
classical and modern concepts; find out how the classical concepts and our intuitive thinking are immersed in the
new theories and made this, surpass them to be able to advance in the new forms of thinking. The new theories
would be our battle field, where the language must be improved, adjusted and rebuilt in order to advance in our
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CHAPTER 1. INTRODUCTION

understanding of the physical nature.

Being language the projection of our thinking in the world, we have to reformulate it; in order to keep away
classic and intuitive structures of the roots of new theories, impeding the development of the same. Our interest
is formulate a background for the concept of vacuum and elucidate its capability of unifying the quantum and
relativistic aspects of nature and in this way trace a path to a new theory of physical nature.

The general theory of relativity predicts the existence of a physical system which separates causally two
regions of space-time. This physical system is called black hole [7]. A black hole is the final stage of a star
gravitational collapse [8]. An important characteristic of these systems consists in the formation of a singularity
(mathematical point where is supposed to be the whole collapse matter) which is enclosed by a boundary called
event horizon (known as a no return point). The events that occur inside this boundary do not affect an outsider
observer, in other words, this surface is the boundary of two regions causally disconnected of space-time [9].
Furthermore, inside event horizon and more specifically in the singularity, the classical description of space-time
becomes not valid. These kind of anomalous prediction at the singularity are in the small distance scale and high
energy domain. This fact shows that is required the use of concepts of quantum mechanics for the consistency of
the general theory of relativity [10].

The Quantum Field Theory consolidates a convergence space of quantum mechanics and relativity in flat
space-time [11]. When we extend that formalism to curved space-time, we are talking about a semi-classical
approach of gravity [12]. In quantum field theory in curved space-time we have two transcendental results where
elements of general relativity and quantum mechanics are combined to form thermodynamic phenomena associated
with the concept of vacuum. These results are the Unruh [13] and Hawking effect [14].

The Unruh effect consists in an accelerated observer in a flat space-time, coupled to a quantum field in its
vacuum state, will detect thermal radiation of this quantum field, being the perceived temperature proportional
to the proper acceleration of the observer [15, 16]. We shall see that in the background of this phenomena is the
fact that in quantum field theory in curved space-time there is not a unique quantisation scheme because there
is not a unique choosing of the time coordinate, this will give us that the notion of particle (understood as an
excitation of a quantum field) is an observer’s dependent quantity. In other words, in a quantum state where
certain observers do not perceive particles of the field, another observers with different motion state will perceive
a non-null content of particles.

We can highlight two kind of techniques to approach the problem of perception of thermal radiation by
different observers in quantum field theory in curve space-time: the first one are the Bogoliubov transformations
that allow us express the vacuum state of a quantisation scheme in terms of excitations of the field quantised
in other set of coordinates [17, 18, 19]. The other one is examination of the problem by particle detectors, in
particular the Unruh-DeWitt model of detectors which are devices that experiment an interaction with a quantum
field and will be excited in presence of particles of the field [13, 20].

In this work, we use the Unruh-DeWitt detector model to study the Unruh effect. When we work with
this formalism we have a tool for extract the information of the detector’s response in the particle-number
measurement. When we work in first-order perturbation theory, this tool is the so-called response function and
allows obtain information about the physical mechanisms of excitation and relaxation processes of the detector [12,
13, 20, 21].

We can prepare a two-level atom as an Unruh-DeWitt detector in order to obtain measurable information
in the laboratory [22]. When we work with an individual atom, the Unruh effect can be a phenomena that
induces quantum decoherence but when we have two accelerated atoms interacting with the same quantum field,
the Unruh effect, beside the mutual influences due to the quantum field, can generate entanglement [23]. The
entanglement is the most non-classical feature discovered in quantum mechanics [24]. The entanglement is the
principal tool for quantum communication [25, 26]. This entanglement creation constitutes the principal topic
in this work that is guided to show the existence of a non-null probability of entanglement in accelerated atomic
systems and subsequently the possible entanglement extraction from gravitational systems. That is to say, we
shall show we are able to extract quantum properties from purely gravitational systems.

This framework invites us to build the content of this work around a conceptual discussion of the two paradig-
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matic theories of modern physics in order to understand the convergence and divergence points and explore the
deep relation between quantum mechanics, gravity, electromagnetism and thermodynamics that this kind of phe-
nomena are showing us. Although the contents of the firsts chapters can be found in diverse books of the topic,
they are writing with the objective of explore the relation before mentioned, based on the concepts, the change of
language and important results. Exploring this relation of that form we would be opening the way to discussion
of the validity of construction of a full quantum theory of gravity.

This text is organized in the following form: In chapter 2 we review crucial aspects of the theory of relativity
both special and general. We discuss its origin in a conceptual framework. We study certain aspects of the
non-euclidean geometry and we derive the Einstein Field Equations, where we can find the first inkling of the
vacuum existence. We deduce the Rindler metric, that corresponds to the physical situation of the accelerated
observer, because this physical situation is the central topic in this work. We extend our treatment and derive the
Schwarzschild metric, that corresponds to a gravitational field of a spherical body which under certain conditions
can be a black hole. We study the relation between the Rindler and Schwarzschild metric.

With this mathematical framework in chapter 3 we study the theory that would join the two paradigms of
modern physics, that is, quantum field theory. As we will observe, thanks to quantum mechanics and special
relativity, the concept of particle was completely changed and quantum field theory will deal with this problem
in a new and solid way. Although in principle each one (quantum mechanics and special relativity) contributed
with a certain different aspect in the construction of the new concept (and in a superficial view these may appear
contradictory), each aspect would be complementary to the other one. The theory that achieved bringing together
all these aspects in a consistent way was quantum field theory. We can observe that the concept of field can be
more fundamental that the one of particle, thus, we study the process of the second quantization for the fields of
interest. We deduce from that formalism the necessity of a state of minimum energy, that is the so-called vacuum
state. Then we observe how quantum field theory becomes the adequate place where we can stablish the concept
of the vacuum. We study the first physical implication of this state exploring the Casimir effect with a briefly
discuss about the vacuum polarization and its implication in an unification scheme. The existence of these effects
is a direct consequence of the reality of the quantum vacuum and its fluctuations sea that is conforming it. Its
existence is surrounding all the forces of nature. It attaches the gravity with the quantum character of the energy
and we will see that the vacuum polarization influences the strength of the electro-weak and strong forces. Finally
we study the quantization in the Minkowski space where we develop our treatment in the following chapters.

In chapter 4 we study the quantum field theory in curved spaces. As we shall see in chapter 2 choosing an
unique set of coordinates is not the best option. This situation leads to the fact that since we do not have a unique
coordinate time, we wont have a unique set of frequency modes. This give us problem of the non-uniqueness of
quantum vacuum due to the different quantization frames. With the Bogoliubov transformations we find the
relation between these different quantization frames. Finally, following these ideas, we remark some different
vacuum states of physical interest.

Chapter 5 is the heart of this text. Here we explore another manifestation of the quantum vacuum and the
consequences of the problem of the non-uniqueness of the quantum vacuum. As we shall see, an accelerated
observer perceives the vacuum as a thermal bath, with a well-defined temperature proportional to its proper
acceleration. This is the Unruh effect. If we perform a conformal transformation, an accelerated observer can be
an observer in a gravitational field. We can choose, for example, a black hole’s gravitational field, in this case we
should refer to the Hawking effect, where we have a thermal radiation process from the event horizon of a black
hole. The Unruh effect beside the Hawking effect are of great importance for the comprehension of the form in
which the fundamental laws of the nature are correlated. As we will explain briefly, physics has deal with a series
of unifying processes. The Unruh and Hawking effect, are a marvellous examples of a processes that are at the
same time relativistic, quantum, gravitational and thermodynamic.

In this chapter The Unruh-DeWitt (UD) model detector is reviewed and we define the finite-time response
function that is the way how we can extract information about the particles (or excitations) of a quantum field.
We study the case of an inertial detector and one detector that is in a heat bath in order to stablish some
analogues. Afterwards we go to the accelerated detector and we explore the thermodynamics that are emerging
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CHAPTER 1. INTRODUCTION

in this problem. In order to study the boundary effects as in the Casimir effect, we study the situation of the
accelerated detector in the presence of one an two infinite reflecting planes.

In chapter 6 we review some important aspects of quantum information processing, such as the qubit, the
entanglement and the quantum teleportation. We study the Unruh effect with the formalism of the Bogoliubov
transformations and with this we explore how that effect will affect those important aspects of the quantum
information processing. This chapter give us an introduction to the main results of this work, because here we
explore how the thermodynamics that are emerging in this problem can be used to extract properties uniquely
quantum, such as the quantum entanglement.

Finally in chapter 7 we present the main results of this work. We study radiative processes and entanglement
extraction and stability of uniformly accelerated two-level atoms interacting with a quantum massless scalar
field. We evaluate the transition rates within time-dependent perturbation theory in a finite time interval. We
discuss the Hamiltonian that describes the system of two identical two-level atoms weakly coupled with a massless
scalar field in Minkowski vacuum. We present the eigenstates and respective energies of the atomic Hamiltonian.
We evaluate the associated response functions. We mainly focus our attention in the so-called crossed response
functions and we compute the general expression for different accelerations and time intervals for the symmetric
state transition. We also present the total transition rate for equal accelerations of the atoms. We study the mean
life of the symmetric entangled state. We present additional results where a infinite reflecting plane is present.
Discussions, conclusions and extensions are presented in chapter 8. The main results can be found in [77]. We
work with units such that h̄ = c = kB = 1 and the Minkowski metric we use is given by ηµν = diag(−1, 1, 1, 1).
We denote the coordinate time by x0 = t and the proper time by τ .
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Chapter 2
Causal Structure and Horizons in the Space-Time

In this chapter we present a review of results from the special and general theory of relativity which serve as
the mathematical background where our field dynamics will develop. We focus our attention in two physical
situations: accelerated observer and the black hole. As we shall see these situations are generating a topological
structure that delimits two causally disconnected regions of the space-time. This topological structure are known
as horizons and has an intrinsic relation with the thermal effects that we will explore in the next chapters. Let
us first discuss some conceptual aspects of the theory in order to clarify this relation.

The classical structure before the 1900 (even after) was considered as the maximum theoretical construction
and effort of the human mind. It is easy to evidence, for instance, in the fact that those classic concepts are yet in
some modern and new physical theories. As we will see, all aspects of this structure would be drastically altered
or erased.

Thanks to this scientific and philosophical construction of centuries, scientists and philosophers said that
experimental results that could be in contradiction with all this, only were unknown appearances of the structure
consolidated and that they were serve to strengthen it.

One of these experimental results that showed unexpected results, was Michelson’s interferometer experiment
in 1881 and that several times was repeated by him and other physicists. The experiment wanted to confirm the
idea of absolute space, basing in the hypothesis of the existence of the ether.

The negative results of experiment of Michelson, did bring explanations that although valid in some moment,
confronted serious philosophical and scientific difficulties that made that the existence of an interplanetary medium
that had dynamic and cinematic properties comparable to the ones of the ordinary bodies had to be re-evaluated.

Several books, from technical to divulging, appoint the contraction of Lorentz-Fitzgerald as what initiates all
the changes in physics that would modify in a definitive form the study of nature. They seem to forget that the
objective of this contraction was the contrary. The failure of the experiment of Michelson showed the constancy
of speed of light. The hypothesis of Lorentz-Fitzgerald supposed that the dimensions of moving bodies contracted
in a defined proportion, restoring the equality of two optical ways in the Michelson interferometer, and the rays
reflected arrive to the same phase; therefore, it does not produce any change.

According to the hypothesis, a body that moves in an absolute manner, contracts; analogously, if it is in
absolute rest, it will keep its properties without alteration. This enhances the absolutist theory of space, since,
being it real, has to react in a verifiable physical way against the movements that are producing in it. This type
of assertions began to give some ideas on the dynamic difference between rest and movement, even if this was
rectilinear and uniform.

One can say that this hypothesis would affect the causal inaction characteristic of space, but the contraction
of Lorentz-Fitzgerald takes place with respect to the ether full space (and not with respect to empty space). In
these terms, since the basic elements of the matter were considered like an aggregated of ethereal atoms, what
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was happening was that the appointed contraction changed the configuration of these aggregated.

The contraction affected also time measurements. In terms of considering the absolute movement like a
movement through the ethereal medium, they said that there was an braking effect and such resistance effect took
place inside the moving system. Fortunately, this was not the way that followed the physics at beginning of 20th
century. Although, this pair of expressions of contraction keep still up to now and served as theoretical base for
the development of the relativity, the triumph consisted in Einstein interpreted this contraction as an affirmation
that the constancy of light speed, was one of the fundamental and irreducible facets of the physical reality; whereas
Lorentz and Fitzgerald expected that the constancy of light speed were derived from the unmodified laws of the
classical mechanics.

With the arrival of the theory of relativity any concept that implied simultaneity, would have to be debated.
The classical physics considered all the history of physical world like a continuous succession of instantaneous
material configurations. In the classical three-dimensional model, in which it takes in to account time, we have
an Euclidean plane and the time is symbolised as a straight line perpendicular to the plane. In this way there
would be an infinity of successive instantaneous spaces, represented by parallel planes (perpendicular all to the
time) or transversal cuts.

These transversal cuts represented the present state of universe. The points contained in the instantaneous
transversal sections were simultaneous in an absolute sense. Roughly speaking, taking the four dimensions, each
transversal cut would mean a three-dimensional Euclidean space. This concept of transversal cut goes in total
concordance with the one of absolute space; since, the absolute space is defined like a juxtaposition of points,
that is equivalent, in this we have the notion of coexistence or simultaneous existence.

Accepting relativity, we would have to refuse the notion of transversal cut as it had been stipulated, because
in this frame, the transversal sections are different for the different inertial systems. With the relativization of
the simultaneity (to not say the negation) the present inferred by an observer will be different for other moving
observers.

These three-dimensional cuts where all the events ’truly’ instantaneous were located, in front of light of
relativity, left to exist, furthermore the character of true, came ambiguous. Then such operation of separation of
space and time so present and known in classical physics realized impossible in the relativity, yield here to the
fusion between space and time.

The fusion of space with time, from early dates had an erroneous representation. Initiating with Minkowski
that indicated the continuum of four dimensions as an operation in which, the temporal component was absorbed
by the space. The time was considered like an additional space dimension, but this confronted a first difficulty,
because the inherent characteristic to the space was the coexistence. Although Einstein, in the frame of causal
structure, argued that the time had its asymmetry, in several contexts the people began to call the process as a
spatialization of time.

If the time was spatialized, we would kept the idea of the present like a point moving along the axis, from
the past to the future. Any spatial character observed in a given moment found complete, in other words, all
its parts are given at the same time, simultaneously. The spatial scheme suggested that the successive moments,
actually coexist, and that its character of past and future is not authentic. From this point of view, future
events exist right now. The true reality was timeless and any concept of succession was an illusion, from our (or
one) consciousness that is being moved to the future; arising a duality between the timeless physical world and
the temporal consciousness. Definitively the spacialization of time and the strict determinism carried to several
contradictions in the light of relativity.

Now, although the juxtaposition became relative, the succession of distant events did not. The succession of
events causally connected is defined as an invariant; that is, it retains its character of succession for all possible
observers. These types of succession are represented by causal series (world lines); contrarily to the spatial
coexistence, the irreversibility of world lines has an absolute meaning, possessing an authentic and objective
independent reality of election of reference system. The ontological priority of the time on the space hardly could
have a more convincing illustration.

As we saw special theory of relativity makes the process of fusion of space and time, give us a new structure,
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but also makes the fusion between matter and energy. General relativity goes one steep beyond making the fusion
between space-time and matter-energy. In classic terms, the space and its physical content are right now an
identity.

When the distinction between space-time and matter-energy disappears, duality between natural and forced
movements tends to disappear too, because now all movement is natural, since it is produced through a geodesic.
Any movement, accelerated or not accelerated, is a consequence of the local spatio-temporal structure.

In general theory of relativity, the gravitational action remains reduced to a local deformation of the four
dimensional non-Euclidean continuum; the matter remains reduced to the presence of these deformations, since,
the matter is manifesting by its gravitational field from which it cannot be separated. It would to be an error say
that matter causes the corresponding curvature in the space-time, as it is used to say in divulging and technician
books. The relation between curvature and matter is the one of identity: the matter and the local curvature of
the space-time are an identical reality.

We see how the classical positivist rational structure is falling; it must be decision of the scientist, be refugee
in the rise of the reason that did in the illustration and then never understand in a clear way the new emergent
physics or abandon all this and begin the process of exploration beyond the structured reason.

To clarify those new concepts, in 1911, Langevin proposes the space travel paradox; in which a subject depart
from the earth in a spaceship with a speed near to light speed. After a year of voyage, the traveller invert its
direction and returns to Earth. As a result, they obtain that for who was in the spaceship, passed two years,
while when traveller arrives to the earth, sees it two centuries older. It is clear the drastic acceleration that
suffered the spaceship at the moment to come back and in the frame of the equivalence principle, this means a
large gravitational field. Hence, with this mental experiment, some reciprocity present in the special theory was
broken. We extract out here two interesting results.

The first one is the fact that temporal dilatation is a physical fact, it is not a perception question. With the
space travel the temporal dilatation acquires the character of an authentic modification of the respective proper
time of a system, without any symmetric replica. The second one is the concretion of an universal time. Following
Langevin’s idea, the subject that stays in the Earth and the traveller, not only they share the departure event,
but also the arrival event. We have that the two temporal intervals are limited by the same successive moments
(that well be an invariant) and then we have the concept of contemporaneity.

Then despite of metric diversity, the temporary series, are contemporary ones with other and this relation of
topological contemporaneity describes the own essence of the relativistic space-time.

2.1 Review of Differential Geometry

Any ordered set of n independent variables (real or complex) xµ with µ = 1, ..., n can be considered as the
coordinates of a space M of dimension n. Each set x define a point on M. The space M can be considered as
a manifold. The properties of this space and the relations between distinct geometric objects can be formulated
without the use of coordinates [27, 28]

There are two ways in the study of these spaces. The first one is based on the development without the
use of coordinates, because in principle, the physical results do not depend of the coordinates. The second one,
is the contrary, here we use the coordinates in order to extract certain paths to characterize the results with
experimental devices. This last approach is widely use in the special and general theory of relativity.

Following this line, if yα is defining a point onM and yα ≡ yα(x), we obtain a coordinate transformation on
M. The Jacobian transformation matrix is given by

Λαµ =
∂yα

∂xµ
. (2.1.1)

Clearly, the coordinate transform from x to y must be invertible, then

det
(
Λαµ
)
6= 0. (2.1.2)
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With this, the inverse Jacobian matrix is

(Λ−1)µα =
∂xµ

∂yα
. (2.1.3)

This matrix satisfies
Λαµ(Λ−1)µβ = δαβ . (2.1.4)

Now, let us introduce functions of the form f : M → F on M, where F is a space of dimension N . In an
analogous way that we introduce coordinates x on M, we can introduce coordinates f on F . The coordinates of
f in the coordinate system x are f(x) with components f i(x) with i = 1, ..., N . In a same form, the coordinates
of f in the coordinate system of y are f̃(y) with components f̃a with a = 1, ..., N . The functions f are classified
with its components number N and the behaviour under transformations of its components f i [28].

Such functions that have only one component are called scalar fields and transform as follows

φ̃(y) = φ(x), (2.1.5)

therefore its value is independent of the coordinate system.
The following functions are the vectors, that transform

dyα = Λαµdx
µ. (2.1.6)

If we define a contravariant vector, it will transform as

ṽα(y) = Λαµv
µ(x). (2.1.7)

We can form vectors from scalar fields and these quantities transform as

∂φ̃

∂yα
= (Λ−1)µα

∂φ

∂xµ
. (2.1.8)

Analogously, the covariant vectors transform as follows

ṽα(y) = (Λ−1)µαvµ(x). (2.1.9)

The following functions are the tensors which are defined based on its behaviour under the transformations.
For covariant second rank tensor, with n2 components, the transformation rule is

g̃αβ(y) = (Λ−1)µα(Λ−1)νβgµν(x). (2.1.10)

For a contravariant second rank tensor yields

g̃αβ(y) = ΛαµΛβνg
µν(x). (2.1.11)

For a tensor with mixed components,

g̃αβ (y) = Λαµ(Λ−1)νβg
µ
ν . (2.1.12)

The contraction of these objects reads

g̃αα(y) = Λαµ(Λ−1)ναg
µ
ν (x) = δνµg

µ
ν (x) = gµµ(x), (2.1.13)

thus is a scalar.
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We say that a second rank tensor is symmetric if

Sµν = Sνµ, (2.1.14)

and antisymmetric if
Aµν = −Aνµ. (2.1.15)

However, the object ∂ṽα/∂y
β(y) does not transform as a tensor [27, 28]

∂ṽα
∂yβ

(y) =
∂xν

∂yβ
∂xµ

∂yα
∂vµ
∂xν

(x) +
∂2xµ

∂yα∂yβ
vµ(x). (2.1.16)

We must define a derivative process that transforms as a tensor. This problem can be solved studying the
problem of the geodesic lines in curved spaces.

2.1.1 Geodesic lines in curved spaces

Let us consider the shortest path between two points p and q on a manifold. The line element in a curved manifold
is given by [29]

ds2 = gµνdx
µdxν . (2.1.17)

We can parametrize the curves on the manifold as

s =

∫ τ2

τ1

[
gµν

dxµ

dτ

dxν

dτ

] 1
2

dτ. (2.1.18)

Since we are searching the shortest distance between the given points, we must perform δs→ 0. Then

S =

∫ λ2

λ1

L(xµ, ẋµ)dλ. (2.1.19)

The functional derivative is defined as

δS ≡ d

dλ

∂

∂ẋα
L− ∂

∂xα
L, (2.1.20)

applying this to the expression (2.1.18), we obtain

d

dτ

∂

∂ẋα

[
gµν

dxµ

dτ

dxν

dτ

] 1
2

− ∂

∂xα

[
gµν

dxµ

dτ

dxν

dτ

] 1
2

= 0. (2.1.21)

The first term of the equation yields

(2.1.22)

1

2

[
gµν

dxµ

dτ

dxν

dτ

]− 1
2 ∂

∂ẋα

[
gµν

dxµ

dτ

dxν

dτ

]
=

1

2

[
gµν

dxµ

dτ

dxν

dτ

]− 1
2

gµν

[
dxν

dτ
δµα +

dxµ

dτ
δνα

]
=

1

2
[gµν ẋ

µẋν ]
− 1

2 gαβ2ẋβ ,

where we have supposed the metric does not depend of ẋγ and we have used the notation dxγ

dτ = ẋγ . On the other
hand, the second term of the equation reads

∂

∂xα

[
gµν

dxµ

dτ

dxν

dτ

] 1
2

=
1

2
[gµν ẋ

µẋν ]
− 1

2
∂gµν
∂xα

ẋµẋν . (2.1.23)
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Therefore, the expression (2.1.21) is now

d

dτ

[
[gµν ẋ

µẋν ]
− 1

2 gαβ ẋ
β
]
− 1

2
[gµν ẋ

µẋν ]
− 1

2
∂gµν
∂xα

ẋµẋν = 0, (2.1.24)

expanding the first derivative in the before expression

d

dτ

[
[gµν ẋ

µẋν ]
− 1

2 gαβ ẋ
β
]

=
d

dτ
[gµν ẋ

µẋν ]
− 1

2 gαβ ẋ
β + [gµν ẋ

µẋν ]
− 1

2
dgαβ
dτ

ẋβ + [gµν ẋ
µẋν ]

− 1
2 gαβ ẍ

β . (2.1.25)

We can express the total differential of the metric as dgαβ = (∂gαβ/∂x
µ)dxµ, thus

dgαβ
dτ

=
∂gαβ
∂xµ

ẋµ, (2.1.26)

therefore,

gαβ ẍ
β − 1

2

∂gµν
∂xα

ẋµẋν +
∂gαβ
∂xµ

ẋµẋβ = gαβ ẋ
β [gµν ẋ

µẋν ]
1
2
d

dτ
[gµν ẋ

µẋν ]
− 1

2 . (2.1.27)

Expressing
∂gαβ
∂xγ

ẋβ ẋγ =
1

2

(
∂gαβ
∂xγ

+
∂gαβ
∂xγ

)
ẋβ ẋγ =

1

2

∂gαβ
∂xγ

ẋβ ẋγ +
1

2

∂gαβ
∂xγ

ẋβ ẋγ ,

and as β and γ are dummy indices,

∂gαβ
∂xγ

ẋβ ẋγ =
1

2

(
∂gαγ
∂xβ

+
∂gαβ
∂xγ

)
ẋβ ẋγ , (2.1.28)

then, from (2.1.27) and (2.1.28) we obtain

gαβ ẍ
β +

1

2

(
∂gαγ
∂xβ

+
∂gαβ
∂xγ

− ∂gβγ
∂xα

)
ẋβ ẋγ = gαβ ẋ

β [gµν ẋ
µẋν ]

− 1
2
d

dτ
[gµν ẋ

µẋν ]
1
2 . (2.1.29)

Now, if s ≡ τ , ṡ = [gµν ẋ
µẋν ]

1
2 , [gµν ẋ

µẋν ]
− 1

2 d
dτ [gµν ẋ

µẋν ]
1
2 = s̈/ṡ and s̈ = 0, the before expression yields,

gδαgβαẍ
β + gδα

1

2

(
∂gαγ
∂xβ

+
∂gαβ
∂xγ

− ∂gβγ
∂xα

)
ẋβ ẋγ = 0, (2.1.30)

that is to say,
d2xδ

ds2
+ Γδαγ

dxβ

ds

dxγ

ds
= 0, (2.1.31)

being

Γδαγ :=
1

2
gδρ
(
∂gγρ
∂xα

+
∂gαρ
∂xγ

− ∂gαγ
∂xρ

)
. (2.1.32)

The problem found from the expression (2.1.16) is solved thanks to this object. Examining its transformation
properties we have

Γ̃λµν(y) =
∂xα

∂yµ
∂xγ

∂yν

[
Γδαγ(x)

∂yλ

∂xδ
− ∂2yλ

∂xα∂xγ

]
=
∂yλ

∂xδ

[
Γδαγ(x)

∂xα

∂yµ
∂xγ

∂yν
+

∂2xδ

∂yµ∂yν

]
. (2.1.33)

Then, defining the covariant derivative as

∇αvγ =
∂vγ
∂xα

− Γδαγvδ, (2.1.34)

it transforms as follows

∇̃µṽν(y) =
∂xγ

∂yν
∂xα

∂yµ
∇αvγ(x). (2.1.35)

Therefore this new operation transforms as a tensor, thanks to the object (2.1.32). If the components of an
object transform as (2.1.33) we say that this object is a connection.
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2.1.2 Riemann curvature tensor

The covariant derivative satisfies the Leibniz rule, then

∇µ(φvν) =
∂(φvν)

∂xµ
− Γγµνφvγ

φ∇µvν + vν∇µφ = φ∇µvν + vν
∂φ

∂xµ
. (2.1.36)

Thus,

∇µφ =
∂φ

∂xµ
. (2.1.37)

If we define φ ≡ vδwδ, we have

∇µ(vδw
δ) =

∂(vδw
δ)

∂xµ

vδ∇µwδ + wδ∇µvδ = vδ
∂wδ

∂xµ
+ wδ

∂vδ
∂xµ

. (2.1.38)

If the vector is contravariant

∇µvν =
∂vν

∂xµ
+ Γνµγv

γ . (2.1.39)

Generally the second covariant derivatives of any object do not commute. The difference of two covariant
derivatives is a tensor. This difference is given by the Ricci identity

∇µ∇νvγ −∇ν∇µvγ = −Rσγµν(Γ)vσ − Tσµν(Γ)∇σvγ , (2.1.40)

where
Rσγµν(Γ) = ∂µΓσνγ − ∂νΓσµγ + ΓσµδΓ

δ
νγ − ΓσνδΓ

δ
µγ , (2.1.41)

is the Riemann curvature tensor and
Tσµν(Γ) = Γσµν − Γσνµ, (2.1.42)

is the torsion.
If we contract the Riemann tensor, we obtain the Riemann-Ricci tensor

Hµν(Γ) = Rσσµν(Γ) = ∂µΓν − ∂νΓµ, (2.1.43)

being Γµ = Γσµσ. Another contraction give the Ricci tensor

Rµν(Γ) = Rσµσν(Γ) = ∂σΓσµν − ∂νΓσσµ + ΓσσγΓγνµ − ΓσνγΓγσµ. (2.1.44)

2.1.3 Einstein Field Equations

Consider an action of the form

S =
1

16π

∫
d4x
√
−g (2Λ−R) . (2.1.45)

where R is the Ricci scalar, Λ is a constant and g = detgµν . Rewriting the before expression

S =

∫
d4x
√
−g2Λ−

∫
d4x
√
−gR.

We make a variation over the action in the following form

δS =

∫
d4x

[
2
√
−gδΛ + 2Λδ

√
−g
]
−
∫
d4x

[
Rδ
√
−g +

√
−gδR

]
. (2.1.46)
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As Λ is a constant
δΛ = 0. (2.1.47)

Since gµλgλν = δµν , the variation of δ is

gλνδg
µλ + gµλδgλν = 0. (2.1.48)

Thus
δgρν = −gµρgλνδgµλ, (2.1.49)

then
1

g
δg = gµνδgµν . (2.1.50)

In the same form
δg = −ggµνδgµν . (2.1.51)

With this in mind, we obtain

δ(
√
−g) = − 1

2
√
−g

δg =
g

2
√
−g

gµνδg
µν . (2.1.52)

As we see before, the Riemann tensor is defined by

Rαµβν = ∂βΓαµν − ∂νΓαµν + ΓασβΓσµν − ΓανσΓσµβ , (2.1.53)

make a variation of the tensor, we have

δRαµβν = ∇β
(
δΓαµν

)
−∇ν

(
δΓαβµ

)
. (2.1.54)

Since Rµν = Rαµαν the variation of the Ricci tensor is

δRµν = ∇α
(
δΓαµν

)
−∇ν

(
δΓααµ

)
. (2.1.55)

In the same form, the variation of the Ricci scalar R yields

δR = δ (gµνRµν) = Rµνδg
µν + gµνδRµν , (2.1.56)

that is to say,
δR = Rµνδg

µν + gµν
[
∇α
(
δΓαµν

)
−∇ν

(
δΓααµ

)]
. (2.1.57)

Therefore the expression (2.1.46) is now

δS =

∫
d4x

[
2Λ

(
−1

2

√
−ggµνδgµν

)]

−
∫
d4x

[
−1

2

√
−ggµνRδgµν +

√
−gRµνδgµν +

√
−g∇α

(
gµνδΓαµν

)
−
√
−g∇ν

(
gµνδΓααµ

)]
. (2.1.58)

Since we have fixed extremes δΓ = 0 then

δS =

∫
d4x

[
−Λgµν −Rµν +

1

2
gµνR

]√
−gδgµν . (2.1.59)

As we are imposing δS = 0 over an arbitrary variation, the integrand must be zero in order to satisfy the
imposition, then we obtain the Einstein field equations

Rµν −
1

2
gµνR+ Λgµν = 0. (2.1.60)
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Finally, if we add to the action (2.1.45) one term of the form

Sm =

∫
d4xLm

√
−g, (2.1.61)

the Einstein field equations have the form

Rµν −
1

2
gµνR+ Λgµν = 8πTµν (2.1.62)

where

Tµν =
1

2

1√
−g

δLm
δgµν

. (2.1.63)

This term is known as the stress–energy tensor and has information about the matter fields that we will
explore later. In the framework of the quantization, that tensor will be a mean value of quantum objects. The
general relativity remains as a classical theory and when we are taking quantum objects influencing over the
geometry as mean values, we work in a semi-classical world.

From the Einstein field equations in the vacuum (2.1.60) note that if we rewrite the expression as follows

Rµν −
1

2
gµνR = −Λgµν , (2.1.64)

the tensor Λgµν is working as a stress-energy tensor. This is one of the firsts inklings indicating the physical
reality of a vacuum energy that permeates every fibber of the universe. Currently, the cosmological implications
of this kind of tensor are showing interesting results in the explanation of the accelerated expansion of universe,
big-bang and galactic structures formation from primordial effects in early universe.

2.2 Rindler Metric

The Rindler metric emerges from the physical situation of the accelerated observer [30]. Let us explore the physics
of the accelerated observer in the framework of special relativity in order to stablish the Rindler metric. We define
the 4-vector of position as

xµ = (t, r), (2.2.1)

where r are the spatial coordinates of position and t the measured time in any inertial reference system. The
physical velocity of a particle is defined by

u =
dr

dt
, (2.2.2)

thus the 4-velocity is defined as

Uα =
dxα

dτ
, (2.2.3)

being τ the proper time. The relation between proper time and coordinate time is given by

dt

dτ
= γ(u) =

1√
1− |u|2

. (2.2.4)

Such that, the 4-velocity is now
Uα = γ(u)(1,u). (2.2.5)

In a similar way, we define the 4-acceleration as

Aµ =
dUµ

dτ
, (2.2.6)
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the physical acceleration is

a =
du

dt
. (2.2.7)

Therefore the 4-acceleration yields [31]

Aα = γ(u)

(
dγ(u)

dt
,
dγ(u)

dt
u + γ(u)a

)
. (2.2.8)

Let us suppose the 4-velocity and the 4-acceleration components are given by

Uµ = (U0, Ux, 0, 0) (2.2.9)

Aµ = (A0, Ax, 0, 0). (2.2.10)

Each one satisfy the following relations

U2 = −1 = −(U0)2 + (Ux)2, (2.2.11)

U ·A = 0 = −U0A0 − UxAx, (2.2.12)

A2 = α2 = −(A0)2 − (Ax)2. (2.2.13)

From the expression (2.2.12) we obtain

A0 =
AxBx
U0

(2.2.14)

and replacing in the expression (2.2.13) we have

α2 = (Ax)2

[
1−

(
Ux
U0

)2
]
, (2.2.15)

where using the expression (2.2.11) we have
Ax = αU0, (2.2.16)

therefore
A0 = αUx. (2.2.17)

Differentiating respect the proper time the expression (2.2.16) and taking into account the expression (2.2.17)
we obtain a differential equation for Ux [31]

d2Ux
dτ2

= α
dU0

dτ
= αA0 = α2Ux, (2.2.18)

then
d2Ux
dτ2

− α2Ux = 0. (2.2.19)

The solutions of (2.2.19) are given by hyperbolic functions

Ux = C1 sinh(ατ) + C2 cosh(ατ), (2.2.20)

where C1 and C2 are integration constants which we can obtain imposing initial conditions, such as

Ux(τ = 0) = 0, (2.2.21)

dUx
dτ

∣∣∣∣
τ=0

= α. (2.2.22)
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From the condition (2.2.21) we obtain that C2 = 0 and from (2.2.22) we have C1 = 1. Therefore we can
express the quantities as follows

Ux =
dx

dτ
= sinh(ατ), (2.2.23)

U0 =
dx0

dτ
= cosh(ατ). (2.2.24)

Integrating the above expressions
x0 = α−1 sinh(ατ) +D1, (2.2.25)

x1 = α−1 cosh(ατ) +D2. (2.2.26)

From this we have that the trajectories of an accelerated observer in Minkowski space, are hyperbolic trajec-
tories. From this we can stablish the formulation of the Rindler coordinates.

X

T

t=-∞

x=
0

t=
∞

X

t=
-2

t=
-1

t=0

x=
0,
2

x=
0,
4

x=
0
,6

x=
0
,8

x=
1

t=1

t=
2

Figure 2.1: Hyperbolic trajectories of a Rindler observer.

Let us therefore, consider two-dimensional Minkowski space

ds2 = dt2 − dx2. (2.2.27)

Going to null coordinates defined by
u = t− x, v = t+ x, (2.2.28)

the line element (2.2.27) becomes
ds2 = dudv (2.2.29)

so that

gµν =
1

2

(
0 1
1 0

)
. (2.2.30)

Performing the following coordinate transformation

t = a−1eaξ sinh aη (2.2.31)
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x = a−1eaξ cosh aη, (2.2.32)

with a = constant and −∞ < η, ξ <∞, or
u = −a−1e−aū (2.2.33)

v = a−1eav̄, (2.2.34)

where
ū = η − ξ, (2.2.35)

v̄ = η + ξ, (2.2.36)

the line elements (2.2.27) and (2.2.29) becomes

ds2 = e2aξdūdv̄ = e2aξ(dη2 − dξ2). (2.2.37)

The coordinates (η, ξ) cover only a quadrant of Minkowski space; the wedge x > |t|. Lines of constant ξ are
hyperbolas

x2 − t2 = a−2e2aξ = constant. (2.2.38)

These hyperbolas represent the world lines of uniformly accelerated observers. In comparison, we have that

ae−aξ = α−1 = proper acceleration. (2.2.39)

All the hyperbolas are asymptotic to the null rays u = 0, v = 0 (or ū = ∞, v̄ = ∞). Then the accelerated
observers approach the speed of light η ±∞. The proper time of the accelerated observers is related to ξ and η
by

τ = eaξη. (2.2.40)

The system (η, ξ) is known as the Rindler coordinate system [30].

F
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L R x

 u
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 0

  
ξ=
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n
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η = constant

v = 0

Figure 2.2: Regions in Rindler space.
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2.2.1 Radiation from uniformly accelerated motion

The Unruh effect can be considered as a back-reaction problem as we shall see later. In this section we discuss the
situation in which an accelerated charge experiments a radiation reaction force. This situation would bring some
interesting physical aspects in the understanding of the thermal radiation perceived by an accelerated observer
in the vacuum.

The non-relativistic equation of motion including the radiation reaction is

mv̇ = Fext + Freact, (2.2.41)

where Fext is an external force and Freact

Freact =
2e2

3
v̈ +O(v) (2.2.42)

is the radiation reaction force, v is the velocity of the electron and the dot indicates differentiation with respect
to time. Using covariant notation, the relativistic version of the before expression is [32]

m
duµ

dτ
= Fµext + Fµreact, (2.2.43)

with external 4-force Fµext and radiation-reaction 4-force given by

Fµreact =
2e2

3

d2uµ

dτ2
−Ruµ, (2.2.44)

where

R = −2e2

3

duν
dτ

duν

dτ
=

2e2γ6

3

[
v̇2 − (v × v̇)2

]
≥ 0 (2.2.45)

is the invariant rate of radiation of energy of an accelerated charge and uµ = γ(1,v) is the 4-velocity.
The time component of the equation (2.2.43) can be written as

dγm

dt
= Fext · v +

dQ

dt
−R, (2.2.46)

being

Q =
2γ4e2v · v̇

3
, (2.2.47)

is an energy being stored in the electron in virtue of its acceleration [33, 34]. The space components are

dγmv

dt
= Fext +

2e2γ2

3

[
v̈ + 3γ2(v · v̇)v̇ + γ2(v · v̈)v + 3γ4(v · v̇)2v

]
(2.2.48)

2.3 Schwarzschild Metric

The Schwarzschild solution of the Einstein field equations, is the successive solution of three problems: isotropic
field, stationary isotropic field and static isotropic field [35]

The isotropic field implies physically that ds2 must be an scalar under the rotations group in the three-
dimensional space. The scalars that can be constructed under this conditions are: t, dt, r ·r, r ·dr y dr ·dr. Then,
the more general isotropic interval can be expressed as

ds2 = a(r · r, t)(dt)2 + b(r · r, t)r · drdt+ c(r · r, t)(r · dr)2 + f(r · r, t)dr · dr. (2.3.1)
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Now, the fundamental characteristic of a stationary isotropic field is that the tensor metric components are
time independent, then, the interval is now

ds2 = a(r · r)(dt)2 + b(r · r)r · drdt+ c(r · r)(r · dr)2 + f(r · r)dr · dr. (2.3.2)

However, the static isotropic field impose that the following condition: the components ga0 must vanish. Then
the interval yields,

ds2 = a(r · r)(dt)2 + c(r · r)(r · dr)2 + f(r · r)dr · dr. (2.3.3)

Working with the spherical coordinates, we have r = rr̂, dr = drr̂+rdθθ̂+rsinθdϕϕ̂, and the scalar products
reads,

r · r = r2,

r · dr = rdr,

dr · dr = (dr)2 + r2
[
(dθ)2 + sin2θ(dϕ)2

]
.

Then we can express the interval as follows,

ds2 = −a(r)dt2 + c(r)dr2 + f(r)r2
(
dθ2 + sin2θdϕ2

)
. (2.3.4)

Now changing the coordinates (ct, r, θ, ϕ)→ (ct, ρ, θ, ϕ), where ρ ≡ f(r)r2, we have,

ds2 = −A(ρ)c2dt2 +B(ρ)dρ2 + ρ2(dθ2 + sin2θdϕ2). (2.3.5)

With this the non-null components of the Ricci tensor reads,

R00 = − 1

4ρAB2

[
2ρAB

d2A

dρ2
− ρB

(
dA

dρ

)2

− ρAdA
dρ

dB

dρ
+ 4AB

dA

dρ

]
, (2.3.6)

R11 =
1

4ρA2B

[
2ρAB

d2A

dρ2
− ρB

(
dA

dρ

)2

− ρAdA
dρ

dB

dρ
− 4A2 dB

dρ

]
, (2.3.7)

R22 = − 1

2AB2

[
−ρBdA

dρ
+ ρA

dB

dρ
+ 2AB2 − 2AB

]
, (2.3.8)

R33 = R22sin
2θ. (2.3.9)

The system that stablish the spatio-temporal curvature is a matter-energy distribution concentrated in a finite
region of the space-time, in principle with spherical symmetry. Then this distribution has a defined radius R.
With this solution we want study the exterior of this distribution so we can assume that Tµν = 0. The Einstein
field equations yields

Rµν −
1

2
gµνR = κTµν , (2.3.10)

if we up an index,

Rµν −
1

2
gµνR = κTµν ,

and contracting making µ = ν, we have

Rµµ −
1

2
gµµR = κTµµ . (2.3.11)

Then we obtain
R− 2R = κTµµ =⇒ R = −κTµµ , (2.3.12)
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replacing this in the Einstein field equations

Rµν = κ

(
gαµg

β
ν −

1

2
gµνg

αβ

)
Tαβ . (2.3.13)

Then from this last expression we can conclude that Tµν = 0 implies Rµν = 0. With this result we have that
R00 = R11 = R22 = 0 and then, the components of the Ricci tensor conform now the following set of coupled
differential equations [36, 37]

2ρAB
d2A

dρ2
− ρB

(
dA

dρ

)2

− ρAdA
dρ

dB

dρ
= −4AB

dA

dρ
, (2.3.14)

2ρAB
d2A

dρ2
− ρB

(
dA

dρ

)2

− ρAdA
dρ

dB

dρ
= 4A2 dB

dρ
, (2.3.15)

− ρBdA
dρ

+ ρA
dB

dρ
+ 2AB2 − 2AB = 0. (2.3.16)

We can observe that the left side of the expressions (2.3.14) and (2.3.15) are equal, therefore

− 4AB
dA

dρ
= 4A2 dB

dρ
, (2.3.17)

in other words,

A
dB

dρ
+
dA

dρ
B = 0, (2.3.18)

rewriting this
d

dρ
(AB) = 0. (2.3.19)

This is indicating that these functions product is a constant, then we can relate both functions as follows

A(ρ)B(ρ) = c1 =⇒ B(ρ) =
c1
A(ρ)

, (2.3.20)

replacing this in the expression (2.3.16), we obtain

ρ
dA

dρ
+A = c1 =⇒ d

dρ
(ρA) = c1. (2.3.21)

The solution of the last equation is

A(ρ) = c1

(
1 +

c2
ρ

)
. (2.3.22)

We can find these constants imposing the Newtonian limit to these solutions. In the weak field approximation
we have

g00 = 1 +
2Φ

c2
, (2.3.23)

comparing with (2.3.22), we can evidence that c1 = 1 and

c2
ρ

= −2GM

c2r
. (2.3.24)

Since these two variables are overdetermined we can choose ρ = r, thus

c2 = −2GM

c2
, (2.3.25)
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that is to say,

A =
1

B
= 1− 2GM

c2r
, (2.3.26)

then, the interval is,

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2θdφ2). (2.3.27)

In the matrix representation the metric tensor takes the form

gµν =


−
(
1− 2GM

c2r

)
0 0 0

0
(
1− 2GM

c2r

)−1
0 0

0 0 r2 0
0 0 0 r2sin2θ

 . (2.3.28)

This solution is valid for the interval r > R, being R the radius of the spherical distribution. If we want
this solution cover all space, we can collapse the whole distribution in a point that would be the origin of the
coordinate system. This is the Schwarzschild problem. For this situation the metric (2.3.27) will be valid for the
whole space except in the point r = 0. This situation is describing a black hole.

2.3.1 Singularities and causal structure

From the metric (2.3.27) we evidence a divergence when r = 2M . We can show that this divergence has a
coordinate origin. Then under a coordinate transform, this divergence will disappear. Therefore we must construct
a coordinate system where we can study the physical properties of the metric in this point.

In order to study the behaviour of the usual coordinates close to r = 2M , we consider a probe element in this
field. Its trajectory is given by the following Lagrangian

L =
1

2
gµν ẋ

µẋν (2.3.29)

which acquire the following form in terms of the Schwarzschild metric [9]

2L = −
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2(θ̇2 + sin2θϕ̇2). (2.3.30)

By definition of the proper time, we have that throughout the world line xµ(τ) we obtain

2L = −1. (2.3.31)

Taking θ = π/2, without loss of generality

2L = −
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2ϕ̇2. (2.3.32)

The variables ϕ and t are cyclic, then

∂L
∂ϕ̇

= r2ϕ̇ ≡ cte := L, (2.3.33)

− ∂L
∂ṫ

= ṫ

(
1− 2M

r

)
≡ cte := E. (2.3.34)
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Introducing (2.3.33) and (2.3.34) in (2.3.31)(
1− 2M

r

)−1

E2 −
(

1− 2M

r

)−1

ṙ2 − L2

r2
= 1. (2.3.35)

We consider the physical situation where the probe element are following time-like radial geodesics close to
r = 2M . For L = 0, from the last expression we have

ṙ2 =
2M

r
+ E2 − 1. (2.3.36)

Supposing the probe element is in rest at r = R such that

2M

r
= 1− E2, (2.3.37)

from (2.3.36) we have

dτ =

(
2M

r
− 2M

R

)−1/2

dr. (2.3.38)

From here we obtain the functional relation xµ ≡ xµ(τ). Furthermore from the last expression we can evidence
that nothing strange occurs in r = 2M . On the other hand, if we consider r as a function of the coordinate time
t, from (2.3.34) we obtain

ṙ =
dr

dt
ṫ =

dr

dt

(
1− 2M

r

)−1

E. (2.3.39)

Introducing the following radial coordinate transformation

r∗ = r + 2M ln
( r

2M
− 1
)
, (2.3.40)

we have that
dr∗

dt
=

(
1− 2M

r

)−1
dr

dt
, (2.3.41)

from this expression, the equation (2.3.39) yields

ṙ = E
dr∗

dt
. (2.3.42)

Introducing this last expression in (2.3.36), we obtain(
E
dr∗

dt

)2

= E2 − 1 +
2M

r
. (2.3.43)

Then, when r < 2M , r∗ → −∞ and the right side of the last equation tends to E2, thus for r ' 2M

dr∗

dt
' −1, (2.3.44)

and
r∗ ' −t+ c1, (2.3.45)

in other words,
r ' 2M + c1e

−t/2M . (2.3.46)
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This is indicating that the probe element will reach the surface r = 2M only when has passed an infinite
coordinate time.

Considering null radial directions for the metric, in other words, considering ds = 0, we obtain an expression
of the form

dr

dt
= ±

(
1− 2M

r

)
. (2.3.47)

That is indicating for r < 2M the opening angle of the light cones will increase and change its direction. Then
the simultaneous use of the coordinates r and t is limited. Another indicator that show the problem generated by
r = 2M is a coordinate problem, is the Kretschmann scalar. This invariant can be obtained by the contraction
of the Riemann tensor with itself,

K = RαβγδR
αβγδ, (2.3.48)

where
Rαβγδ = gαµR

µ
βγδ, (2.3.49)

and
Rαβγδ = gβµgγνgδξRαµνξ. (2.3.50)

From the Schwarzschild solution, in the usual coordinates, the non null components of the Riemann tensor
are: R0

101, R
0
202, R

0
303, R

1
212, R

1
313, R

2
323. Therefore,

K = 4

(
4M2

6
+
M2

6
+
M2

6
+
M2

6
+
M2

6
+

4M2

6

)

K =
48M2

r6
. (2.3.51)

Again, nothing strange occurs in r = 2M . Note that in r = 0 there is a divergence; r = 0 is known as a
essential singularity.

With these results, we can find a coordinate transformation such that the metric acquires the following form

ds2 = −f2(u, v)
(
dv2 − du2

)
+ r2

(
dθ2 + sin2θdϕ2

)
. (2.3.52)

We use that choose in order the for radially emitted light rays we have

du

dv
= ±1.

Additionally, the two dimensional sub-manifold, when θ, ϕ ≡ cte, is conformally equivalent to the Minkowski
metric dv2 − du2. The coordinates that satisfy these conditions are the Kruskal coordinates defined by [8]

u =

√
r

2M
− 1er/4M cosh

(
t

4M

)
, (2.3.53)

v =

√
r

2M
− 1er/4M sinh

(
t

4M

)
. (2.3.54)

With

f2 =
32M3

r
e−r/2M . (2.3.55)

Applying the usual hyperbolic identities we have that

u2 − v2 =
( r

2M
− 1
)
er/2M , (2.3.56)
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v

u
= tanh

(
t

4M

)
. (2.3.57)

Then, similar to Rindler, we have that the lines corresponding to r ≡ const are hyperbolas; in the limit
r → 2M these hyperbolas approach to lines with an inclination of 45o. Furthermore, observing (2.3.57) we have
that the lines corresponding to t ≡ const are radial lines that pass through the origin.

Figure 2.3: Constant time and radius lines in the Kruskal plane.

Figure 2.4: Regions in the Kruskal plane.

In the expression (2.3.55) we conclude that the metric becomes singular when r → 0; from (2.3.56) this
situation is given in regions where v2− u2 = 1. If we perform the change (u, v)→ (−u,−v) we can conclude that
the regions I and III are isometric (See Figure 2.4).

If we redefine the transformation as follows

u =

√
1− r

2M
er/4M sinh

(
t

4M

)
, (2.3.58)

v =

√
1
r

2M
er/4M cosh

(
t

4M

)
, (2.3.59)
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we have that the image of 0 < r < 2M under this transformation is the region II,

v2 − u2 =
(

1− r

2M

)
er/2M , (2.3.60)

u

v
= tanh

(
t

4M

)
. (2.3.61)

Then the regions II and IV are isometric.
The causal structure of the metric described by the Kruskal coordinates is described by the light rays that

forms the lines with 45o of inclination, analogous to the case in Minkowski manifold. The observers in the regions
I and III can receive signals that come from the region IV and after send to the region II. Any particle that get
in the region II, inevitably will go to the singularity in r = 0, with a finite proper time; the causal structure
indicates that there is not another possible trajectory. Any particle that is perceived in the region IV must come
from the singularity in a previus proper time. There is not causal connection between the regions I and III.

The future singularity is perceived (by distant observers in the region I and III) cover by a surface called event
horizons. By definition this is the boundary of the region that is casually disconnected with distant observers in
the regions I and III and in this case is given by r = 2M . As we shall see later, this topological characteristic
is fundamental in the appearing of thermal radiation. Situations or physical objects that present this regions
separation will show similarities with the effects that are perceived on the event horizons of the Schwarzschild
problem.
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Chapter 3
Field Quantization

In this chapter we present the formalism of the canonical quantization in quantum field theory. From the results
of the primitive quantum mechanics, we have that the electromagnetic field can be interpreted as a physical
system composed by many particles, called photons. On the other hand, the Schrödinger equation represents an
individual particle. As we shall see the concept of field is more fundamental that the particle and in this frame,
the wave function that is solution of the Schrödinger equation, will be an operator that represents a particles
field instead representing an individual particle. The Schrödinger equation wave equation turns into a classic field
equation that must be quantized by the commutation canonical rules of quantum mechanics. Let us review some
conceptual aspects in order to clarify these ideas.

The concept of field comes from the classical physics in the sense that we needed stablish laws of Nature
that were local. The laws of Coulomb and Newton that involved the so-called action at a distance became
unsatisfactory from the experimental point of view. The field theories of Maxwell and Einstein remedy the
situation with all interaction mediated in a local fashion by the field.

Another experiment, which results would accompany relativity in the breakdown and change of classical
paradigm, was made by Max Karl Ernst Ludwig Planck. This experiment studied the black-body radiation. This
situation was in front of a problem known as the ’ultraviolet catastrophe’. There were a lot of experiments till
Planck could present the final version of his research in December 14th of 1900. This final version, was based on
Boltzmann’s statistical interpretation of the second law of thermodynamics.

His final work, fundamentally postulated that electromagnetic energy could be emitted only in quantized
form. The mathematical expression where the Planck’s h constant appeared, was proved a lot o times and its
exactitude was incomparable, however, this result gave us a more transcendent result: The quantization of the
action. At the same time, that sentence was the first step towards the disappearing of the barrier between particles
and waves.

Another experiment that showed the evidence of corpuscular character of light was the photoelectric effect,
which consisted in emission of electrons by a material when electromagnetic radiation illuminated it. The the-
oretical explanation was done by Albert Einstein, who published in 1905 the revolutionary article ”heuristic of
the generation and conversion of the light”, basing his formulation of the photo-electricity as an extension of the
work of Max Planck’s quanta.

From special theory of relativity, mass was equivalent with the energy, result that is expressed in the famous
equation E = mc2, on the other hand from quantization of action, the Planck’s formula for the energy was E = hν
(being ν the frequency of the electromagnetic waves). De Broglie, proposed that if waves behaved like particles,
particles would have to behave like waves. With a combination of two expressions of the energy De Broglie arrives
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to

λ =
h

mv
(3.0.1)

This revolutionary expression, relates the wavelength with the mass, erasing the classical dichotomy between
wave and particle. Then, What was the light?, electromagnetic waves or an agglomeration of small corpuscles?.
Quantum mechanics says with security that light is both. Another problem of the classical physics was the
stability of the atoms, for which Bohr proposed that similar to other properties of matter, electronic orbits were
also quantized L = n}.

As a final result of this quantization road, In January 1926, Erwin Schrödinger shows to the world an equation
that would change history

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ. (3.0.2)

The letter ψ is continuously related with the mind. Schrödinger said that the solution of this equations live
in the mind and that the real part was the square of this function, that must be interpreted as a probability.
When the scientists brought the character of probability the dynamics of the fundamental particles, they were
giving us back the freedom snatched by determinism, since trough light of quantum mechanics, a physical state is
a superposition of a lot of events, that evolves tending to the most probable one, however, in other circumstances
another event with less probability can be the one that evolves.

In 1927, Heisenberg developed his uncertainty principle, based on a equivalent formulation of wave quantum
mechanics of Schrödinger. The uncertainty principle reads

∆x∆p ≥ }
2
. (3.0.3)

Now, from the quantization of the action and the principle of uncertainty, we obtain two results that were
latent in the general theory and come to be complemented by the quantum theory. In first instance the notion of
spatial dinamization implies the notion of novelty and transformation. When we are denying the juxtaposition or
coexistence and, with this, the spatial character that was being saw in the time, we are denying the coexistence
of present and future, denying any determinism. Such notion of novelty and transformation, in terms of the
abolition of determinism, is strengthened by the principle of uncertainty.

Being the principle of uncertainty and the quantization inherent properties of nature, space-time would have
to possess a pulse character. Why pulse character? Remembering that quantization carries to the most terrible
absurd, for example, if we think in a chrono-geometric quantum, it would consist of edges and the edges would
imply points, or instants, entities without length, entities that in the frame of relativity would not exist, but,
can we talk about chrono-geometric pulse? As we will see, the quantum field theory would bring us fundamental
ideas to advance in this way.

The pulse character sees strengthened by the uncertainty principle. Being The uncertainty principle something
inherent to nature (not a question of observation as some people ensure) it denies the existence of a concrete value;
it would be a wrong interpretation that such deltas are fluctuations, since when we are speaking of fluctuations,
we affirm implicitly a concrete value which is the center of the fluctuations. If we affirm the uncertainty as the
intrinsic reality of nature, the pulse character of space-time would remain established.

Precisely in the framework of these quantum concepts, the notion of particle also remains insufficient. In the
relativistic frame we have that particles decay once and once more in other so many times, or in virtue of the
mass-energy equivalence, we have creation and annihilation processes. In terms of observation the same particle
cannot be seen twice, moreover in terms of the uncertainty principle we cannot observe it not even once. The
word that would describe better these physical entities, would be the one of event, and each decay or process of
annihilation or destruction would be contiguous events to the previous, taking into account that the matter-energy
is an identity with the space-time. Furthermore, the notion of movement would be reformed to the notion of
change (of the structure of the space-time).
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As we will see, quantum field theory would re-affirm these concepts about the event-particles in a logical and
plausible structure and would bring us more tools in the discussion about the identity between matter-energy
and space-time and its implications with the particle-event concept and the vacuum concept to construct a new
paradigm.

The first consolidated field theory was developed by James Clerk Maxwell in 1865, known since then as
electromagnetism. With the Maxwell’s equations, the theory introduced a new form of matter, the electromagnetic
field [11]. The failure of the mechanical model applied to electromagnetic waves gave us relativity. On the other
hand, Schrödinger’s equation is non relativistic and its solutions would be considered as a field in the sense that it
is a continuous dynamical system, a system with infinite degrees of freedom or a dynamical variable characterizing
an aspect of a system.

As we just showed, the concepts developed by quantum mechanics and relativity not only were not contra-
dictory but they are complementary. Dirac unificated special relativity and non relativistic quantum mechanics
and gave origin to quantum field theory. At principle, the infinities surrounded all the results and there were
not physical significance for these. The solution to this problem was the renormalization, proposed by Freeman
Dyson, Richard Feynman, Julian Schwinger and Sinitiro Tomonaga.

In classical physics we have a lot of examples of fields: the string that is a one dimensional field ψ(z, t) where
z is a continuous parameter indicating position on the string and t the time; we have the displacement of the
membrane ψ(x1, x2, t), being x1, x2 parameters indicating positions on the drum and t the time, but those can
be not only spatial aspects but color or temperature changing. The field variable can be a scalar, vector, tensor
or spinor.

For example we have the electromagnetic field Fµν(x), where x is the four dimensional parameter that refers
to space-time (ct,x). One can say that in general, a field ϕ(x, t) is a dynamical variable for a continuous system
whose points are indexed by the parameters t and x. This, conceptually talking, generates a great advantage in
front of non relativistic quantum mechanics, since it has a clear separation between space and time, being the
space an operator and time a simple parameter.

With the relativistic quantum equation of motions like Klein-Gordon equation

(� +m2)ψ = 0, (3.0.4)

for spin 0 systems, and Dirac equation
iγµ∂µψ −mψ = 0, (3.0.5)

for spin 1/2 systems, we have the problem of negative energy states. In order to solve the problem of a possible
(minus) infinite decay of the energy, Dirac postulated that the negative energy states are completely filled by
other particles, then we would have the prediction of a hole in the filled sea, such is known as an antiparticle and
it was a great triumph and will found a new paradigm into making physics.

The Dirac postulate presented the difficulty that it required a many-particle picture in contradiction to the
original single-particle interpretation, this problem disappears if the variables ψ of the relativistic equations are
not interpreted as single particle wave functions but as dynamical variables for continuous systems, or simply,
fields [11].

3.1 Classic Lagrangian and Hamiltonian Formulation

A classical physical system composed by a finite number of particles is characterized by a Lagrangian function
L ≡ L(qi, q̇i, t) which is a function of the generalized coordinates of the system qi, its temporal derivatives
q̇i = dqi/dt and the time t. In order to obtain the classic trajectory of the system between the points qi(t1) at
the time t1 unto the points qi(t2) at time t2 (for i = 1, 2, ... covering all of freedom degrees), we have to define
the classic action

S =

∫ t2

t1

dtL(qi, q̇i, t), (3.1.1)
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and impose that this object must be stationary; in other words δS = 0 in a trajectory where δqi(t1) = δqi(t2) = 0,
such that,

δS = δ

∫ t2

t1

dtL(qi, q̇i, t)

=
∑
i

∫ t2

t1

dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
=
∑
i

∫ t2

t1

dt

(
∂L

∂qi
δqi +

∂L

∂q̇i

dδqi
dt

)
=
∑
i

∫ t2

t1

dt

[
∂L

∂qi
δqi +

d

dt

(
∂L

∂q̇i
δqi

)
−
(
d

dt

∂L

∂q̇i

)
δqi

]

=
∑
i

{∫ t2

t1

dt

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi +

∂L

∂q̇i
δqi

∣∣∣∣t2
t1

}
= 0.

The last term in the above expression is null due to the boundary condition δqi(t1) = δqi(t2) = 0. Since the
variation of δqi is arbitrary, the above expression will be valid, for any δqi, when

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, i = 1, 2, 3, ... (3.1.2)

such equations are known as Euler-Lagrange equations. Those equations must describe the motion of the physical
system, as we can see with the following general Lagrangian

L(qi, q̇i, t) =
∑
i

[
1

2
mq̇2

i − V (qi, t)

]
, (3.1.3)

where V (qi, t) is the potential energy of the system. If we replace this in the equation (3.1.2) we have

d

dt
(mq̇i) = −∂V (qi, t)

∂qi
, i = 1, 2, 3, ... (3.1.4)

that is the Newton’s Second Law.
Now, we can define pi ≡ ∂L/(∂q̇i) as the canonically conjugated variable to qi, such that, we can define the

Hamiltonian function as the following Legendre transform of L(qi, q̇i, t),

H(qi, q̇i, t) =
∑
i

piq̇i − L(qi, q̇i, t) =
∑
i

[
p2
i

2m
+ V (qi, t)

]
. (3.1.5)

Then, the equations of motion takes the form

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, 3, ... (3.1.6)

3.2 Lagrangian and Hamiltonian Formulation of Fields

In this case we will have an analogous formulation this time for a classic field described by a real function ϕ(r, t)
with an infinite degrees of freedom. Let us introduce the Lagrangian density L ≡ L(ϕ,∇ϕ, ϕ̇, t) that will be used
to define the Lagrangian of the system in the following form

L =

∫
d3rL(ϕ,∇ϕ, ϕ̇, t). (3.2.1)

36



CHAPTER 3. FIELD QUANTIZATION

Where the ∇ϕ dependence is telling us the continuous variation of the field ϕ(r, t) in the position variable in
the vicinity of any point in the space. The classic action takes the form

S =

∫ t2

t1

dtL =

∫ t2

t1

dt

∫
d3rL(ϕ,∇ϕ, ϕ̇, t) =

∫
d4rL(ϕ,∇ϕ, ϕ̇, t). (3.2.2)

Imposing that the action must be stationary in the time interval between t1 and t2, as above, and the boundary
condition δϕ(t1) = δϕ(t2) = 0, we have

δS = δ

∫
d4rL

=

∫
d4r

(
∂L
∂ϕ

δϕ+
∂L
∂ϕ̇

δϕ̇+
∂L
∂∇ϕ

δ∇ϕ
)

=

∫
d4r

(
∂L
∂ϕ

δϕ+
∂L
∂ϕ̇

d

dt
δϕ+

∂L
∂∇ϕ

∇δϕ
)

=

∫
d4r

[
∂L
∂ϕ

δϕ+
∂

∂t

(
∂L
∂ϕ̇

δϕ

)
+∇

(
∂L
∂∇ϕ

δϕ

)
−
(
∂

∂t

∂L
∂ϕ̇

)
δϕ−

(
∇ ∂L
∂∇ϕ

)
δϕ

]
=

∫
d4r

[
∂L
∂ϕ
−
(
∂

∂t

∂L
∂ϕ̇

)
−
(
∇ ∂L
∂∇ϕ

)]
δϕ,

where the other terms are zero because of∫
d4r

∂

∂t

(
∂L
∂ϕ̇

)
δϕ =

∫
d3r

∂L
∂ϕ̇

δϕ

∣∣∣∣t2
t1

= 0,

due to the boundary condition δϕ(t1) = δϕ(t2) = 0 and, using the Gauss theorem,∫
d4r∇

(
∂L
∂∇ϕ

δϕ

)
=

∫
dt

∮
dS ·

(
∂L
∂∇ϕ

δϕ

)
,

we have the closed integral over a sphere surface with infinite radius, where the fields must be zero, therefore

lim
r→∞

δϕ(r) = 0. (3.2.3)

Since the action is stationary for any δϕ, the Euler-Lagrange equations, take the form

∂L
∂ϕ
− ∂

∂t

∂L
∂ϕ̇
−∇ ∂L

∂∇ϕ
= 0. (3.2.4)

If the field is a complex field, both ψ and ψ∗ are independent degrees, such that

∂L
∂ψ
− ∂

∂t

∂L
∂ψ̇
−∇ ∂L

∂∇ψ
= 0, (3.2.5)

∂L
∂ψ∗

− ∂

∂t

∂L
∂ψ̇∗

−∇ ∂L
∂∇ψ∗

= 0. (3.2.6)

Now, in order to find the Hamiltonian density, we can express the Lagrangian density as follows

L = iψ∗ψ − 1

2m
∇ψ∗∇ψ − V (r, t)ψ∗ψ. (3.2.7)
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Therefore, the conjugate variable of ψ(r, t) is

π(r, t) =
∂L
∂ψ̇∗

= iψ∗(r, t). (3.2.8)

Then, the Hamiltonian density will be

(3.2.9)

H = πψ̇ − L

= − i

2m
∇π∇ψ − iV (r, t)πψ

=
1

2m
∇ψ∗∇ψ + V ψ∗ψ.

We can take the following derivatives

∂L
∂ψ∗

= iψ̇ − V ψ, ∂L
∂ψ̇∗

= 0,
∂L
∂∇ψ∗

=
1

2m
∇ψ, (3.2.10)

and replace in the expression (3.2.6) to show that the Lagrangian density (3.2.7) is describing the Schrödinger
wave equation and taking the derivatives

∂L
∂ψ

= −V ψ∗, ∂L
∂ψ̇

= 0,
∂L
∂∇ψ

=
1

2m
∇ψ∗, (3.2.11)

and replacing in (3.2.5) we obtain the complex conjugate of the Schrödinger wave equation. We can observe that
the Lagrangian density (3.2.7) is showing an asymmetry between the equations (3.2.10) and (3.2.11). It can be
found another Lagrangian density where this asymmetry would disappear but it will not be simpler than (3.2.7).

Now, we can define the Hamiltonian from the Hamiltonian density (3.2.9) as

(3.2.12)

H =

∫
d3rH

=

∫
d3r

(
1

2m
∇ψ∗∇ψ + V ψ∗ψ

)
=

∫
d3rψ∗

(
− 1

2m
∇2 + V

)
ψ,

where the last steep is obtained by integration by parts and despise the following term∫
d3r∇(ψ∗∇ψ) =

∮
ds(ψ∗∇ψ). (3.2.13)

The equations of motion in the Hamiltonian form yields

ψ̇(r, t) =
∂H(ψ, ψ̇,∇ψ, t)

∂π(r, t)
, (3.2.14)

π̇(r, t) = −∂H(ψ, ψ̇,∇ψ, t)
∂ψ(r, t)

. (3.2.15)
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3.3 Second Quantization: Why Fields?

The fundamental hypothesis in this process is suppose that ψ(r, t) represents a field operator instead a wave
function and beside its conjugated operator π = iψ†, satisfy the commutation rules imposed by the fundamental
quantum postulates to the conjugated variables, in other words, these new operators satisfy

[ψ(r1, t), π(r2, t)] = iδ3(r1 − r2), (3.3.1)

[ψ(r1, t), ψ(r2, t)] = 0, (3.3.2)

[π(r1, t), π(r2, t)] = 0. (3.3.3)

Is clear that for a Hilbert space from a physical situation described by the Schrödinger equation, there is a
complete set of orthonormal functions ϕn(r, t), n = 0, 1, 2, ... (

∫
dζϕ∗nϕl = δnl) which are eigenfunctions of an

observable associated with a given physical magnitude (being n = 0 the fundamental state of the system). This
fact allow us expand the wave function ψ(r, t) as

ψ(r, t) =
∑
n

anϕn(r, t), (3.3.4)

where the coefficients of the expansion are given by an =
∫
dζϕ∗nψ. When the wave functions solutions to the

Schrödinger equation becomes field operators, the above expansion turns to a sum over a complete and infinite
operators set {an, a†n, n = 0, 1, 2, ...}, that is,

ψ(r, t) =
∑
n

anϕn(r, t), ψ†(r, t) =
∑
n

a†nϕ
∗
n(r, t), (3.3.5)

where the coefficients are right now the functions ϕn(r, t) and the complete operators set is defined by an =∫
dζϕnψ and its adjoin hermitian.

The algebra that the new operators an, a
†
n must satisfy, have to be compatible with the algebra expressed in

(3.3.1), (3.3.2) and (3.3.3), that is,[
ψ(r1, t), ψ

†(r2, t)
]

=
∑
n

∑
l

ϕn(r1, t)ϕ
∗
l (r2, t)[an, a

†
l ] = δ3(r1 − r2). (3.3.6)

Here, we can use the completeness of the eigenfunctions (sufficient and necessary condition to obtain a
complete set of functions in the Hilbert space),∑

n

ϕn(r1, t)ϕ
∗
n(r2, t) = δ3(r1 − r2), (3.3.7)

such that, this condition will be satisfied if

[an, a
†
l ] = δn,l, n, l = 0, 1, 2, ... (3.3.8)

Using the other two commutations relations, we obtain

[an, al] = [a†n, a
†
l ] = 0, n, l = 0, 1, 2, ... (3.3.9)

With this in mind, from the fundamental operators ψ and ψ† we can construct other operators with physical
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relevance. For example, taking the expression (3.2.12), its operator form will be

(3.3.10)

H =

∫
d3rψ†

(
− 1

2m
∇2 + V

)
ψ

= −i
∫
d3rπH(0)ψ

=
∑
l

∑
n

a†l an

∫
d3rϕ∗l (r, t)H

(0)ϕn(r, t)

=
∑
l

∑
n

a†l an(H(0))ln,

where

H(0) = − 1

2m
∇2 + V, (3.3.11)

is the Hamiltonian related to the Schrödinger equation, that describe an individual particle of the field and
(H(0))ln is the matrix element l, n of such Hamiltonian.

The above expression, let us think in the following operator

N =

∫
d3rψ†ψ =

∑
l

∑
n

a†l an

∫
d3rϕ∗l ϕn =

∑
l

a†l al =
∑
l

nl, (3.3.12)

that is showing us the total number of particles. Beside this, we define the occupation number operator nl = a†l al
that will be an important object in the theory.

The algebra of these operators comes defined by the algebra of the field operators. An interesting operator is
[N,H], that is

(3.3.13)

[N,H] =

∫
d3r1d

3r2[ψ†(r1, t)ψ(r1, t), ψ
†(r2, t)H

(0)
r2 ψ(r2, t)]

=

∫
d3r1d

3r2ψ
†(r1, t)[ψ(r1, t), ψ

†(r2, t)]H
(0)
r2 ψ(r2, t)

+

∫
d3r1d

3r2[ψ†(r1, t), ψ
†(r2, t)]ψ(r1, t)H

(0)
r2 ψ(r2, t)

+

∫
d3r1d

3r2ψ
†(r2, t)H

(0)
r2 [ψ†(r1, t), ψ(r2, t)]ψ(r1, t)

+

∫
d3r1d

3r2ψ
†(r1, t)ψ

†(r2, t)H
(0)
r2 [ψ(r1, t), ψ(r2, t)]

=

∫
d3r1d

3r2ψ
†(r1, t)δ

3(r1 − r2)H(0)
r2 ψ(r2, t)

−
∫
d3r1d

3r2ψ
†(r2, t)H

(0)
r2 δ

3(r1 − r2)ψ(r1, t)

= 0.

In a similar form we have

(3.3.14)

[nl, nk] = [a†l al, a
†
kak]

= a†l [al, a
†
kak] + [a†l , a

†
kak]al

= a†l [al, a
†
k]ak + a†l a

†
k[al, ak] + a†k[a†l , ak]al + [a†l , a

†
k]akal

= a†l akδlk − a
†
kalδkl

= (a†l ak + a†kal)δkl

= 0.
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Using the above result

[N,nl] = [
∑
k

nk, nl] =
∑
k

[nk, nl] = 0. (3.3.15)

3.3.1 Equations of motion

Within the Hamiltonian operator (3.3.10) and the algebra of the field operators, we can obtain the equations of
motion of the physical fields, at the same time, we can define certain conservation laws. In particular we may be
interested in the commutators [ψ,H], [ψ†, H], [N,H]. We have,

[ψ(r, t), H] =

[
ψ(r, t),−i

∫
d3r1π(r1, t)H

(0)
r1 ψ(r1, t)

]
= −i

∫
d3r1

[
ψ(r, t), π(r1, t)H

(0)
r1 ψ(r1, t)

]
= −i

∫
d3r1 [ψ(r, t), π(r1, t)]H

(0)
r1 ψ(r1, t)

− i
∫
d3r1π(r1, t)H

(0)
r1 [ψ(r, t), ψ(r1, t)]

= −i
∫
d3r1iδ

3(r− r1)H(0)
r1 ψ(r1, t)

= H(0)
r ψ(r, t)

=

(
− 1

2m
∇2
r + V (r, t)

)
ψ(r, t)

= iψ̇(r, t)

= i
dψ(r, t)

dt
.

Therefore,

ψ̇(r, t) = −i[ψ(r, t), H], (3.3.16)

that is nothing that the time evolution of an operator in the Heisenberg picture. In other words, the Heisenberg
equation for the time evolution of an arbitrary operator O,

Ȯ = −i[O,H], (3.3.17)

is bringing us the Schrödinger equation when it is applied to a field operator ψ. It is a clear proof of the consistency
of the Quantum Field Theory.

In order to confirm this consistency, we can obtain the time evolution of the operator π(r, t) as follows

i
∂ψ†

∂t
= π̇(r, t) = −i[π(r, t), H] = [ψ†, H]

41



3.3. SECOND QUANTIZATION: WHY FIELDS?

(3.3.18)

[ψ†, H] = −i
[
π(r, t),−i

∫
d3r1π(r1, t)H

(0)
r1 ψ(r1, t)

]
= −

∫
d3r1

[
π(r, t), π(r1, t)H

(0)
r1 ψ(r1, t)

]
= −

∫
d3r1 [π(r, t), π(r1, t)]H

(0)
r1 ψ(r1, t)

−
∫
d3r1π(r1, t)H

(0)
r1 [π(r, t), ψ(r1, t)]

= −
∫
d3r1ψ

†(r1, t)H
(0)
r1 [π(r, t), ψ(r1, t)]

= −
∫
d3r1

(
H(0)
r1 ψ

†(r1, t)
)†

(−i)δ3(r− r1)

= −
(
H(0)
r ψ†(r, t)

)†
= −

(
− 1

2m
∇2
r + V (r, t)

)
ψ†(r, t).

The above expression is obtained from the complex conjugate of the Schrödinger equation before make the
second quantization and impose the equality between the field operators.

Taking the before results, we can calculate the quantity [N,H], we have

Ṅ = −i[N,H] = −i
∫
d3r[ψ†ψ,H]

(3.3.19)

Ṅ = −i
∫
d3r

(
ψ†[ψ,H] + [ψ†, H]ψ

)
= −i

∫
d3r

(
ψ†H(0)ψ − (H(0)ψ)†ψ

)
= −i

∫
d3r

(
ψ†H(0)ψ − ψ†H(0)ψ

)
= 0.

Then, the associated physical magnitude to the operator N is a constant of motion.

3.3.2 Particle number representation

We just have shown that, with the algebra postulated for the field operators,

[N,H] = [nl, nk] = [N,nl] = 0, l, k = 0, 1, 2, ... (3.3.20)

Now, although the expansion (3.3.5) is thought to be the complete set of eigenfunctions of any operator, in
the practice, the formalism of the second quantization will reach its maximum power when that operator is the
Hamiltonian of the individual particle of the system. That is to say, when we have a complete set of eigenfunctions
that satisfy

H(0)ϕEn (r, t) = E(0)
n ϕEn (r, t), (3.3.21)

being H(0) = −∇2/2m+ V (r, t) the Hamiltonian of an individual particle of the field.
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When we use the eigenfunctions of H(0) as the complete set for the expansions, we have the field ψ(r, t) in
the so-called energy representation. This representation bring us the matrix elements (H(0))ln being diagonals in
the form E0

nδnl and the Hamiltonian operator takes the form

H =
∑
l

a†l alE
(0)
l =

∑
l

nlE
(0)
l , (3.3.22)

where nl is the operator defined in (3.3.12). Within this representation is easy to show that [H,nl] = 0 for
l = 0, 1, 2, .... Then,

[N,H] = [nj , H] = [N,nj ] = [nl, nj ] = 0, l, j = 0, 1, 2, ... (3.3.23)

This imply that there exist a complete set of eigenvectors that can diagonalize simultaneously the operators

{H,N, nj , j = 0, 1, 2, ...} , (3.3.24)

that have a simply and important physical significance. This complete set of eigenvectors are wide known as the
particle number representation.

In order to find the set of eigenvalues and eigenvectors of the operators nl = a†l al, let us firs stablish the

algebra between the operators nk, a†l , al,

[nk, al] = [a†kak, al] = a†k[ak, al] + [a†k, al]ak = [a†k, al]ak = −akδkl, (3.3.25)

[nk, a
†
l ] = [a†kak, a

†
l ] = a†k[ak, a

†
l ] + [a†k, a

†
l ]ak = a†k[ak, a

†
l ] = a†kδkl. (3.3.26)

Now we can define |nl〉 the eigenvector of nl with eigenvalue nl. Then, we can say that |0l〉 is an eigenvalue
with zero particles with quantum number l; which corresponds to the vacuum of the state l, which has a dual
(|0l〉)† = 〈0l|. A collection of these states will define a special space which describes systematically the state
vectors that describe one, two, three and more particles in well-defined spacetime positions. This space is known
as the Fock Space.

3.4 Fock Space

Let us consider a collection of particles in quantum mechanics, we would have HN a Hilbert space of a system of
N identical particles. The union of all HN is called the Fock space

∞⋃
N=0

HN . (3.4.1)

The subspace N = 0 contains the vacuum state as its only member. We have to introduce operators on Fock
space that connect subspaces of different N . An elementary operator of this kind creates or annihilates one
particle at a point space; such an operator is a quantum field operator, since it is a spatial function. This is why
a quantum-mechanical many-particle system automatically rises to a quantum field [38].

If we stay in the Schrödinger picture we can define an operator ψ(r) that annihilates one particle at r, its
hermitian conjugate ψ†(r) will create one particle at r. We impose the commutation relations

[ψ(r1, t), ψ
†(r2, t)]± = δ3(r1 − r2),

[ψ(r1, t), ψ(r2, t)]± = 0, (3.4.2)

where [A,B]± = AB ±BA and the plus sign corresponds to bosons and the minus sign corresponds to fermions.

43



3.4. FOCK SPACE

Now, a general N-particle Hamiltonian has the structure

H =
∑
i

f(ri, t) +
∑
i<j

g(ri, rj , t) +
∑
i<j<k

h(ri, rj , rk, t) + · · · . (3.4.3)

We can construct that Hamiltonian on Fock space with the following procedure∑
i

f(ri, t)→
∫
d3rψ†(r, t)f(r, t)ψ(r, t)

∑
i<j

g(ri, rj , t)→
1

2

∫
d3r1d

3r2ψ
†(r1, t)ψ

†(r2, t)g12ψ(r2, t)ψ(r1, t) (3.4.4)

...

where g12 = g(r1, r2, t). The significance is that the action of ψ(r, t) on an eigenstate of N is to decrease its
eigenvalue by 1, while the action of ψ†(r, t) is to increase it by 1. The vacuum state |0〉 is defined as the eigenstate
of N with eigenvalue zero. It is annihilated by all annihilation operators

ψ(r, t) |0〉 = 0. (3.4.5)

Now, we suppose that we have states |E,n〉 such that

H |E,n〉 = E |E,n〉

N |E,n〉 = n |E,n〉 , (3.4.6)

then we define the n-particle wave function corresponding to |E,n〉 as (taking out the temporal dependence
without losing generality)

ΨE(r1, ..., rn) ≡ 1√
n!
〈0|ψ(r1) · · ·ψ(rn)|E,n〉 . (3.4.7)

This is showing us that the probability amplitude of finding n particles at the positions r1, ..., rn can be found
by annihilating the particles at the respective positions from the state |E,n〉, and evaluating the overlap between
the resulting state and the vacuum function. It is easy to show that this wave function satisfies the n-particle
Schrödinger equation, this is how the quantum field is equivalent to the many-particle system.

It is important to recall that many quantum fields have no classical counterparts, because as we see before,
many interpretations of modern theories are interfered by classical concepts. The notion of quantum field or
continuous systems with quantum characteristics begins to be clear of certain classical analogues.

Now, if a field operator ψ(r) annihilates a particle at r, it is annihilating a particle which wave function is a
δ function. Then it can be written as a linear superposition of a complete set of wave functions, such that

ψ(r) =
∑
k

uk(r)ak

ψ†(r) =
∑
k

u∗k(r)a†k, (3.4.8)

where ∫
d3ru∗k(r)uk′(r) = δkk′∑

k

uk(r)u∗k(r′) = δ3(r− r′). (3.4.9)
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The coefficient ak and a†k satisfy

[ak, a
†
k′ ]± = δkk′

[ak, ak′ ]± = 0. (3.4.10)

The actions of a and a† are

a |n〉 =
√
n |n− 1〉

a† |n〉 =
√

1± n |n+ 1〉 . (3.4.11)

It is showing that a annihilates a particle in the state with wave function u(r) and a† creates such a particle.

3.5 Scalar Field Quantization

We can obtain the Schrödinger equation from a classical Hamiltonian of a physical system where we make the
following assignments

H → i
∂

∂t
, p→ −i∇, r→ r, (3.5.1)

thus the equation for the classical Hamiltonian

H =
p2

2m
+ V, (3.5.2)

can be written as the following operator relation

i
∂

∂t
= − 1

2m
∇2 + V, (3.5.3)

which operating on a wave function ψ give us immediately the Schrödinger equation.

For a free particle, we have V = 0, then the Schrödinger equation yields

i
∂ψ

∂t
= − 1

2m
∇2ψ, (3.5.4)

which has the time in a first derivative and the space as a second derivative, this evidently cannot be a Lorentz
invariant, where under these structure, the space and time constitute an only concept.

The relativistic expression for the energy of a free particle with mass m and linear momentum p is

E =
√
p2 +m2, (3.5.5)

and making the substitutions (3.5.1), we obtain a Hamiltonian operator of the form

H =
√
−∇2 +m2, (3.5.6)

that has the inconvenient that do not have a unique definition. If we try a MacLaurin series expansion, we would
have a infinite number of terms with partial derivatives in all even order and then we would have a non local
theory; this without the analysis of the convergence problem.
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3.5.1 Klein-Gordon Field Quantization

One form to surpass the problem is obtain the square

H2 → p2 +m2 = E2. (3.5.7)

and using (3.5.1) we obtain the following differential equation

− ∂2ϕ

∂t2
= −∇2ϕ+m2ϕ, (3.5.8)

which we can reexpress
∂2ϕ

∂t2
−∇2ϕ+ +m2ϕ = 0. (3.5.9)

The above expression is known as the Klein-Gordon equation. We can define the d’alembertian operator � as

� ≡ ∂2

∂t2
−∇2, (3.5.10)

such that the equation (3.5.9) takes the form

(� +m2)ϕ(r, t) = 0. (3.5.11)

Is easy to show that the associated Lagrangian density is

L =
1

2

[(
∂ϕ

∂t

)2

− (∇ϕ)
2 −m2ϕ2

]
=

1

2

[
∂µϕ∂µϕ−−m2ϕ2

]
, (3.5.12)

and the Hamiltonian density yields

H =
1

2

[(
∂ϕ

∂t

)2

+ (∇ϕ)
2

+m2ϕ2

]
. (3.5.13)

We can see that the Lagrangian density is Lorentz-invariant, while the Hamiltonian density is describing an energy
density that cannot be invariant. For this reason, relativistic theories are usually specified via the Lagrangian
density.

Real Scalar Field

In order to quantize the fields solutions of the Klein-Gordon equation, we first consider a Lorentz invariant real
scalar field enclosed in a large periodic box of volume Ω and expanded in a Fourier series

ϕ(r, t) =
1√
Ω

∑
k

qk(t)eik·r, (3.5.14)

where
q∗k(t) = q−k(t) (3.5.15)

and assuming that this field satisfies the Klein-Gordon equation, we have

q̈k + ω2
kqk = 0, (3.5.16)

where
ω2
k = k2 +m2. (3.5.17)
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We have that this system is equivalent to have a collection of harmonic oscillators, and we can quantize it imposing
the commutation relations

i[q̇†k(t), qk′(t)] = δkk′

[qk(t), qk′(t)] = 0 (3.5.18)

that imply
i[ϕ̇(r, t), ϕ(r′, t)] = δ3(r− r′)

[ϕ(r, t), ϕ(r′, t)] = 0. (3.5.19)

We can write the solution in the form

qk(t) =
1√
2ωk

[ake
−iωkt + a†−ke

iωkt]. (3.5.20)

We see that (3.5.20) will imply

[ak, a
†
k′ ] = δkk′

[ak, ak′ ] = 0. (3.5.21)

Then we can identify that ak is an annihilation operator and a†k′ a creation operator for a boson. Hence, the
time-dependent quantized-field operator can be represented in the form

ϕ(r, t) =
1√
Ω

∑
k

1√
2ωk

[ake
i(k·r−ωkt) + a†ke

−i(k·r−ωkt)]. (3.5.22)

Here we can see that the notion of particle in field theories is related with normal modes or quanta of excitation
of the field. We can decompose a wave in a superposition of normal modes and the independence of these, in a
first approximation, give us tools to make a simpler analysis; this independence is the source of the name particle.
The mode k has frequency ωk, and the energy h̄ωk is called the energy quantum of the mode.

Now in words of Sunny Y. Auyang: Normal modes, field quanta, and particles are good concepts for describing
continuous system only when the coupling between them is negligible. This condition is not always satisfied. For
instance, the modes of a string cannot be regarded as independent of each other when the vibration is violent
enough to become anharmonic. Similarly, when quantum fields interact, quanta can be excited and deexcited
easily so that the static picture of free fields depicted above no longer applies. That is why field theorists say
particles are epiphenomena and the concept of particle is not central to the description of fields.

If we replace the last expression (3.5.22) in the Hamiltonian density (3.5.13) we obtain a diagonalized form
for the Hamiltonian

H =
∑
k

ωk

(
a†kak +

1

2

)
. (3.5.23)

Here we have encountered a zero-point energy divergence, that can be extracted out with a cutoff procedure;
at the end, the cutoff has no physical relevance, since the energy of any state relative to the vacuum is independent
of it.

The energy of a particle is given by

ωk =
√

k2 +m2 (3.5.24)

where k is its momentum and m is the rest mass. In this frame, the total momentum operator reads

p =
∑
k

ka†kak. (3.5.25)

As we have seen above, the time evolution of the fields is given by the Heisenberg equation

∂ϕ(r, t)

∂t
= −i[ϕ(r, t), H]. (3.5.26)
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The formal solution is
ϕ(r, t) = eiHtϕ(r, 0)e−iHt, (3.5.27)

substituting this in the expansion (3.5.22) we have

ϕ(r, t) =
1√
Ω

∑
k

1√
2ωk

eiHt[ake
ik·r + a†ke

−ik·r]e−iHt. (3.5.28)

Using the identity for two operators A and B

eABe−A = B + [A,B] +
1

2
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · , (3.5.29)

and for the free Hamiltonian we have
eiHtake

−iHt = ake
−iωkt. (3.5.30)

Following this line, we have that the 4-momentum is defined as

pµ =
∑
k

kµa†kak, (3.5.31)

then, using the same identity,
eipxake

−ipx = ake
−ikx (3.5.32)

and the commutator [pµ, ak] is
[pµ, ak] = −kµak. (3.5.33)

Therefore,
[pµ, ϕ(x)] = i∂µϕ(x). (3.5.34)

That is showing us that pµ is the generator of spacetime translations.
Now, in the limit Ω→∞, the values of k approach a continuum, thus we can make the replacements

1

Ω

∑
k

→
∫

d3k

(2π)3
, (3.5.35)

Ωδkk′ → (2π)3δ3(k− k′). (3.5.36)

Following this line, we define continuum versions of the annihilation and creation operators as

a(k) ≡ Ωak (3.5.37)

a†(k) ≡ Ωa†k. (3.5.38)

Then the commutators will have the form

[a(k), a†(k)] = (2π)3δ3(k− k′), (3.5.39)

[a(k), a(k′)] = 0. (3.5.40)

Within these forms, we are able to represent the field as a Fourier integral

ϕ(r, t) =

∫
d3k

(2π)3

1√
2ωk

[a(k)ei(k·r−ωkt) + a†(k)e−i(k·r−ωkt)]. (3.5.41)

As before, we define the vacuum state |0〉 as a(k) |0〉 = 0 with 〈0|0〉, then the one-particle state is defined by

|1k〉 = a†(k) |0〉 . (3.5.42)
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With the commutations relations we have

a(k) |1p〉 = (2π)3δ3(k− p) |0〉 , (3.5.43)

and with this, the single-particle wave function is

〈0|ϕ(x)|1k〉 =
ei(k·r−ωkt)

√
2ωk

. (3.5.44)

In the same form, the Hamiltonian and total momentum take the forms

H =

∫
d3k

(2π)3
ωka

†(k)a(k), (3.5.45)

p =

∫
d3k

(2π)3
ka†(k)a(k) (3.5.46)

Complex Scalar Field

We define a complex scalar field as field where the real and imaginary parts are real scalar fields. In this form,
we can find a new symmetry between the tow fields, it bring us a conserved current that can be interpreted as
electric charge. That is to say, the complex field can have electric charge while the real field must be neutral.

We express the complex scalar field as

ψ(r, t) =
1√
2

(ϕ1(r, t) + iϕ2(r, t)). (3.5.47)

The Lagrangian density has the form [38]

(3.5.48)

L(x) = ∂µψ†(x)∂µψ(x)−m2ψ†(x)ψ(x)

=
1

2

2∑
i=1

[∂µϕi(x)∂µϕi(x)−m2ϕi(x)ϕi(x)].

Within this Lagrangian density, we quantize the system imposing the following commutation relations

i[ϕ̇i(r1, t), ϕj(r2, t)] = δijδ
3(r1 − r2), (3.5.49)

[ϕi(r2, t), ϕj(r2, t)] = 0. (3.5.50)

In this case the complex field ψ(r, t) becomes a non-Hermitian operator satisfying

i[ψ̇†(r1, t), ψ(r2, t)] = δ3(r1 − r2), (3.5.51)

[ψ̇(r1, t), ψ(r2, t)] = [ψ†(r1, t), ψ(r2, t)] = [ψ(r1, t), ψ(r2, t)] = 0. (3.5.52)

Here, the canonical conjugate to ψ is ψ̇. Thus, we can expand ϕj in terms of annihilation and creation operators

ϕj(r, t) =
1√
Ω

∑
k

1√
2ωk

[ajke
i(k·r−ωkt) + a†jke

−i(k·r−ωkt)], j = 1, 2, (3.5.53)

where such operators satisfy the commutation relations

[aik, a
†
jk′ ] = δijδkk′ , (3.5.54)
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[aik, ajk′ ] = 0. (3.5.55)

Therefore, the complex scalar field takes the form

ψ(r, t) =
1√
Ω

∑
k

1√
2ωk

[bke
i(k·r−ωkt) + c†ke

−i(k·r−ωkt)] (3.5.56)

and

ψ(r, t) =
1√
Ω

∑
k

1√
2ωk

[b†ke
−i(k·r−ωkt) + cke

i(k·r−ωkt)] (3.5.57)

being

bk =
1√
2

(a1k + ia2k) (3.5.58)

ck =
1√
2

(a1k − ia2k) (3.5.59)

with commutation relations
[bk, b

†
k′ ] = δkk′ (3.5.60)

[ck, c
†
k′ ] = δkk′ (3.5.61)

[bk, bk′ ] = [ck, ck′ ] = [bk, ck′ ] = 0. (3.5.62)

As above, making the necessary replacements, the Hamiltonian and the momentum in terms of these operators,
yield

H =
∑
k

ωk(a†1ka1k + a†2ka2k) =
∑
k

ωk(b†kbk + c†kck) (3.5.63)

p =
∑
k

ωkk(a†1ka1k + a†2ka2k) =
∑
k

ωkk(b†kbk + c†kck). (3.5.64)

Thus we have here two type of quanta which can be designated either as a1 and a2 quanta or b and c quanta.
Studying the conserved current we shall see that only the b and c quanta have definite charge.

The current density for the complex scalar field is defined by

jµ = ψ∂µψ∗ − ψ∗∂µψ =
1

2
(ϕ2∂

µϕ1 − ϕ1∂
µϕ2), (3.5.65)

which satisfies the conservation law ∂µj
µ = 0, expanding

∂j0

∂t
+∇ · j = 0. (3.5.66)

If we integrating both sides over a spatial volume, we obtain∫
d3x

∂j0

∂t
=

d

dt

∫
d3xj0 = 0

dQ

dt
= 0 (3.5.67)

being Q the total charge operator

(3.5.68)

Q =
d

dt

∫
d3xj0

=
∑
k

(a†1ka
†
2k − a

†
2ka1k)

=
∑
k

(b†kbk − c
†
kck).
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Then, the b quantum carries one unit of positive charge and the c quantum carries one unit of negative
charge. Since a1 and a2 quanta are linear combination of b and c, would not have definite charge. By convention,
c quanta is taken as an antiparticle. With this frame, the positive-frequency part of ψ annihilates a particle and
its negative-frequency part creates an antiparticle.

3.6 The Vacuum

As we stablish before, we have defined the vacuum state |0〉 as

a(k) |0〉 = 0, ∀k. (3.6.1)

Equally if we evaluate the expression (3.5.23) in the vacuum state, we have a divergence. Let us express the
Hamiltonian in the continuum limit in order to clarify this situation. In the Hamiltonian

H =
1

2

∫
d3r

[
π2 + (∇ϕ)2 +m2ϕ2

]
,

we replace the Fourier integral representation of the fields, such that, the before expression yields

H =
1

2

∫
d3rd3kd3q

(2π)6

[
−
√
ωkωq

2

(
a(k)eik·r−ωkt − a†(k)e−i(k·r−ωkt)

)(
a(q)eiq·r−ωqt − a†(q)e−i(q·r−ωqt)

)
1

2
√
ωkωq

(
ika(k)eik·r−ωkt − ika†(k)e−i(k·r−ωkt)

)(
iqa(q)eiq·r−ωqt − iqa†(q)e−i(q·r−ωqt)

)
+

m2

2
√
ωkωq

(
a(k)eik·r−ωkt + a†(k)e−i(k·r−ωkt)

)(
a(q)eiq·r−ωqt + a†(q)e−i(q·r−ωqt)

)]
=

1

4

∫
d3k

(2π)3ωk

[(
−ω2

k + k2 +m2
)

(a(k)a(−k) + a†(k)a†(−k)) +
(
ω2
k + k2 +m2

)
(a(k)a†(k) + a†(k)a(k))

]
,

(3.6.2)

where we have integrated over d3r to get delta functions δ3(k ± q), which allow us to perform the d3q integral.
We know that ω2

k = k2 +m2, then

(3.6.3)
H =

1

2

∫
d3k

(2π)3
ωk

[
a(k)a†(k) + a†(k)a(k)

]
=

∫
d3k

(2π)3
ωk

[
a†(k)a(k) +

1

2
(2π)3δ3(0)

]
.

The last expression is showing us a delta function evaluated at zero, where it has its infinite spike. Furthermore,
the integral over ωk diverges at large k. Moreover,

H |0〉 ≡ E0 |0〉 =

[∫
d3k

1

2
ωkδ

3(0)

]
|0〉 =∞|0〉 . (3.6.4)

This infinite is telling us that we have two situations here, either we are doing something wrong or asking
the wrong question. Furthermore, we have two kinds of infinites here. The first is showing us information about
the infiniteness of the space (this kind of infinite is referred as infra-red divergences). To extract out this infinite,
we can put the theory in a box with sides of length L and we impose periodic boundary conditions on the field.
Then we have

(2π)3δ3(0) = lim
L→∞

∫ L/2

−L/2
d3reik·r

∣∣∣∣∣
k=0

= lim
L→∞

∫ L/2

−L/2
d3r = V, (3.6.5)
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being V the volume of the box. Therefore, the divergence due to δ(0) is obtained because we are computing the
total energy, instead the energy density E0. To find E0 we divide by the volume

E0 =
E0

V
=

∫
d3k

(2π)3

1

2
ωk, (3.6.6)

which is still infinite. In this expression we can evidence the sum of ground state energies for each mode of
oscillation. It is clear that E0 → ∞ due to the |k|→ ∞ limit of the integral. This is a high frequency (or short
distance) infinity known as an ultra-violet divergence. This result allows the physical situation where arbitrarily
short distance scales has access to arbitrarily high energies. This situation makes no sense in the real world.
Then, the integral should be cut-off at high momentum in order to reflect the fact that the theory is likely to
break down in some way.

3.6.1 The Casimir Effect

When we use the normal ordering, we are setting E0 = 0, taking into account that we are measuring only energies
differences. However, there are situations where we can measure differences in the energy of vacuum fluctuations;
information that is hold out with the normal ordering.

The Casimir effect is one of these situations where the vacuum fluctuations are explicitly manifest and its
effects can be direct measure.

The study of this effect is a great example where we apply the cut-off technique to regulate the ultra-violet
divergences. To regulate the infra-red divergences, we shall make one direction periodic with size L and impose
the following boundary conditions

ϕ(r) = ϕ(r + Ln̂), (3.6.7)

being n̂ = (1, 0, 0). Now we insert two reflecting plates, separated by a distance d � L in the x direction. The
plates give us the condition ϕ(x) = 0 at the position of the plates. Then, the presence of these plates affects the
Fourier decomposition of the field, and bring us a quantized momentum of the field inside the plates

p =
(nπ
a
, py, pz

)
. (3.6.8)

For a massless scalar field, the fundamental energy state between the plates is

E(a)

A
=

∞∑
n=1

∫
dpydpz
(2π)2

1

2

√(nπ
a

)2

+ p2
y + p2

z, (3.6.9)

and the energy outside the plates is E(L− a). The total energy is

E = E(a) + E(L− a) (3.6.10)

Physically we could argue that any real plate cannot reflect waves of arbitrarily high frequency. Mathemat-
ically, we want to find a way to neglect modes of momentum p � λ−1 for some distance scale λ � a, known as
the ultra-violet cut-off.
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Casimir’s Plaques

Vacuum
Fluctuations

Figure 3.1: Schematic diagram of the Casimir effect and modification of vacuum fluctuations.

One way to do this, is changing the integral (3.6.9) to

E(a)

A
=

∞∑
n=1

∫
dpydpz
(2π)2

1

2

√(nπ
a

)2

+ p2
y + p2

ze
−λ

√
(nπa )

2
+p2y+p2z , (3.6.11)

where we can evidence that as λ → 0 we recuperate the integral (3.6.9). In order to explain the procedure we
may look the problem in d = 1 + 1 dimensions. In this case, the energy is given by

E(a) =
π

2a

∞∑
n=1

n. (3.6.12)

We now regulate this sum by introducing the UV cut-off λ. Then we have

(3.6.13)

E(a, λ) =
π

2a

∞∑
n=1

ne−λnπ/a

= −1

2

∂

∂λ

∞∑
n=1

e−λnπ/a

= −1

2

∂

∂λ

1

1− e−λπ/a

=
π

2a

eλπ/a

(eλπ/a − 1)2
,

using the expansion
ex

(ex − 1)2
=

1

x2
− 1

12
+

x2

240
+O

(
x4
)
, (3.6.14)
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we obtain
E(a, λ) =

a

2πλ2
− π

24a
+O(λ2). (3.6.15)

Thus the full energy takes de form

E = E(a, λ) + E(L− a, λ) =
L

2πλ2
− π

24

(
1

a
+

1

L− a

)
+O(λ2). (3.6.16)

The expression of force is given by
∂E

∂a
=

π

24a2
+ · · · . (3.6.17)

Then as we remove both regulators, and take λ→ 0 and L→∞, the force between the plates remains finite.
This is the Casimir force

3.7 Causality and Wave Equation Solutions

We have that events at two space-time points lying outside of each other’s light cone cannot influence each other
The condition of microcausality tell us that two fields operators at points separated by a spacelike interval

must commute
[ϕ(x), ϕ(x′)] = 0

if (x − x′)2 < 0. This commutator at fixed x′ satisfies the Klein-Gordon equation, because ϕ(x) does. We can
equate it with its vacuum expectation value

[ϕ(x), ϕ(y)] = 〈0|[ϕ(x), ϕ(y)]|0〉 ≡ i∆(x− y). (3.7.1)

This object is a Lorentz-invariant correlation function ∆(x− y), which depends on x− y, and not on x and y
separately, because of the translational invariance of the vacuum state. We use the expansion (3.5.22) to obtain

〈0|ϕ(r, t)ϕ(0)|0〉 =

∫
d3k

(2π)32ωk
ei(k·r−ωkt) (3.7.2)

〈0|ϕ(0)ϕ(r, t)|0〉 =

∫
d3k

(2π)32ωk
e−i(k·r−ωkt). (3.7.3)

Subtracting one from the other, we have

∆(x) = −i 〈0|[ϕ(r, t), ϕ(0)]|0〉 = −
∫

d3k

(2π)3

sin(k · r− ωkt)

ωk
(3.7.4)

The propagation of a field particle in the vacuum is described by the correlation function

∆(+)(x2 − x1) = −i 〈0|ψ(x2)ψ†(x1) |0〉 (3.7.5)

in which ψ†(x1) creates a particle from the vacuum at x1, which is annihilated by ψ(x2) at x2. This makes sense
physically when t2 > t1. Analogously, the correlation function

∆(−)(x2 − x1) = −i 〈0|ψ†(x1)ψ(x2) |0〉 (3.7.6)

describes the propagation of an antiparticle from x2 to x1. Equally, this makes sense physically when t1 > t2.
We can use either ∆(+) or ∆(−) to obtain a correlation function that has physical meaning. This propagator is
the Feynman propagator or causal propagator

∆F (x2 − x1) = −i 〈0|Tψ(x2)ψ†(x1) |0〉 , (3.7.7)
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where the time-ordering operator T rearranges the operators, such that the operators stand in such order that
time increases from right to left

TA(t2)B(t1) =

{
A(t2)B(t1) for t2 > t1

B(t1)A(t2) for t1 > t2
(3.7.8)

This is showing us that for t2 > t1, the Feynman propagator is describing the propagation of a particle from x1

to x2; when t1 > t2, the propagator is describing the propagation of an antiparticle from x2 to x1.
In order to calculate the propagator, as before, we start with

∆F (x) = −i

{
〈0|ψ(x)ψ†(0) |0〉 for x0 > 0

〈0|ψ†(0)ψ(x) |0〉 for x0 < 0
(3.7.9)

now, we insert an identity operator with a complete set of states

∆F (x) = −i
∫

d3k

(2π)3

{
〈0|ψ(x) |k〉 〈k|ψ†(0) |0〉 for x0 > 0

〈0|ψ†(0) |k〉 〈k|ψ(x) |0〉 for x0 < 0
. (3.7.10)

Using ψ(x) = eipxψ(0)e−ipx, and changing the integration variable from k to −k, we obtain

∆F (x) = −i
∫

d3k

(2π)3
|〈0|ψ(0) |0〉 |2eik·re−iωk|t|. (3.7.11)

Using the integral representation

e−iωk|t| =
iω

π

∫ ∞
−∞

dk0
eik0t

k2
0 − ω2

k + iη
, η → 0+, (3.7.12)

we obtain

∆F (x) =

∫
d4k

(2π)4
2ωk|〈0|ψ(0) |0〉 |2 eikx

k2 −m2 + iη
, η → 0+, (3.7.13)

where from (3.5.44) we have

|〈0|ψ(0) |0〉 |2=
1

2ωk
. (3.7.14)

Thus,

∆F (x) =

∫
d4k

(2π)4

eikx

k2 −m2 + iη
, η → 0+. (3.7.15)

If we operate both sides of the last expression by � +m2 we finally obtain

(� +m2)∆F (x) = −δ4(x), (3.7.16)

this is showing us that the Feynman propagator is a Green’s Function of the Klein-Gordon equation.

3.8 Field Quantization in Minkowski Space

In this chapter we consider the quantization of a scalar field ϕ(r, t) defined in all points (r, t) of an n-dimensional
Minkowski spacetime. We adopt the notation where a spacetime point (r, t) is referred as x. As before, to quantize
the theory, we need the Lagrangian density, in this case reads

L(x) =
1

2

(
ηµν∂µϕ∂νϕ−m2ϕ2

)
. (3.8.1)
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The canonically conjugate variable to the field ϕ(r, t) is

π(r, t) =
∂L

∂(∂tϕ)
= ∂tϕ. (3.8.2)

With that object, we construct the following algebra, in order to quantize the field ϕ(r, t),

[ϕ(r, t), ϕ(r′, t)] = 0, (3.8.3)

[π(r, t), π(r′, t)] = 0, (3.8.4)

[ϕ(r, t), π(r′, t)] = iδn−1(r− r′). (3.8.5)

As we see before, using the Heisenberg equation we can show that the field satisfies the field equation

(� +m2)ϕ = 0, (3.8.6)

where � ≡ ηµν∂µ∂ν , being ηµν the Minkowskian metric tensor, while the quantity m is interpreted as the mass
of the field quanta when the theory is quantized.

One set of solutions of (3.8.6) is
uk(r, t) ∼ ei(k·r−ωkt), (3.8.7)

where
ωk =

√
k2 +m2, (3.8.8)

being

k ≡ |k|=

(
n−1∑
i=1

k2
i

)1/2

, (3.8.9)

and the Cartesian components of k can take the values −∞ < ki < ∞, i = 1, ..., n − 1. Furthermore, we define
the modes (3.8.7) as positive-frequency modes with respect to t, being eigenfunctions of the operator ∂/∂t

∂

∂t
uk(r, t) = −iωkuk(r, t), ωk >∞. (3.8.10)

We define the scalar product

(3.8.11)
(ϕ1, ϕ2) = −i

∫
{ϕ1(x)∂tϕ

∗
2(x)− [∂tϕ1(x)]ϕ∗2(x)} dn−1x

= −i
∫
t

ϕ1(x)~∂tϕ
∗
2(x)dn−1x,

where t denotes a spacelike hyperplane of simultaneity at instant t. Then, under this scalar product,

(uk, uk′) = 0, k 6= k′. (3.8.12)

Choosing an appropriate normalization factor, such that,

uk(r, t) =
1√

2ωk(2π)n−1
ei(k·r−ωkt), (3.8.13)

the expression (3.8.12) yields
(uk, uk′) = δn−1(k− k′). (3.8.14)
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As we can observe, with the before expressions, the field modes and their respective complex conjugates form
a complete orthonormal basis under the scalar product (3.8.11), then ϕ(r, t) can be expanded as

ϕ(r, t) =
∑
k

[akuk(r, t) + a†ku
∗
k(r, t)], (3.8.15)

where from the commutation relations, we can obtain an algebra for the operators ak, a
†
k

[ak, a
†
k′ ] = 0, (3.8.16)

[a†k, a
†
k′ ] = 0, (3.8.17)

[ak, a
†
k′ ] = δkk′ . (3.8.18)

As before, the vectors constructed from the vector |0〉, defined by

ak |0〉 = 0, ∀k, (3.8.19)

span a Fock space in the sense that one-particle state is

|1k〉 = a†k |0〉 (3.8.20)

and the many-particle state is ∣∣1k1
, 1k2

, ..., 1kj
〉

= a†k1
a†k2
· · · a†kj |0〉 , (3.8.21)

if all k1,k2, ...,kj are distinct. When any a†k is repeated, we have∣∣1nk1
,2 nk2

, ...,j nkj
〉

= (1n!2 n! ...jn! )−1/2(a†k1
)
1n(a†k2

)
2n · · · (a†kj )

jn |0〉 , (3.8.22)

where the n! terms are indicating the Bose statistics of identical scalar particles. Now, as before, for each k

a†k |nk〉 =
√
n+ 1 |(n+ 1)k〉 , (3.8.23)

ak |nk〉 =
√
n |(n− 1)k〉 . (3.8.24)

These basis vectors are normalized according to

(3.8.25)
〈

1nk1 ,
2 nk2 , ...,

r nkr
∣∣ 1mk′1

,2mk′2
, ...,smk′s

〉
= δrs

∑
α

δ1nα(1)m · · · δrnα(s)mδk1k′α(1)
· · · δrk′

α(s)

where the sum is over all permutations α of the integers 1...s.
We define the stress tensor Tµν as

Tµν = ∂µϕ∂νϕ−
1

2
ηµνη

ρσ∂ρϕ∂σϕ+
1

2
m2ϕ2ηµν , (3.8.26)

from which we obtain the Hamiltonian density

Ttt =
1

2

[
(∂tϕ)2 +

n−1∑
i=1

(∂iϕ)2 +m2ϕ2

]
(3.8.27)

and the momentum density
Tti = ∂tϕ∂iϕ, i = 1, ..., n− 1, (3.8.28)
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in terms of Minkowski coordinates. Following the standard procedure, we substitute the expansion of the field
(3.8.15) in the Hamiltonian density (3.8.26) and integrating over all space, we have

H =

∫
t

Tttd
n−1x =

1

2

∑
k

ωk(a†kak + aka
†
k) (3.8.29)

pi =

∫
t

Ttid
n−1x =

∑
k

kia
†
kak. (3.8.30)

Using the commutation relations, we could found that the vacuum energy divergence is in the quantum field
theory in Minkowski space too

H =
∑
k

ωk

(
a†kak +

1

2

)
. (3.8.31)

This divergence can be extracted out with the renormalization procedure or with the normal ordering opera-
tion.

3.8.1 Green Functions

As we see before, vacuum expectation values of varius products of free field operators can be identified with
various Green functions of the wave equation. Here we define another set of Green functions from the expectation
values of commutators and anticommutators of the field. We define the Pauli-Jordan or Schwinger function as

iG(x, x′) = 〈0| [ϕ(x), ϕ(x′)] |0〉 , (3.8.32)

and the Hadamard’s elementary function is given by

G(1)(x, x′) = 〈0| {ϕ(x), ϕ(x′)} |0〉 . (3.8.33)

Expanding the commutator and anticommutator, these Green functions can be split into their positive and
negative frequency parts as

iG(x, x′) = G+(x, x′)−G−(x, x′), (3.8.34)

G(1)(x, x′) = G+(x, x′) +G−(x, x′), (3.8.35)

where G± are known as the Wightman functions, given by

G+(x, x′) = 〈0|ϕ(x)ϕ(x′) |0〉 , (3.8.36)

G−(x, x′) = 〈0|ϕ(x′)ϕ(x) |0〉 . (3.8.37)

As before, in the Minkowski space, we can define the Feynman propagator GF as a time ordered product of
the fields and as a combination of Wightman functions as follows,

(3.8.38)iGF (x, x′) = 〈0|T (ϕ(x)ϕ(x′)) |0〉
= Θ(t− t′)G+(x, x′) + Θ(t+−t)G−(x, x′).

The retarded Green function is defined as

GR(x, x′) = −Θ(t− t′)G(x, x′), (3.8.39)

while the advanced Green function is defined by

GA(x, x′) = Θ(t′ − t)G(x, x′) (3.8.40)
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and their averaged is

Ḡ(x, x′) =
1

2
[GR(x, x′) +GA(x, x′)], (3.8.41)

which can be used to define the Feynman propagator as follows

GF (x, x′) = −Ḡ(x, x′)− i

2
G(1)(x, x′). (3.8.42)

It is easy to show that G, G(1), G± all satisfy the homogeneous equation

(�x +m2)G(x, x′) = 0. (3.8.43)

The same form, using ∂tΘ(t− t′) = δ(t− t′), we obtain that the Feynman propagator and the retarded and
advanced Green functions satisfy

(�x +m2)GF (x, x′) = −δn(x, x′), (3.8.44)

(�x +m2)GR,A(x, x′) = δn(x, x′). (3.8.45)

The Green functions GF,R,A describe the propagation of field disturbances subject to certain boundary con-
ditions [12]. If we write explicitly the expansion (3.8.15) in the definitions of the Green functions as vacuum
expectation values, we find that all the Green functions can be represented as

G =
1

(2π)n

∫
eik·(x−x

′)−ik0(t−t′)

(k0)2 − |k|2−m2
dnk. (3.8.46)

The integral has poles at k0 = ±
√
|k|2+m2. Using complex analysis tools, we can perform a contour integral

for k0. The distinct choose of the contours that enclose the poles are referring the boundary conditions of the
fields and will determine which of the various Green functions is obtained from (3.8.46).

Figure 3.2: Contours of integration.
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Chapter 4
Field Quantization in Curved Space

In this chapter we present some generalizations of results from the previous chapter. We present the canonical
quantization of fields in curved space-times. Here we have a quantum field propagating in curved space-times,
the basic background for general relativity. With this formalism we can study the effects of quantum field on
geometry and vice versa. When we have these quantum fields propagating in a classical curved background
produced by a stress-energy tensor, we are working a semi-classical regime. Since the semi-classical treatment
of electrodynamics, where the electromagnetic field was a classic entity interacting with quantum systems, gave
results that consolidated the path from a full quantum theory of electrodynamics (quantum electrodynamics),
is expected that this semi-classical treatment of gravity bring some aspects in order to advance forwards a full
quantum theory of the gravitational interaction.

4.1 Real scalar field quantization

Let us consider a n-dimensional manifold, globally hyperbolic (M, gµν) equipped with a metric gµν and a quantum
scalar field ϕ which is propagating in this manifold. The generalization of the expression of the classic action of
a free real scalar field, of mass m, which propagates in the Minkowski space to curved space is

S = −1

2

∫
dnx
√
−g
[
gµν∂µϕ∂νϕ+ (m2 + ξR)ϕ2

]
, (4.1.1)

where n is the dimension, g = det gµν is the determinant of the metric gµν , ξ is a constant and R is the Ricci
scalar of curvature. When the coupling between the field and the geometry is minimum, we have ξ = 0. In the
case of a massless field, we have ξ = ξn = (n − 2)/(4n − 4). Within this ξn the action is an invariant under
conformal transformations

g̃µν(x) = Ω2(x)gµν , ϕ = Ω(2−n)/2ϕ. (4.1.2)

Following the standard procedure, from the action (4.1.1) we obtain the equation of motion for the field(
−� +m2 + ξR

)
ϕ = 0, (4.1.3)

where � = gµν∇µ∇ν = (−g)−1/2∂µ[(−g)1/2gµν∂νϕ], being ∇µ the covariant derivative.
As we did in the Minkowski space, in order to quantize the theory, we generalize the scalar product (3.8.11)

as

(ϕ1, ϕ2) = −i
∫

Σ

√
−g[ϕ1∂µϕ

∗
2 − (∂µϕ1)ϕ∗2]dΣµ, (4.1.4)
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where dΣµ = n̂µdΣ denotes the volume element, being n̂µ an unitary vector oriented to the future, orthogonal
to the space-like hypersurface Σ. From Gauss’s theorem, on can show that if ϕ1 and ϕ2 are solutions of the field
equation (4.1.3) that decay such that are null at the spatial infinite, the product (ϕ1, ϕ2) is independent of the
space-like hypersurface Σ. The product (4.1.4) satisfy

(ϕ1, ϕ2)∗ = −(ϕ∗1, ϕ
∗
2) = (ϕ2, ϕ1), (4.1.5)

(ϕ1, ϕ
∗
1) = 0. (4.1.6)

The solutions of the field equation (4.1.3) can be expanded as

ϕ(x) =
∑
k

[akuk(x) + a†ku
∗
k(x)], (4.1.7)

where the complete set of functions uk(x) under the product (4.1.4) satisfy

(uk(x), uk′(x)) = δkk′ (4.1.8)

(uk(x), u∗k′(x)) = 0. (4.1.9)

Therefore, from the usual commutation relations, we have the usual commutation relations (3.8.16), (3.8.17),
(3.8.18) for the coefficients ak = (ϕ(x), uk(x)), now operators. Then, we define the vacuum state |0〉 as ak |0〉 = 0
∀k and construct the corresponding Fock space. We could make a different choice in the functions for expand the
solutions of (4.1.3), then the definition of vacuum and particles have a inherent ambiguity. For instance, we can
use a set of functions ūp(x) instead uk(x) such that (ū∗p, uk) 6= 0 (for any k and p) and we define a new vacuum

state as āk |0̄〉 = 0, being āk = (ϕ, ūk), we obtain that ak |0̄〉 = (ϕ, uk) |0̄〉 =
∑

p(ū∗p, uk)ā†p |0̄〉 6= 0. Then, the two
Fock spaces spanned from the distinct choices uk and ūp are different. The physical implications of this situation
will be discussed later.

We construct the Green’s functions in the usual form. We first define the elementary Hadamard function

G(x, x′) = 〈0| {ϕ(x), ϕ(x′)} |0〉 (4.1.10)

and the Feynman propagator

GF (x, x′) = i 〈0|T [ϕ(x), ϕ(x′)] |0〉 . (4.1.11)

These functions satisfy

[�x −m2 − ξR]G(x, x′) = 0, (4.1.12)

[�x −m2 − ξR]GF (x, x′) = −(−g)−1/2δ(x, x′). (4.1.13)

The elementary Hadamard function can be obtained from the Feynman propagator as follows

G(x, x′) = 2Im[GF (x, x′)]. (4.1.14)

We can evidence that the mean value of square of the field
〈
ϕ2
〉

may be expressed as

〈
ϕ2
〉

=
1

2
lim
x→x′

G(x, x′) =
1

2
lim
x→x′

Im[GF (x, x′)]. (4.1.15)

As we see before, the stress-energy tensor can be obtained from the action by the definition

Tµν = − 2√
−g

δS

δgµν
. (4.1.16)
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From the action (4.1.1) we have

(4.1.17)
Tµν = (1− 2ξ)∂µϕ∂νϕ− 2ξϕ∇µ∇νϕ+ 2ξgµνϕ�ϕ

+ ξϕ2Gµν +

(
2ξ − 1

2

)
gµν∂γ∂

γϕ− m2

2
gµνϕ

2,

where Gµν = Rµν − gµνR/2 is the Einstein tensor.
We could here define the corresponding quantum operator after adopt a convention for a normal operator

ordering and after would replace in that expression the quantum field operator in the place of the classic field.
This procedure will take the product of two distributions valued at the same point, which is not well defined.
Therefore, is necessary apply a regularization method. If we calculate the mean value 〈Tµν〉 for a given quantum
state it will be divergent. These divergences are ultra-violet, since they appear when we take the product of two
distributions valued at the same point. Thus, in order to characterize those objects we must study the behaviour
of such products for distinct but too close points. We can adopt the Weyl prescription for the operator ordering
where, for instance, the term ϕ∇µ∇νϕ is replace by {ϕ,∇µ∇νϕ}/2, where {, } denotes the anticommutator.

4.2 Construction of
〈
ϕ2
〉
ren

and 〈Tµν〉ren
In this section we resume some methods used for obtain the renormalized quantities related to

〈
ϕ2
〉

and 〈Tµν〉.
The mena value 〈Tµν〉 is an important quantity because it is a fundamental object when we are studying the
effects of the quantum fields on the space-time geometry. we can perceive the it self is appearing as font in the
semi-classical Einstein field equations

Gµν + Λgµν = 8π 〈Tµν(x)〉 . (4.2.1)

For the above equation becomes meaningful, we can use a regularization method, expressing 〈Tµν(x)〉 as a
sum of a divergent part and a finite part

〈Tµν(x)〉 = 〈Tµν(x)〉div + 〈Tµν(x)〉ren . (4.2.2)

This separation of the divergent terms is so far to be trivial. The divergent part must be cancellated with
an adequate counter-terms, on the other hand, the left side of the equation (4.2.2) satisfies the Bianchi identity
∇µGµν = 0, then we must have ∇µ 〈Tµν(x)〉ren = 0, which is guaranteed if we use a covariant regularization
method.

One adequate regularization method is the covariant separation of points which consists in conceive the
momentum-energy tensor evaluate in any x point as the limit when x → x′ of a bi-tensor τµν′(x, x

′) which
transform as a tensor product in x to other one in x′. With this procedure, we can express the momentum-energy
tensor in terms of the Hadamard propagator as follows

(4.2.3)

〈Tµν(x)〉 = lim
x→x′

{
1

4
(1− 2ξ)(G;µ′ν(x, x′) +G;µν′(x, x

′))

− 1

2
ξ(G;µν(x, x′) +G;µ′ν′(x, x

′)) +
1

8
ξgµν(G;σ

;σ(x, x′) +G;σ′

;σ′(x, x
′))

+
n− 1

n
ξ(ξR+m2)G(x, x′)gµν +

1

2
ξGµνG(x, x′)− m2

4
gµνG(x, x′)

+
1

n

(
2ξ − 1

2

)
gµν(G;γ

;γ′(x, x
′) +G;γ′

;γ (x, x′))

}
.

This expression for 〈Tµν(x)〉 is merely formal, since it is divergent and we have quantity that are transforming
as tensors, but in different space-time points. For give a solution to that situation, we can define methods of
parallel transport that bring a certain significance to this expression.
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〈
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〉
REN

AND 〈Tµν〉REN

In order to separate in a covariant form the divergent part, we use a covariant development for the propagator
G1, that has the form known as the Hadamard elementary solution

GH(x, x′) =
u(x, x′)

σ(x, x′)
+ v(x, x′) lnσ(x, x′) + w(x, x′), (4.2.4)

where u, v and w are non singular and symmetric functions and σ(x, x′) = s2(x, x′)/2 is a square of the one half
of the geodesic distance between the points x and x′ if they are content in a normal coordinate environment.

The most used procedure is the so-called Schwinger-De Witt method, that is given by

GSD(x, x′) = −2Im∆1/2(x, x′)

∫ ∞
0

ds

(4iπs)

n/2

exp

(
σ(x, x′)

2s
− im2s

)∑
k≥0

(is)kak(x, x′), (4.2.5)

being ∆1/2(x, x′) = −det[∂µ∂νσ(x, x′)][g(x)g(x′)]−1/2 the Van Vleck’s determinant. The functions ak(x, x′) are
defined by recurrence relations from a0(x, x′) = 1, which guarantee that GSD(x, x′) is a solution of the equation
(4.1.12). It can be showed that this expression has the Hadamard form (4.2.4).

In the limit x → x′ the functions ak(x, x′) are scalars composed by the metric and its derivatives. As k
increases, ak contents more quantity of derivatives of the metric, i. e.,

a1(x, x) = −
(
ξ − 1

6

)
R, (4.2.6)

a2(x, x) =
1

180
(RµνρσR

µνρσ −RµνRµν) +
1

6

(
1

5
− ξ
)
�R+

1

2

(
1

6
− ξ
)2

R2, (4.2.7)

...

In general, the coefficient ak has 2k derivatives of the metric. In this form, we obtain a adiabatic expression
for G, where the adiabatic order is given by the number of derivatives of the metric that are appearing in the
coefficients. Following this line, a1 has an adiabatic order of two and a2 is of fourth adiabatic order.

Introducing the propagator GSD in the equations (4.1.15) and (4.2.3) we obtain a adiabatic expansion for〈
ϕ2(x)

〉
and 〈Tµν(x)〉. Using methods of parallel transport, we can separate in a covariant form the divergent

part of each one. The limit x → x′ is taken at the final of calculus. On the other hand, one can work directly
with x = x′ and use the dimensional regularization method.

For x = x′ is easy perform the integral (4.2.5). Introducing a mass scale µ in order to maintain the correct
units of GDS in an space-time of n̄ dimensions, we obtain

GSD(x, x) = 2
( µ
m

)n̄−n∑
k≥0

ak(x, x)

(4π)n
mn̄−2(k+1)Γ

(
1 + k − n

2

)
. (4.2.8)

We can observe that for n̄ dimensions there is a finite quantity of the series terms that are divergent for n→ n̄,
for instance, the firsts terms with k ≤ int(n/2− 1), where int(x) is the integer part of x. With this, using the
expression (4.1.15) we can characterize the divergent that will appear in the adiabatic expansion of

〈
ϕ2(x)

〉
.

With n dimensions, one can show that de divergences that are appearing in the adiabatic expansion of
〈
ϕ2(x)

〉
and 〈Tµν(x)〉 have coefficients of adiabatic order 2i ≤ 2iumax and 2j ≤ 2jumax, respectively, as

2iumax = 2int
(n

2
− 1
)
, (4.2.9)

2jumax = 2int
(n

2

)
, (4.2.10)
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where the index u (for usual) is for differentiate these results that belong to the case of the usual dimensional
regularization.

Therefore, we define the renormalized mean values by the subtraction〈
ϕ2(x)

〉
ren

=
〈
ϕ2(x)

〉
−
〈
ϕ2(x)

〉(0) − · · · −
〈
ϕ2(x)

〉2imax
, (4.2.11)

〈Tµν(x)〉ren = 〈Tµν(x)〉 − 〈Tµν(x)〉(0) − · · · − 〈Tµν(x)〉(2jmax)
, (4.2.12)

where the index 2l is denoting the term of the adiabatic order of 2l that is contributing to the adiabatic expansion
of the corresponding object.

Here is important to note that the mean values
〈
ϕ2(x)

〉
and 〈Tµν(x)〉 are strongly dependent of the election of

the state for which we take these mean values in contrast to the terms that are subtracting which are independents
of such election. A consequence of this is that not all states will bring us a finite 〈Tµν(x)〉ren. This is due by the
fact that the Hadamard propagator constructed from such states and the derivatives of it self would not have the
same singular structure of the propagator GSD and its derivatives. If the elected state does not bring us a finite
〈Tµν(x)〉ren we can say that such state is not a physical state.

Another important fact of this construction is, because of the method is covariant, we obtain automatically
∇µ 〈Tµν (x)〉ren = 0. It guarantee the consistency with the Einstein’s field equations.

Finally, we know that for the massless and conformal coupling case the momentum-energy tensor is traceless.
From this construction we have a trace anomaly for even dimensions. For n dimensions, this anomaly is given by
the coefficient an/2 in the Schwinger-De Witt expansion. For two and four dimensions we have〈

Tµµ (x)
〉
ren

=
a1

4π
=

R

24π
, n = 2, (4.2.13)

〈
Tµµ (x)

〉
ren

=
a2

16π2
=

1

2880
(RµνρσR

µνρσ −RµνRµν + �R), n = 4. (4.2.14)

4.3 Bogoliubov transformations: A first view

As we can perceive, the field expansion is completely arbitrary and the orthonormal set of functions cannot be
unique. The Bogoliubov transformations will stablish a relationship between the different orthonormal sets of
functions that expand a field. Since each set of functions define a Fock space and then a vacuum state, the
Bogoliubov transformations show that the vacuum state can be expressed in terms of many-particle states from
another quantization scheme. The physical implications of these results results will be discussed later.

Therefore we can also expand the field ϕ in terms of a second complete orthonormal set of modes ūp(x) as

ϕ(x) =
∑
p

[āpūp(x) + ā†pū
∗
p(x)], (4.3.1)

as before, this decomposition will define a new vacuum state |0̄〉

āp |0̄〉 = 0, ∀p (4.3.2)

and a new Fock space.
Since both sets are complete, we can expand the new modes ūp(x) in terms of the old

ūp =
∑
k

(αpkuk + βpku
∗
k). (4.3.3)

Conversely

uk =
∑
p

(α∗pkūp − βpkū∗p). (4.3.4)
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The relations presented above are widely known as Bogoliuvob transformations. The matrices αpk and βpk
are called Bogoliuvob coefficients and by using (4.1.8) and (4.3.3) they can be evaluated as

αpk = (ūp, uk), βpk = −(ūp, u
∗
k). (4.3.5)

In an analogous way, we can express the old annihilation and creation operators in terms of the new by
equating the expansions (4.1.7) and (4.3.1) and using the relations (4.3.3), (4.3.4) and the orthonormality of the
modes, we have

ak =
∑
p

(αpkāp + β∗pkā
†
p) (4.3.6)

and
āp =

∑
p

(α∗pkak − β∗pka
†
k). (4.3.7)

Note the state defined by (4.3.2) will not be annihilated by the operator ak,

ak |0̄〉 =
∑
p

β∗pk |1̄p〉 6= 0. (4.3.8)

From this, we can establish the following properties of the Bogoliubov coefficients∑
q

(αkqα
∗
pq − βkqβ∗pq) = δkp (4.3.9)

∑
q

(αkqβpq − βkqαpq) = 0. (4.3.10)

Following this line, the expectation value of the operator Nk = a†kak for the number if uk-mode particles in
the state |0̄〉 is

〈0̄|Nk |0̄〉 =
∑
p

|βpk|2, (4.3.11)

that fundamental expression is saying us that the vacuum of the ūp modes contains
∑

p|βpk|2 particles in the uk
mode.

If up satisfies
Lξup = −iωup, ω > 0, (4.3.12)

which is to say that up are positive frequency modes with respect to some time-like Killing vector field ξ, and
ūk contains only positive frequencies with respect to ξ, then βpk = 0. Therefore, āk |0〉 = 0 as well ap |0̄〉 = 0.
Then, the two sets of modes up and ūk share a common vacuum state. Now, if any βpk 6= 0, the ūk will contain
a mixture of positive-up and negative-u∗p frequency modes, and particles will be present.

The Fock space based on |0〉 can be related to that based on |0̄〉 using the completeness of the Fock space
basis elements

∣∣1nk1 ,
2 nk2 , ...

〉
=

∞∑
l=0

1

l!

∑
p1···pl

|1̄p1 , 1̄p2 , ..., 1̄pl〉 〈1̄p1 , 1̄p2 , ..., 1̄pl | 1nk1 ,
2 nk2 , ...

〉
, (4.3.13)

where we are following the notation used in [12]∣∣1nk1

〉
= |1k1

, 1k1
, ..., 1k1

〉 /(1nk! )1/2

being the 1k1 repeated 1nk times.
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With these expressions, one can write the vacuum to many-particle amplitudes in terms of the Bogoliubov
coefficients

〈0̄ |1p1
, 1p2

, ..., 1pl〉 =

{
il/2 〈0̄ |0〉

∑
ρ Λρ1ρ2 · · ·Λρl−1ρl for k even

0 for k odd
(4.3.14)

〈1̄p1
, 1̄p2

, ..., 1̄pl | 0〉 =

{
il/2 〈0̄ |0〉

∑
ρ Vρ1ρ2 · · ·Vρl−1ρl for k even

0 for k odd
(4.3.15)

where ρ represents all distinct permutations of {p1, ...,pl} and

Λkp = −i
∑
q

βqpα
−1
kq (4.3.16)

Vkp = i
∑
q

β∗pqα
−1
qk . (4.3.17)

4.4 Vacuum states

From the results obtained in the study of the Schwarzschild problem, we can affirm that a unique choosing of the
system coordinate is completely useless. If we want to stablish the different physical implications of this solution
we must be moving between different coordinates. Since different time choosing will impose different definitions
of the positive frequency modes, we will have different vacuum states.

One of the objectives is calculate the mean value of the energy in these vacuum states. Therefore we shall
stablish a stress-energy tensor that describes the physical situation corresponding to the vacuum choosing. Con-
sidering a non stationary space-time

ds2 = −e−2ξ(u,v)dudv = e2ξ(z,t)(dz2 − dt2), (4.4.1)

the curvature is given by
R = −2�ξ = 8e−2ξ∂u∂vξ, (4.4.2)

where the operator � is defined as
� ≡ 4e−2ξ∂u∂v, (4.4.3)

and the non null Christoffel symbols are Γuuu = 2∂uξ and Γvvv = 2∂vξ.
In this situation we have that the quantum effects, such that fluctuations, will induce a stress-energy tensor

due to the curvature [29]. For a massless scalar field, that stress-energy tensor is given by

Tαα =
}

24π
R, (4.4.4)

which satisfies the relation
∇βTαβ = 0. (4.4.5)

The solution of the equation given by (4.4.4) for any quantum state is given by

Tαβ = Θαβ [ξ] + F out(u)∂αu∂βu+ F in(v)∂αv∂βv, (4.4.6)

where,

Θαβ [ξ] =
}

12π

{
∇β∇αξ + ∂αξ∂βξ − gαβ

[
�ξ +

1

2
(∂αξ∂

αξ)

]}
, (4.4.7)

and ξ, F in, F out, are arbitrary functions. With this in mind, we can define the useful vacuum states
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4.4.1 Boulware state |0〉B
The Boulware state |0〉B is a state that has zero positive frequency modes with respect to the temporal Killing
parameter t of a static space-time. In other words, a static observer wont perceive particles in this state.

Furthermore, if this static space-time is asymptotically flat, the Boulware vacuum in the infinite is indistin-
guishable with the Minkowski vacuum. Additionally if B 〈0 |Tαβ | 0〉B → 0 at the infinite, we make the choose
F in = F out = 0, thus,

B 〈0 |Tαβ | 0〉B = Θαβ [ξ]. (4.4.8)

In the horizon, the variable ξ → −∞, then, in this region, the stress-energy tensor evaluated in the Boulware
vacuum is singular. Therefore, work with the Boulware vacuum in a black hole is not recommended because it is
unstable. This vacuum corresponds to the zero point temperature for the inner space, as is to say, the surrounding
of a static star.

4.4.2 Hartle-Hawking state |0〉H
Considering an eternal static black hole, the Hartle-Hawking vacuum state |0〉H has zero positive frequency
modes with respect the Krustal times U and V . For this case, a free falling observed wont perceive particles in
the horizon.

The stress-energy tensor in this situation is bounded by the future and past horizons H+, H−, respectively.
In the Kruskal coordinates the metric (4.4.1) takes the form

ds2 = −e2ζ(U,V )dUdV, (4.4.9)

where,

ζ = ξ − 1

2
ln[U ′(u)V ′(v)], (4.4.10)

is regular in the horizons. The logarithms are related with the generalized surface gravities as

[lnU ′(u)]′ = κout(u, v = −∞), (4.4.11)

ln[V ′(v)]′ = κin(u =∞, v). (4.4.12)

Thus,
Θαβ [ζ] = Θαβ [ξ] +Hout(u)∂αu∂βu+Hin(v)∂αv∂βv, (4.4.13)

where

Hout(u) =
}

48π

{
([lnU ′(u)]′)2 − 1

2
R(u, v = −∞)

}
, (4.4.14)

Hin(v) =
}

48π

{
([lnV ′(v)]′)2 − 1

2
R(u =∞, v)

}
. (4.4.15)

Since H 〈0 |Tαβ | 0〉H must satisfy the boundary condition imposed by the future and past horizons, it must
have the form

H 〈0 |Tαβ | 0〉H = Θαβ [ζ]. (4.4.16)

A free falling observer will measure the energy value given by (4.4.16) in the horizon, using local lorentzian
coordinates to define its proper notion of positive frequency. Furthermore, from (4.4.13), (4.4.8) and (4.4.16), we
have

H 〈0 |Tαβ | 0〉H =B 〈0 |Tαβ | 0〉B +Hout(u)∂αu∂βu+Hin(v)∂αv∂βv. (4.4.17)

From the expression (4.4.17) we evidence that the energy measured by the Hartle-Hawking state is given in
terms of the energy measured by the Boulware state that presents divergences in the horizon. Physically, the terms
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that are divergent in the Boulware stress-energy tensor, can be understood as a light-like negative energy current
infinitely shifted to the blue, radially incoming and outcome, in the past and future horizons, respectively. Those
currents can be neutralized by fluxes of positive energy from the infinite towards the infinite. Then corrected
divergences can be neutralized too. Therefore, the state |0〉H corresponds to a black hole in thermal equilibrium
with its confined radiation. The same equilibrium that we can obtain in a typical thermodynamic system isolated
in a perfectly reflecting cavity.

4.4.3 Unruh state |0〉U
Over a Schwarzschild maximally extended, we can construct a vacuum state that may reproduce the effects of a
collapsing mass. That vacuum state is the Unruh state |0〉U .

The Unruh vacuum has zero positive frequency modes with respect to the advanced time v neither respect to
the retarded Kruskal time U , in the manifold that represents the maximally extended black hole. In other words,
this vacuum is defined in terms of incoming modes from the infinite with positive frequency respect to ∂/∂t.
Furthermore, the modes that come from the past horizon are taken as positive frequency modes with respect to
U .

We have that the Unruh state is vacuum in the past infinite, then the term F in(v) in (4.4.6) disappear and
the expression (4.4.17) is regular in the past horizon, then

U 〈0 |Tαβ | 0〉U =B 〈0 |Tαβ | 0〉B +Hout(u)∂αu∂βu. (4.4.18)

Since in the future infinite B 〈0 |Tαβ | 0〉B → 0, the second term represents the characteristic thermal flux of
an evaporating black hole. From (4.4.17) and (4.4.18) we obtain,

U 〈0 |Tαβ | 0〉U =H 〈0 |Tαβ | 0〉H −H
in(v)∂αv∂βv. (4.4.19)

Here we can evidence that in this last expression there is a incoming negative energy flux through the future
horizon. From the above discussion, we can affirm that the Unruh state is useful for express the vacuum state in
a gravitational collapse.

As we shall see later, the difference between the Bogoliubov coefficients between two different quantization
frames, has a thermal form, the same thermal form that has the difference between the stress-energy tensors of
the Hartle-Hawking and Boulware states.
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Chapter 5
The Unruh Effect

An observer moving with uniform acceleration a perceives the Minkowski vacuum state of the quantum field as
a thermal bath with temperature [13, 15]

T =
h̄a

2πckB
, (5.0.1)

where h̄, kB , c are the Planck ad Boltzmann’s constants, and the speed of light respectively. Using first-order
perturbation theory it can be shown that the transition rates of the Unruh-DeWitt detector [16] interacting with
a scalar field in the Minkowski vacuum is given by the Fourier transform of the positive frequency Wightman
function evaluated on the world line of the detector [40]. In the case of an uniformly accelerated detector, it is
found that, if it is initially prepared in its ground state, it will be excited by the thermal radiation perceived by
it [21].

In this chapter we present the formalism of particle detectors, that bring the mathematical structure and the
objects of interest in the scenario where we can extract entanglement from these physical implications. For the
accelerated detector we show the Unruh effect and its thermal character. In order to achieve realistic situations,
our formalism is presented generalizing the before studies placing all the physical systems in a finite observational
time. In this chapter we present some main results of this work.

5.1 Particle Detectors

The physical situation of interest is composed by a background space-time (which in principle is unaltered); a
free real scalar quantum field ϕ, which its excitations are the object of the measurement (as we see before, the
mass and curvature coupling parameter of this field can be arbitrary) and one particle detector which is coupled
to ϕ and is following a smooth trajectory xµ(τ).

We define the overall Hilbert space as a direct product of the Hilbert spaces corresponding to Hilbert space
of the quantum scalar field HField and the Hilbert space of the detector’s inner degrees of freedom HD,

H = HD ⊗HField. (5.1.1)

A common base which we can expand the detector’s Hilbert space is given by the well defined energy states
|ωk〉, k ∈ N. Furthermore, we specify the initial state of the field as |ψ0〉.

We work in the so-called interaction picture, where we have that evolution of both the quantum field and
the detector’s inner degrees of freedom, is absorbed by the operators. The state of the system will evolve with
an interaction Hamiltonian which is describing the interaction between the field and the detector. Denoting the
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quantum field as ϕ, a general interaction Hamiltonian is given by

Hint(τ) = gχ(τ)mµν...(τ)F [ϕ]µν...(τ), (5.1.2)

where τ is the proper time of the detector; g is the coupling constant which modules the interaction intensity; χ
specifies how the interaction is turned on and off, which allows a coupling that varies with the time; mµν...(τ) is
the detector’s moment (monopole, dipole,...); and F [ϕ]µν...(τ) is a functional of the field. In this work we consider
a massless scalar field ϕ. Depending on the physical situation we can add a spatial profile p to the detector in
order to regularize the divergences obtained from the point-like treatment of the detector [41, 42]. If the detector
is coupled to a components of a non-scalar field, as the electromagnetic field, we will have multipolar detectors.
Those multipolar detectors can be coupled to directional derivatives of a scalar field [43, 44]. For instance, in [45]
bring out the following examples: If we have a scalar real field with a spatial profile p, the most common coupling
is the linear coupling

Hint(τ) = gχ(τ)m(τ)

∫
Rn
p(x(τ),y)ϕ(y)dy; (5.1.3)

if we work with a complex field ϕ defined as real linear combination of fields ϕ = 1/
√

2(ϕ1 + iϕ2) we must work
with a quadratic coupling in order to preserve certain symmetries

Hint(τ) = gχ(τ)m(τ)

∫
Rn
p(x(τ),y)ϕ†(y)ϕ(y)dy. (5.1.4)

It can be viewed more clearly if the field is a quantized spinor field ψ, where the simplest self-adjoint Lorentz
scalar is ψ̄ψ = ψ†γ0ψ, the interaction is given by

Hint(τ) = gχ(τ)m(τ)

∫
Rn
p(x(τ),y)ψ̄(y)ψ(y), (5.1.5)

this form is ensures that the detector can only pair create or annihilate fermion antifermion pairs. Another
interaction is given by Hint ∼ ϕ2.

Along to this work, in order to study some properties of the quantum vacuum and its capability to enhance
the entanglement, we will extract the majority of the features of the Unruh-DeWitt model, which is a point-like
detector with two energy eigenstates with the monopole matrix elements between these states different from zero.
The interaction Hamiltonian in this model is given by

Hint = gχ(τ)m(τ)ϕ(xµ(τ)), (5.1.6)

where g is defined as before and m is the detector’s monopole moment operator. We assume the trajectory xµ(τ)
to be smooth. Furthermore, we specify the initial state of the field as |ψ0〉 and the detector initially prepared in
the state |ωi〉.

As is named in [12] if we prepare the system choosing the initial state of the field to be the vacuum state, there
are some physical situations where a detector may register particles in this ’vacuum state’. For further purposes
in this text we examine those particle detections for finite observational times. As we will show later, although an
inertial detector switched on for a long time will not perceive any particle, during finite observational times, it will
register an excitation; it due to the uncertainty principle. We study the inertial Unruh-DeWitt detector immersed
in a thermal bath too and with this we are able to generalize the situation going to the accelerated UD detector
and stablish the Unruh Effect. Since we have a thermal nature in this result, the finite-observational-times study
will bring us some aspects of the non-equilibrium regime.

A natural extension of the accelerated systems is such that the detector is in a gravitational field. That is
explored by Parker in [19] showing the particle creation in an expanding universe. Before that result, there were
some discussions of the possibility of similar particle production due to space-time curvature. This might enable
us some feature of the close relation between the gravitational and electromagnetic interaction. At the same time,
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those studies were extracting out a thermodynamic parallel with the fundamental discovery of Hawking radiation
in black holes [14].

Finally, since the presence of boundaries will affect the vacuum behaviour, we will study the boundary effects
of the presence one and two infinite reflecting planes and the survivor of the thermal nature in this phenomena.

 e

g

∆ω

Figure 5.1: Schematic diagram of the degrees of freedom of a Unruh-DeWitt detector.

In order to study the detection of particles and radiative process of the UD detector, we must stablish the
amplitude for a general transition of states. Considering one UD detector, the overall Hilbert space is defined by
(5.1.1), such that the Hamiltonian H of the system with respect to the coordinate time t is

H = HF +HD +Hint, (5.1.7)

where HF is the Hamiltonian of the massless real scalar field, HD is the detector’s Hamiltonian and Hint us the
interaction Hamiltonian, respectively defined by

HF =
1

2

∫
d3x

[
(ϕ̇(x))2 + (∇ϕ(x))2

]
, (5.1.8)

HD = [(Ei + ∆ω) |ωf 〉 〈ωf |+ Ei |ωi〉 〈ωi|] , (5.1.9)

Hint(τ) = g
(
|ωf 〉 〈ωi| ei∆ωτ + |ωi〉 〈ωf | e−i∆ωτ

)
ϕ(xµ(τ)). (5.1.10)

As is mentioned above g is the coupling constant of the detector and ϕ(xµ(τ)) is the field at the point of the
detector. We define the monopole matrix as

m(τ) := |ωf 〉 〈ωi| ei∆ωτ + |ωi〉 〈ωf | e−i∆ωτ . (5.1.11)

The states |ωi〉 and |ωf 〉 represent the initial and final state, with energy Ei and Ei + ∆ω, respectively. The
proper time of the detector is τ .

The time evolution operator is given by

U = T exp

[
−ig

∫
dτm(τ)ϕ(xµ(τ))

]
, (5.1.12)

where T is the time ordering operator. The detector is moving along the world line xµ(τ) in a four-dimensional
Minkowski space.

We suppose the field ϕ is in its Minkowski vacuum state |0M 〉 and the detector is in its ground state |ωi〉.
We work with a weak coupling between the field and the detector, then the amplitude for a general transition is
given by first order perturbation theory

A|ωi;0M 〉→|ωf ;ϕf 〉 = ig 〈ωf ;ϕf |
[∫ τf

τ0

dτm(τ)ϕ(xµ(τ))

]
|ωi; 0M 〉 , (5.1.13)
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being the integral’s interval interpreted as the measurement time that initiates at τ0 and ends at τf . Using the
equation for the time evolution for m(τ(t)),

m(τ) = eiH0τm(0)e−iH0τ , (5.1.14)

where H0 |ωk〉 = Ek |ωk〉. Therefore the transition probability to all possible detector and field states in first-order
approximation is given by

Γ|ω′〉→|ω〉(∆ω, τ0, τf ) = g2
∑
ω

[
|mωω′ |2F (∆ω, τ0, τf )

]
, (5.1.15)

where ∆ω = ω − ω′, the matrix elements are given by

mωω′ = 〈ω|m(0) |ω′〉 , (5.1.16)

and

F (∆ω, τ0, τf ) =

∫ τf

τ0

dτ

∫ τf

τ0

dτ ′e−i∆ω(τ−τ ′)G+(x(τ), x(τ ′)) (5.1.17)

is the detector response function which is independent of the details of the detector, and is determined by the
positive frequency Wightman Green function

G+ (x(τ), x(τ ′)) = 〈0M |ϕ (xµ(τ))ϕ (xµ(τ ′)) |0M 〉 (5.1.18)

that represents the bath of particles that the detector effectively experiences as a result of its motion [12]. The
matrix elements are the selectivity of the detector that depends on the internal structure of the detector itself.
From the integral representation (3.8.46) and with an appropriated contour, the positive frequency Wightman
function for a massless scalar field, where the world lines are parametrized by the proper time, is given by

D+ (x(τ), x(τ ′)) = − 1

4π2

1

(t(τ)− t(τ ′)− iε)2 − |x(τ)− x(τ ′)|2
. (5.1.19)

5.2 Inertial detectors

In this section we evaluate, for a finite time interval [τ0, τf ], the response function of the inertial UD detector
interacting with the scalar field in its vacuum state |0M 〉. Multiplying this quantity by the selectivity of the
detector we obtain the probability of the transition that starts in τ0 and ends in τf .

5.2.1 Finite-time response function of a free inertial detector

The trajectory for an inertial detector is given by

x(τ) = x0 + vt(τ) = x0 + vτ(1− v2)−1/2, (5.2.1)

where x0 and v are constants and |v|< 1.
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x

t
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x

t
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Figure 5.2: Trajectories of an inertial observer.

The Wightman function in this case yields

D+
iner (x(τ), x(τ ′)) = − 1

4π2

1

(τ − τ ′ − iε)2
, (5.2.2)

where the infinitesimal quantity ε is introduced in order to specify correctly the singularities of the Wightman
function, and the factor (1− v2)−1/2 is absorbed in the iε term. Then, changing variables to ψ = τ1 − τ ′1, η =
τ1 + τ ′1 and being ∆t = τf − τ0, the response function reads,

Finer(∆ω,∆t) = − 1

4π2

∫ ∆t

−∆t

dψ(∆t− |ψ|)e−i∆ωψ 1

(ψ − iε)2
. (5.2.3)

Thus
Finer(∆ω,∆t) = Finer1(∆ω,∆t) + Finer2(∆ω,∆t), (5.2.4)

where

Finer1(∆ω,∆t) = − ∆t

4π2

∫ ∆t

−∆t

dψ
e−i∆ωψ

(ψ − iε)2
(5.2.5)

and

Finer2(∆ω,∆t) =
1

4π2

∫ ∆t

−∆t

dψ
|ψ|e−i∆ωψ

(ψ − iε)2
. (5.2.6)

The before integrals can be performed using complex variable methods. We use the contours of the Figure
5.3. We divide the integral in a part covering all space and the other one cover the information of the before and
after measurement time. Using the Cauchy theorem and taking the limit ε→ 0, we have∫ ∆t

−∆t

dψ
e−i∆ωψ

(ψ − iε)2
= 2πiRes

[
e−i∆ωψ

(ψ − iε)2
; iε

]
Θ(−∆ω)−

∫
R/[τ0,τf ]

dψ
e−i∆ωψ

(ψ − iε)2

= 2π∆ωΘ(−∆ω)− 2

∫ ∞
∆t

dψ
cos(∆ωψ)

ψ2
. (5.2.7)
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After some algebraic steeps, the expression (5.2.5) yields

Finer1(∆ω,∆t) =
∆t

2π

[
−∆ωΘ(−∆ω) +

cos(∆ω∆t)

π∆t
+
|∆ω|
π

(
Si(|∆ω|∆t)− π

2

)]
, (5.2.8)

where Si(z) is defined by

Si(z) =

∫ z

0

sin t

t
dt. (5.2.9)

Figure 5.3: Contour used for perform the integral of Finer1(∆ω,∆t).

The expression (5.2.6) yields [46]

Finer2(∆ω,∆t) =
1

2π2
[−γ + Ci(|∆ω|∆t)− log(|∆ω|ε)− 1] (5.2.10)

where Ci(z) is

Ci(z) = γ + log z +

∫ z

0

cos t− 1

t
dt (5.2.11)

and γ is the Euler constant. Then the response function Finer(∆ω,∆t) finally reads

Finer(∆ω,∆t) =
1

2π2

{
|∆ω|∆t

[
πΘ(−∆ω) + Si(|∆ω|∆t)− π

2

]
+ log

(
∆t

ε

)
+ cos(∆ω∆t)− 1 +

∫ ∆t

0

dψ
cos(∆ωψ)− 1

ψ

}
. (5.2.12)

In the last expression we can observe two divergences: one is given by log ∆t as ∆t→ 0+ and the other one
is given by log ε. The log ∆t divergence is expected to occur. This problem can be solved defining a renormalized

response function F
(ren)
iner (∆ω,∆t)

F
(ren)
iner (∆ω,∆t) = Finer(∆ω,∆t)−

1

2π2
log

(
∆t

ε

)
. (5.2.13)

Another form to solve the problem of the divergence is defining the rate

R(∆ω,∆t) =
dF (∆ω,∆t)

d(∆t)
(5.2.14)
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which multiplied by the selectivity gives the probability of transition per unity proper time. The inverse of this
quantity is the mean life of the state. That define an important quantity in this text which we will discuss later.

In this particular case the transition rate is given by

Riner(∆ω,∆t) =
dFiner(∆ω,∆t)

d(∆t)
=

1

2π

[
−∆ωΘ(−∆ω) +

cos(∆ω∆t)

π∆t
+
|∆ω|
π

(
Si(|∆ω|∆t)− π

2

)]
. (5.2.15)

The term Θ(−∆ω) is a spontaneous emission contribution. The other terms are absorption and emission
terms induced by the vacuum fluctuations. The behaviour of this transition rate is depicted in the Figure 5.6. In
the limit ∆t→∞, we obtain

lim
∆t→∞

Riner(∆ω,∆t) =
|∆ω|
2π

Θ(−∆ω) (5.2.16)

that is the result reported in [40]. This expression shows that for a long observational times, we obtain the
classical result where an inertial detector in the vacuum will not perceive any particle. On the other hand, if
a detector is in its excited state, it will radiate due to the vacuum fluctuations. Furthermore, for a finite time
interval, the final state of the system is a state of N quanta of the field and the detector in its excited state.
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Figure 5.4: Behaviour of the rate Riner(∆ω,∆t) in the time for a radiative process (left) and for a
detection (right).

5.2.2 Finite-time response function of an inertial detector in a thermal bath

In this case the thermal Green function can be written as an infinite imaginary-time image sum of the corre-
sponding zero-temperature Green function

D
(1)
beta (x(τ), x(τ ′)) = − 1

4π2

∞∑
k=−∞

(τ − τ ′ − iε+ iβk)−2. (5.2.17)

Using the same coordinate transformation as before, the response function in this case is

Fβ = − 1

4π2

∞∑
k=−∞

∫ ∆t

−∆t

dψ(∆t− |ψ|)e−i∆ωψ 1

(ψ − iε+ iβk)2
. (5.2.18)
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Then

Fβ(∆ω,∆t) = Fβ1(∆ω,∆t) + Fβ2(∆ω,∆t), (5.2.19)

where

Fβ1(∆ω,∆t) = − ∆t

4π2

∞∑
k=−∞

∫ ∆t

−∆t

dψ
e−i∆ωψ

(ψ − iε+ iβk)2
(5.2.20)

and

Fβ2(∆ω,∆t) =
1

4π2

∞∑
k=−∞

∫ ∆t

−∆t

dψ
|ψ|e−i∆ωψ

(ψ − iε+ iβk)2
. (5.2.21)

For (5.2.20) the term k gives exactly (5.2.5), then we have

Fβ1(∆ω,∆t) = Finer1(∆ω,∆t) + Fβs(∆ω,∆t) (5.2.22)

where

Fβs(∆ω,∆t) = − ∆t

4π2

∞∑
k′=−∞

∫ ∆t

−∆t

dψ
e−i∆ωψ

(ψ − iε+ iβk)2
(5.2.23)

and the ′ in the sum means that the term k = 0 is to be excluded. In the evaluation of the last expression, the
limit ε→ 0 can be taken directly. Using the same procedures as in the before section, we obtain [46]

Fβs(∆ω,∆t) =
1

2π

|∆ω|∆t
eβ∆ω − 1

+
∆t

2π2

∫ ∞
∆t

dψ cos(∆ωψ)

(
(π/β)2

sinh2(ψ(π/β)2)
− 1

ψ2

)
. (5.2.24)

For the evaluation of (5.2.21), the terms k 6= 0 and k = 0 may be dealt separately. The term k = 0 is similar
to (5.2.6). For the term k 6= 0 we can take the limit ε→ 0 directly; after some manipulations we get

Fβ2(∆ω,∆t) =
1

2π2
[−γ + Ci(|∆ω|∆t)− log(|∆ω|ε)− 1] + C(∆ω,∆t), (5.2.25)

where

C(∆ω,∆t) =
1

2π2

∫ ∆t

0

dψψ cos(∆ωψ)

(
(π/β)2

sinh2(ψ(π/β)2)
− 1

ψ2

)
. (5.2.26)

The transition rate is given by

Rβ(∆ω,∆t) =
|∆ω|
2π

{
Θ(−∆ω) +

1

eβ|∆ω| − 1
+

cos(∆ω∆t)

π∆ω∆t
+

Si∆ω∆t

π
− 1

2

}
+

1

2π2

∫ ∞
∆t

dψ cos(∆ωψ)

(
(π/β)2

sinh2(ψ(π/β)2)
− 1

ψ2

)
. (5.2.27)

Taking the limit ∆t→∞ we have

lim
∆t→∞

Rβ(∆ω,∆t) =
|∆ω|
2π

{
Θ(−∆ω)

[
1 +

1

eβ|∆ω| − 1

]
+ Θ(∆ω)

1

eβ∆ω − 1

}
. (5.2.28)

As is expected the appearance of the Planck factor show that for a long observational times, the detector
immersed in a thermal bath will reach the equilibrium with a temperature β−1.
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5.3 Accelerated detectors

5.3.1 Finite-time response function of an accelerated detector

In this case the for response function Fα(∆ω,∆t), we assume that the detector accelerates uniformly with accel-
eration α−1 and is moving along a trajectory in the (t, z) plane, such that it is describing a hyperbola where the
parameter is its proper time [12],

x = 0 y = 0 z(τ) =
(
t(τ)2 + α2

)1/2
, (5.3.1)

with
t(τ) = α sinh

( τ
α

)
. (5.3.2)

t

L R z

x
µ
acc (τ)

Figure 5.5: Trajectories of an accelerated observer.

Then, the Wightman function D+
α (x(τ), x(τ ′)) is

D+
α (x(τ), x(τ ′)) = − 1

16π2α2 sinh2
(
τ−τ ′
2α −

iε
α

) . (5.3.3)

Using known series identities [47] and since D+
α (x(τ), x(τ ′)) = D+

α (τ − τ ′) we can rewrite (7.2.1) as

D+
α (τ − τ ′) = − 1

4π2

∞∑
n=−∞

((τ − τ ′)− 2iε+ 2πiαn)
−2
. (5.3.4)

Changing variables to
ψ = τ − τ ′ η = τ + τ ′, (5.3.5)
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we have, being ∆t = τf − τ0,

Fα(∆ω,∆t) = −1

2

∫ ∆t

−∆t

dψ (−2|ψ|+2∆t) e−i∆ωψD+
α (ψ). (5.3.6)

The resulting expression is [46]

Fα(∆ω,∆t) =
∆t

2π2

{
π|∆ω|Θ(−∆ω) + |∆ω|

(
Si∆ω∆t− π

2

)
+

π|∆ω|
e2πα|∆ω| − 1

+

∫ ∞
∆t

dψ cos(∆ωψ)

(
1/(2α)2

sinh2 ψ/(2α)
− 1

ψ2

)}
+

1

2π2

{
cos (∆ω∆t) + log

(
∆t

2πε

)
− 1

+

∫ ∆t

0

dψ
cos(∆ωψ)− 1

ψ
+

∫ ∆t

0

dψψ cos ∆ωψ

(
1/(2α)2

sinh2 ψ/(2α)
− 1

ψ2

)}
. (5.3.7)

See the Appendix (B.2) for the explicit calculus for a finite interval.

5.3.2 Thermal nature of the Unruh effect

We are more interested in the rate

Rα(∆ω,∆t) =
dFα(∆ω,∆t)

d(∆t)
(5.3.8)

which is related to the mean life of states. For this particular case, the transition rate yields

Rα(∆ω,∆t) =
|∆ω|
2π

{
Θ(−∆ω) +

1

e2πα|∆ω| − 1
+

cos(∆ω∆t)

π∆ω∆t
+

Si∆ω∆t

π
− 1

2

}
+

1

2π2

∫ ∞
∆t

dψ cos(∆ωψ)

(
1/(2α)2

sinh2 ψ/(2α)
− 1

ψ2

)
. (5.3.9)

From the expression (B.2.3) we obtain that for large time intervals we have the following expression

lim
∆t→∞

Rα(∆ω,∆t) =
|∆ω|
2π

{
Θ(−∆ω)

[
1 +

1

e2πα|∆ω| − 1

]
+ Θ(∆ω)

1

e2πα∆ω − 1

}
, (5.3.10)

that shows us that the equilibrium between the accelerated detector and scalar field in the Minkowski vacuum
state |0M 〉 is the same as that of an inertial detector in equilibrium with a bath of thermal radiation at the
temperature β−1 = 1/2πα.

80



CHAPTER 5. THE UNRUH EFFECT

2 4 6 8 10

0.498

0.500

0.502

0.504

0.506

0.508

DΩ DΤ

R
Α
�D
Ω

DΩ Α=150

2 4 6 8 10

0.338

0.340

0.342

0.344

0.346

0.348

DΩ DΤ

R
Α
�D
Ω

DΩ Α=150

Figure 5.6: Behaviour of the rate Rα(∆ω,∆t) in the time for a radiative process (left) and for a detection
(right).

5.3.3 Finite-time response function of an accelerated detector in presence of an
infinite reflecting plane

Consider the simple case of an infinite plane in unbounded four-dimensional Minkowski space and a massless
scalar field constrained to vanish at the plane’s surface x3 = 0, i.e., Dirichlet boundary conditions:

ϕ(x3 = 0) = 0. (5.3.11)

Y

Z

Z = 0

X

In!nite
Re"ecting

Plane

α

Figure 5.7: Configuration of the accelerated detector in presence of an infinite reflecting plane.

The positive frequency Wightman function will no longer be given by (7.1.14). Its form may be found using
the traditional method of images and reads
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D+(b)
α (x(τ), xj(τ

′
j)) = − 1

4π2

{
[(t(τ)− t(τ)− iε)2 − (x(τ)− x(τ ′))2

− (y(τ)− y(τ ′))2 − (z(τ)− z(τ ′))2]−1

− [(t(τ)− t(τ ′)− iε)2 − (x(τ)− x(τ ′))2

− (y(τ)− y(τ ′))2 − (z(τ) + z(τ ′))2]−1
}

(5.3.12)

From (5.3.12) we can see that, the expression for D+
αb(x(τ), x(τ ′)) has the form

D+(b)
α [x(τ), x(τ ′)] = − 1

16π2α2

[
1

sinh2
(
τ−τ ′
2α −

iε
α

) +
1

cosh2
(
τ+τ ′

2α −
iε
α

)] . (5.3.13)

Such that,
F (b)
α (∆ω,∆t) = Fα(∆ω,∆t) + F (b0)

α (∆ω,∆t), (5.3.14)

being

F (b0)
α (∆ω,∆t) = − 1

16π2α2

∫ τf

τ0

dτ

∫ τf

τ0

dτ ′e−i∆ω(τ−τ ′) 1

cosh2
(
τ+τ ′

2α −
iε
α

) . (5.3.15)

Using the well know expansion

sec2 πx

2
=

4

π2

∞∑
n=1

{
1

(2n− 1− x)2
+

1

(2n− 1 + x)2

}
, (5.3.16)

the transformation (5.3.5), and using a symmetric temporal interval τf = −τ0 = T , after such algebraic steeps,
we finally have

F (b0)
α (∆ω,∆t) =

1

2π2∆ω

{
Im

[
ei∆ω∆t

∞∑
n=1

∫ ∆t

0

dηe−i∆ωηG(b)
α,n(η)

]}
, (5.3.17)

where

G(b)
α,n(η) =

1

(η + 2πiαn− πiα)2
+

1

(η − 2πiαn+ πiα)2
. (5.3.18)

Following the same line of the last sections, we divide the integral in order to study the thermal characteristic of
response function, ∫ ∆t

0

dηe−i∆ωηG(b)
α,n(η) =

∫ ∞
0

dηe−i∆ωηG(b)
α,n(η)| −

∫ ∞
∆t

dηe−i∆ωηG(b)
α,n(η). (5.3.19)

We use the method of residues to perform the integrals. These integrals have two kind of second order poles
situated along the imaginary axis,

z±n = ±πiα(2n− 1). (5.3.20)

Using the contour showed in Figure (5.8), we have

∞∑
n=0

∫ ∞
0

dηe−i∆ωηG(b)
α,n(η) =

{
π∆ωeπα|∆ω|

e2πα|∆ω| − 1
+ ζ(b)

α (∆ω)

}
Θ(−∆ω)+

{
π∆ωeπα∆ω

e2πα∆ω − 1
+ ζ(b)

α (∆ω)

}
Θ(∆ω), (5.3.21)

where

ζ(b)
α (∆ω) =

i

πα

[
tanh−1

(
eπα∆ω

)
− tanh−1

(
e−πα∆ω

)]
− i∆ω

[
eπα∆ωΦ̃(0,1,0)

(
e2πα∆ω, 0,

1

2

)
+ e−πα∆ωΦ̃(0,1,0)

(
e−2πα∆ω, 0,

1

2

)]
, (5.3.22)

being Φ̃(z, s, a) is the Lerch zeta-function and Φ̃(0,1,0)(z, s, a) its first derivative respect its second variable.
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Figure 5.8: Contour used for perform the integral of F
(b0)
α (∆ω,∆t).

5.3.4 Finite-time response function of an accelerated detector in presence of two
infinite reflecting planes

Let us generalize the above situation and place the accelerated detector between two infinite reflecting planes.
The planes are situated in z = 0 and z = L. The detector has a proper acceleration in the x direction and is
placed in a constant 0 < z < L coordinate.

The Green function may be computed as an infinite image sum

D+(c)
α (x, x′) =

1

2π2

∞∑
n=−∞

[
1

(x− x′)2 + (y − y′)2 + (z − z′ − Ln)2 − (t− t′)2

− 1

(x− x′)2 + (y − y′)2 + (z + z′ − Ln)2 − (t− t′)2

]
. (5.3.23)

Considering now the acceleration of detector is orthogonal to a normal unitary vector of the planes, the

Wightman function D
+(c)
α (x, x′) yields

D+(c)
α (x, x′) =

1

2π2

∞∑
n=−∞

[
1

−4α2 sinh2
(
τ−τ ′
2α

)
+ (Ln)2

− 1

−4α2 sinh2
(
τ−τ ′
2α

)
+ (2z − Ln)2

]
. (5.3.24)
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Figure 5.9: Configuration of the accelerated detector in presence of two infinite reflecting plane.

The Wightman function D
+(c)
α (x, x′) has two sums with the following convergence values

∞∑
n=−∞

1

−4α2 sinh2
(
τ−τ ′
2α

)
+ (Ln)2

=
1

4α2 sinh2
(
τ−τ ′
2α

) − π

2Lα sinh
(
τ−τ ′
2α

) cot

(√
2πα

L
sinh

(
τ − τ ′

2α

))
(5.3.25)

∞∑
n=−∞

1

−4α2 sinh2
(
τ−τ ′
2α

)
+ (Ln− 2z)2

=
π

4Lα sinh
(
τ−τ ′
2α

) {cot

(
2π

L

(
z − α sinh

(
τ − τ ′

2α

)))
− cot

(
2π

L

(
z + α sinh

(
τ − τ ′

2α

)))}
− 1

−4α2 sinh2
(
τ−τ ′
2α

)
+ 4z2

. (5.3.26)

Going to ψ = τ − τ ′ and η = τ + τ ′ and introducing a small constant ε, the response functions yields

F (c)
α (∆ω,∆t) =

1

4π

{
F (c)1
α (∆ω,∆t)− F (c)2

α (∆ω,∆t)− F (c)3
α (∆ω,∆t)− F (c)4

α (∆ω,∆t)
}

(5.3.27)

where the functions F
(c)i
α (∆ω,∆t) are defined by

F (c)1
α (∆ω,∆t) =

∫ ∆t

−∆t

[−|ψ|+∆t]
e−i∆ωψ

2α2 sinh2
(
ψ
2α −

iε
α

) , (5.3.28)

F (c)2
α (∆ω,∆t) =

π

Lα

∫ ∆t

−∆t

[−|ψ|+∆t]
e−i∆ωψ

sinh
(
ψ
2α −

iε
α

) cot

(
2πα

L
sinh

(
ψ

2α
− iε

α

))
, (5.3.29)

F (c)3
α (∆ω,∆t) =

π

2Lα

∫ ∆t

−∆t

[−|ψ|+∆t]
e−i∆ωψ

sinh
(
ψ
2α −

iε
α

) (f−(ψ)− f+(ψ)), (5.3.30)
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F (c)4
α (∆ω,∆t) = 2

∫ ∆t

−∆t

[−|ψ|+∆t]
e−i∆ωψ

4z2 − 4α2 sinh2
(
ψ
2α −

iε
α

) , (5.3.31)

with f±(ψ) defined by

f±(ψ) = cot

(
2π

L

(
z ± α sinh

(
τ − τ ′

2α

)))
. (5.3.32)

Note that the expression (5.3.28) is the contribution of the free accelerated detector. Following the same
method presented above we divide these integrals in a infinite interval and an interval that give the information
after the measurement time.

For the expression (5.3.29) we observe that integrand has poles at

ψ = 2πiαk + 2iε, k ∈ Z (5.3.33)

and

ψ = 2α arcsinh

(
kL

2α

)
+ 2iε, k ∈ Z. (5.3.34)

Then the first part of the expression (5.3.29) yields

π∆t

Lα

{
2πi

[
−4iLα∆ω

π
− 2iLα∆ω

π

∞∑
k=−∞

e2πα∆ωk +
4α2

π

∞∑
l=−∞

e−2iα∆ω arcsinh( kL2α )

l
√

(lL)2 + (2α)2

]
.

}
(5.3.35)

If we work with the high accelerations regime L� α the total expression (5.3.29) reads

F (c)2
α (∆ω,∆t) =

π∆t

Lα

2πi

−4iLα∆ω

π
− 2iLα∆ω

π

∞∑
k=−∞

e2πα∆ωk − 8iα2

π

∞∑
l=1

sin(∆ωLl)

l
(

2α+ (lL)2

4α

)
 .

+ 2

∫ ∞
∆t

dψ
cos(∆ωψ)

sinh
(
ψ
2α −

iε
α

) cot

(
2πα

L
sinh

(
ψ

2α
− iε

α

))
− π

Lα

∫ ∆t

0

dψ
ψ cos(∆ωψ)

sinh
(
ψ
2α −

iε
α

) cot

(
2πα

L
sinh

(
ψ

2α
− iε

α

))
. (5.3.36)

For the expression (5.3.30) we identify the following poles

ψ = 2πiαk + 2iε, k ∈ Z (5.3.37)

and

ψ = 2α arcsinh

(
±kL∓ 2z

2α

)
+ 2iε, k ∈ Z. (5.3.38)

Then the expression (5.3.30) yields

F (c)3
α (∆ω,∆t) =

π∆t

2Lα

4iLα

π
[f (c)
s1 (∆ω) + f (c)

s2 (∆ω)] + 2

∫ ∞
∆t

dψ
cos(∆ωψ)

sinh
(
ψ
2α −

iε
α

) (f−(ψ)− f+(ψ))


− π

2Lα

∫ ∆t

0

dψ
ψ cos(∆ωψ)

sinh
(
ψ
2α −

iε
α

) (f−(ψ)− f+(ψ)), (5.3.39)
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where f
(c)
s1 (∆ω) and f

(c)
s2 (∆ω) are infinite sums that converge to a real-valued linear combination of Hurwitz-Lerch

zeta-function, defined in the appendix B.
Finally the poles of the integrand of the expression (5.3.31) are

ψ = 2πiαk ± 2α arcsinh
( z
α

)
+ 2iε, k ∈ Z. (5.3.40)

Thus as above, we obtain

F (c)4
α (∆ω,∆t) = 2∆t

−4π sin(2∆ωz)

4z + 2z3

α

∞∑
k=−∞

e2πα∆ωk + 2

∫ ∞
∆t

dψ
cos(∆ωψ)

4z2 − 4α2 sinh2
(
ψ
2α −

iε
α

)


− 2

∫ ∆t

0

dψ
ψ cos(∆ωψ)

4z2 − 4α2 sinh2
(
ψ
2α −

iε
α

) , (5.3.41)

where we treat the sums as above obtaining the thermal term and for decay process, beside the thermal term we
have the vacuum fluctuations contribution. We have that the oscillating modulation is inversely proportional to
the distance z.
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Chapter 6
Relativistic Quantum Information

Quantum entanglement may be considered as the most non-classical feature of quantum mechanics; it is one of
the properties that would distinguish a quantum system from any classical counterpart. Quantum entanglement
is considered as one of the key features of quantum information processing. Several sources of entangled quantum
systems have been discussed in literature, for instance, in solid-state physics, quantum optics, and also atoms
in cavity quantum electrodynamics [26]. Some examples of generation of entangled systems of two-level atoms
interacting with a bosonic field can be found in Refs. [48, 49]. Aside from production of those entangled systems,
quantum-information processing requires the presence of a strong coherent coupling between the entities of the
system. Nevertheless, under realistic experimental conditions, entanglement is degraded through uncontrolled
coupling to environment [50].

However quantum entanglement and quantum information processing have been widely explored in the context
of the non-relativistic quantum mechanics. As we see above quantum field theory, as the convergence point of
quantum mechanics and relativity, has become a more fundamental framework. A natural extension of the studies
of quantum entanglement and quantum information processing can be the treatment of these phenomena with
the mathematical and conceptual formalism offered by quantum field theory. This is the focus topic of relativistic
quantum information. In recent years the field of relativistic quantum information has emerged as an important
research topic and is generating increasing interest within the scientific community. In this framework, the mutual
influence of atoms through their interaction with quantum fields is an important stimulating issue in order to
analyse decoherence properties [51, 52, 53]. Some works studying quantum entanglement in different setups
are given by Refs. [22, 51, 54, 55, 56, 57, 58]. In turn, for a wide set of results in this area and special issues
of performing satellite experiments, we refer the reader the Ref. [59]. Many of such works demonstrate that
entanglement is an observer-dependent quantity.

Placing quantum information theory in the formalism of quantum field theory in curved space-time we can
explore deeper quantum aspects of black holes, cosmology and search a conceptual and experimental guide to
quantum gravity. On the other hand, dealing these phenomena in this form, we can obtain technical applications in
order to improve the control of entanglement in some realistic contexts in areas such as quantum communication,
quantum simulation, quantum computing and quantum metrology. We review these ideas in this chapter

6.1 The Qubit

In 1982 Richard Feynman introduced the idea of the construction of a computer based on the laws of quantum
mechanics. The mean idea introduced by Feynman was that only quantum simulators will extract the complete
behaviour of a quantum system. The aim in that quantum computation was to take advantage of the principle
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of superposition that was in the foundations of quantum mechanics. The concept of the superposition has been
widely discussed in diverse frameworks, exploring its philosophical implications to the foundations of the physical
character of the nature. The quantum computation leaves those discussions and use the results of quantum
mechanics in a pragmatic way.

The classic information is stored in bits which can take the logic value of 0 or 1, in quantum computation,
the information is stored in a quantum bit or qubit that is a state vector of a quantum-mechanical system, e.g.
atom, photon or nucleus states. The difference between the bit and the qubit is given by the fact that a bit can
be 0 or 1 while a qubit can be 0 and 1 at the same time, due to the superposition principle. The properties of a
qubit are governed by the Schrödinger equation. The general state of a qubit can be expressed as [26, 60]

|ψ〉 = c0|0〉+ c1|1〉 (6.1.1)

where we impose the normalization condition,

|c0|2+|c1|2= 1. (6.1.2)

Furthermore, we impose the following orthogonality condition

〈0|1〉 = 0. (6.1.3)

We can use different properties of a system in order to stablish a qubit. For example, we can use the ground
and excited state of an atom as a distinguishable property that serves as a base for expand the qubits. In this
case, we can define the qubit as

|ψ〉 = c0|0〉+ c1|1〉 ≡ c0|g〉+ c1|e〉 (6.1.4)

being |g〉 the atomic ground state and |e〉 the excited atomic state. A collection of N qubits is called a quantum
register of size N .

The wave function of an arbitrary system of two qubits is the combination of the possible individual qubit
states

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉 (6.1.5)

where the notation |ij〉 indicates the qubit 1 is in the state i and the qubit 2 is in the state j. It can be generalized
to any number of qubits. For example, for three qubits,

|ψ〉 = c000|000〉+ c001|001〉+ c010|010〉+ c011|011〉
+ c100|100〉+ c101|101〉+ c110|110〉+ c111|111〉. (6.1.6)
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Figure 6.1: Schematic picture of a quantum processor.

The quantum information is stored in the coefficients of each ket. Those coefficients are complex numbers
which its modulus varies from 0 to 1. Since for N qubits the wave function is described by 2N coefficients, we
have that the stored information increases exponentially with number of qubits. The quantum information of
these coefficients can be obtained by measurements and interactions with other systems.
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6.1.1 Quantum logic gates

In classic computation, the processor make operations over a set of stored bits. Depending the procedure given
by a programming code, we obtain as a result a new set of bits. The processing operations are made by millions
of logic binary gates as NOT and NAND. The idea for a quantum computer is basically the same, the processing
tasks are due to the quantum logic gates, that conform a quantum logic circuit. The advantage consists in the
fact that even we have N qubits incoming and N qubits outgoing, we have 2N data of information corresponding
to the N qubits [60, 61].

A quantum logic circuit consists in a programmed sequence of quantum logic gates. One of these is the logic
gate which have one qubit incoming and only one qubit outgoing. The incoming qubit is

|ψ〉 = c0|0〉+ c1|1〉 (6.1.7)

and the outgoing bit is
|ψ′〉 = c′0|0〉+ c′1|1〉, (6.1.8)

being the coefficients c′0 and c′1 defined as (
c′0
c′1

)
=

(
M11 M12

M21 M22

)(
c0
c1

)
(6.1.9)

where the quantum logic gate is defined by this transformation matrix. This matrix must be unitary

MM† = I (6.1.10)

Therefore, the matrix representation of the NOT gate is

X =

(
0 1
1 0

)
, (6.1.11)

the Z gate is,

Z =

(
1 0
0 −1

)
, (6.1.12)

and the Hadamard gate is [60, 61]

H =
1√
2

(
1 1
1 −1

)
. (6.1.13)

Then when a qubit |ψ〉 defined in (6.1.7) enter in the X gate becomes

|ψ′〉 = c1|0〉+ c0|1〉. (6.1.14)

If the qubit |ψ〉 enter in the Z gate will be

|ψ′〉 = c0|0〉 − c1|1〉. (6.1.15)

Finally, if that qubit enter in the Hadamard gate we obtain

|ψ′〉 =
c0 + c1√

2
|0〉+

c0 − c1√
2
|1〉. (6.1.16)

For example, if the initial qubit is in the state |0〉 and goes to a Hadamard gate and afterword to a Z, the
resulting state will be (

1 0
0 −1

)
1√
2

(
1 1
1 −1

)(
1
0

)
=

(
1/
√

2

−1/
√

2

)
(6.1.17)
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|φ〉 =
1√
2
|0〉 − 1√

2
|1〉. (6.1.18)

Now, passing to the case where we have two incoming qubits, one of the most used gate is the controlled-NOT
gate C-NOT, which its matrix representation is given by

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (6.1.19)

The C-NOT gate has two inputs. One of these, leave one qubit without any modification and the other one
apply the NOT operation to the second [60, 61]. The effect of this operation over an arbitrary two qubit state is
as follows 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



c00

c01

c10

c11

 =


c00

c01

c11

c10

 . (6.1.20)

(b)

CNOT

ψ1

ψ2

ψ1

ψ2’

(a)

Control

Target

Figure 6.2: Schematic diagram of a C-NOT gate.

Therefore, if we consider a state that is initially in |0〉 and goes to a Hadamard gate, we obtain

1√
2

(
1 1
1 −1

)(
1
0

)
=

(
1/
√

2

1/
√

2

)
(6.1.21)

|ψH〉 =
1√
2

(|0〉+ |1〉). (6.1.22)

From there, goes to a control input of a C-NOT gate where in the other input there are a state |0〉, we have
that the incoming state is

|ψ〉 = |ψH〉|0〉 =
1√
2

(|00〉+ |10〉) (6.1.23)

then the final state is given by, 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1√
2


1
0
1
0

 =
1√
2


1
0
0
1

 (6.1.24)
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|φ〉 =
1√
2

(|00〉+ |11〉) (6.1.25)

That kind of states, known as entangled states, will be subject of interest in the one of the branch of quantum
information processing that is the quantum teleportation. Quantum teleportation relies heavily on the properties
of entangled states.

Control

Target

H

Figure 6.3: Circuit C-NOT-Hardamard.

6.2 Entanglement

An entangled state is such that its wave function cannot be factorized into a product of the wave functions of
individual particles. Experimentally we can produce those entangled states by an atom decay or via high-energy
lasers guided to non-linear crystals, where the photons obtained from the crystal are sent to different beam-splitter
where we can measure the correlated polarization.

For instance, considering the last example, observe the Figure 6.4, suppose that the correlated emitted photons
have the following property: if D1(0) fires, then D2(0) always fires, and if D1(1) fires, then D2(1) always fires.
Alternatively, if D1(0) fires, then D2(1) and vice versa [61]. The above situation can be described by the following
states

|Φ±〉 =
1√
2

(|01, 02〉 ± |11, 12〉) (6.2.1)

or in the alternative case,

|Ψ±〉 =
1√
2

(|01, 12〉 ± |11, 02〉). (6.2.2)

Those states are known as Bell states and are called as the four maximally entangled two-qubit Bell states.
We can obtain these states from a quantum circuit as follows (see the Figure 6.5).
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Figure 6.4: EPR states source.

Let us analyse each input, where the first arrow indicates the action of a Hadamard gate over one qubit and
the second one indicates the action of a C-NOT gate [62]

• |00〉

|00〉 −→ 1√
2

(|0〉+ |1〉)|0〉 =
1√
2

(|00〉+ |10〉)

−→ 1√
2

(|00〉+ |11〉) = β00 ≡ |Φ+〉 (6.2.3)

• |10〉

|10〉 −→ 1√
2

(|0〉 − |1〉)|0〉 =
1√
2

(|00〉+ |10〉)

−→ 1√
2

(|00〉 − |11〉) = β10 ≡ |Φ−〉 (6.2.4)

• |01〉

|01〉 −→ 1√
2

(|0〉+ |1〉)|1〉 =
1√
2

(|01〉+ |11〉)

−→ 1√
2

(|01〉+ |10〉) = β01 ≡ |Ψ+〉 (6.2.5)

• |11〉

|11〉 −→ 1√
2

(|0〉 − |1〉)|1〉 =
1√
2

(|01〉 − |11〉)

−→ 1√
2

(|01〉 − |10〉) = β11 ≡ |Ψ−〉 (6.2.6)

These states form a basis in the Hilbert space of dimension 4 and will be the principal tool in the process of
the quantum teleportation.
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Figure 6.5: Schematic diagram for the production of Bell states.

6.3 Quantum Teleportation

The basic idea of the quantum teleportation is to transfer the quantum state of one qubit to another that is
physically separated from it [61]. As we mentioned before, we can use electrons, atoms, nucleus or photons.
Following with the use of the quantum circuits, we shall send the information without qubit direct interchange.

The procedure is the following: One qubit is sent to one circuit’s input and its state |ψ〉 is unknown. In the
other circuit’s input will enter a qubit that comes from an entangled state. The other qubit of this entangled
state is in the hands of a receptor. In the laboratory of the transmitter is obtained the information by the Bell
state measurement of the pair of photons. This obtained result is classically communicated to a receiver, whom
makes a unitary operation obtaining here the state |ψ〉.

With this in mind, let |ψ〉 the qubit to teport,

|ψ〉 = α|0〉+ β|1〉. (6.3.1)

The transmitter and the receptor share an entangled state |Φ+〉, then

|ψ〉 ⊗ |Φ+〉 = (α|0〉+ β|1〉)
(

1√
2

(|00〉+ |11〉)
)

=
1√
2

(α|0〉(|00〉+ |11〉) + β|1〉|00〉+ |11〉) (6.3.2)

Applying C-NOT to |Φ+〉
−→ 1√

2
(α|0〉(|00〉+ |11〉) + β|1〉|10〉+ |01〉) (6.3.3)

Now applying Hadamard to |ψ〉
−→ 1√

2
(α

1√
2

(|0〉+ |1〉)(|00〉+ |11〉)

+ β
1√
2

(|0〉 − |1〉)(|10〉+ |01〉)) (6.3.4)

=
1

2
[|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)

+ |10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)] (6.3.5)

=
1

2

1∑
b1b2=0

|b1b2〉
(
Xb2Zb1 |ψ〉

)
(6.3.6)
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Thus, applying Xb2Zb1 the receptor will obtain the state |ψ〉 [62].

ψ

 β

H

Z    X
b1 b2

00 Φ+

Figure 6.6: Complete quantum circuit for the teleportation process.

In order to give a view more clear, we can put labels for the 3 qubits. The qubit 1 is the qubit to be teleported,
the qubits 2 and 3 compose the initial entangled Bell state. Now, supposing that we are working with |Ψ−〉, the
total wave function is given by

|Ψ〉123 =
1√
2

(α|0〉1 + β|1〉1)(|0〉2|1〉3 − |1〉2|0〉3). (6.3.7)

Factoring the Bell states we have

|Ψ〉123 =
1

2
(|Φ+〉(α|1〉3 − β|0〉3) + |Φ−〉(α|1〉3 + β|0〉3)

+ |Ψ+〉(−α|0〉3 + β|1〉3) + |Ψ−〉(α|0〉3 + β|1〉3). (6.3.8)

That is to say, if the measurements in the transmitter’s laboratory give the result of |Φ−〉, the receptor will
know the state that is in its hands is such given by

|ψ〉3 = α|1〉3 + β|0〉3. (6.3.9)

Now, if there are three persons involved in the teleportation process, we have the following: The person A has
a qubit entangled with a qubit that belongs with the person B and one person C with qubit that are entangled
with another one that belongs with the person B but is not the same that such is entangled with the qubit of A,
in other words, we can considerate the following product

|Φ+〉(AB) ⊗ |Φ+〉(B
′C). (6.3.10)

We can use with this state, the C-NOT operator applying it to a qubit B’ using the qubit B as a control,
after we apply the Hadamard operator to B and finally we perform a Bell measurement over B and B’. With
this measurement the qubits of A and C are now entangled. What is happening here, is that the measurement
involves a wave collapse, then the information of B and B’ is classic and this information can be sent trivially
to C where a measurement can be performed to obtain the quantum information. The problem is that now B is
uncommunicated.
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Figure 6.7: Schematic diagram of an arrangement for teleportation and Bell measurement.

6.4 The density operator

In quantum mechanics, the information of a system is given by the state vectors |ψ〉. The information consists of
quantum numbers associated with a set of commuting observables. From the principle of superposition and the
properties of the Hilbert space, if |ψ1〉 and |ψ2〉 are two possible quantum states, its coherent superposition

|ψ〉 = c1 |ψ1〉+ c2 |ψ2〉 (6.4.1)

will be a quantum state too if the coefficients c1 and c2 are known. With the condition of orthogonality, 〈ψ2|ψ1〉 =
0, and the normalization we can obtain |c1|2+|c2|2= 1. In the most of situations we have that the state vector is
not known. If the system of interest is interacting with another system (that can be very large, as a reservoir),
both become entangled. In this case, is possible to write state vectors for the multicomponent system but not for
the subsystem of interest [60].

The states that are described by state vectors are called pure states. Those states that cannot be described
by state vectors are defined as mixed states. The mixed states are described by the density operator

ρ =
∑
i

|ψi〉 pi 〈ψi| =
∑
i

pi |ψi〉 〈ψi| , (6.4.2)

where the sum is over an ensemble, pi is the probability of the system being in the ith state of the ensemble |ψi〉
and 〈ψi|ψi〉 = 1. The probabilities satisfy

0 ≤ pi ≤ 1,
∑
i

pi = 1,
∑
i

p2
i ≤ 1. (6.4.3)

We obtain the density operator for a pure state when pi = δij which yields

ρ = |ψj〉 〈ψj | . (6.4.4)

Introducing a complete and orthonormal basis {φn}, the ith member of the ensemble may write as

|ψi〉 =
∑
n

c(i)n |φn〉 (6.4.5)
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where c
(i)
n = 〈φn|ψi〉. In this base, the matrix elements are given by

〈φn|ρ|φm〉 =
∑
i

pic
(i)
n c(i)∗m . (6.4.6)

Taking the trace of this matrix we have

(6.4.7)

Trρ =
∑
n

〈φn|ρ|φn〉

=
∑
i

∑
n

pi 〈φn|ψi〉 〈ψi|ψn〉

=
∑
i

pi

= 1.

Since ρ is Hermitian, the diagonal elements must be real and satisfy 0 ≤ 〈φn|ρ|φn〉 ≤ 1.
Considering the square of the density operator for a pure state we obtain

ρ2 = |ψ〉 〈ψ|ψ〉 〈ψ| = |ψ〉 〈ψ| = ρ. (6.4.8)

Then the trace of ρ2 is equal to the trace of ρ for a pure state. For a statistical mixture

ρ2 =
∑
i

∑
j

pipj |ψi〉 〈ψi|ψj〉 〈ψj | . (6.4.9)

Taking the trace

(6.4.10)

Trρ2 =
∑
n

〈
φn|ρ2|φn

〉
=
∑
n

∑
i

∑
j

pipj 〈φn|ψi〉 〈ψi|ψj〉 〈ψj |φn〉

=
∑
i

∑
j

pipj |〈ψi|ψj〉 |2

≤

[∑
i

pi

]2

= 1.

Therefore we have a criteria for pure and mixed states. The expectation value of an operator will be given by

〈O〉 = Tr(ρO) (6.4.11)

6.5 von Neumann Entropy

The concept of entropy is commonly used in thermodynamics and is understood as a measure of disorder. As the
disorder increases the entropy is greater. In statistical mechanics and information theory, the entropy indicates
the missing information.

The Von Neumann entropy is defined for a density operator as [63]

S(ρ) = −Tr[ρ ln ρ] (6.5.1)
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and has a parallel with the entropy defined in the context of statistical mechanics. We have that for a pure state
this entropy is zero. Then repeated measurements of that pure state wont bring new information. For a mixed
state we obtain S(ρmixed) > 0. The procedure for calculate the entropy is in general difficult. In a basis for which
the density operator is diagonal, we can evaluate the entropy as

S(ρ) = −
∑
k

ρkk ln ρkk. (6.5.2)

Because we have that all diagonal matrix elements must be real and 0 ≤ ρkk ≤ 1, from this we say that S(ρ)
must be positive semidefinite.

Consider the bipartite state

|ψ〉 =
1√

1 + |ζ|2
(|0〉1 |0〉2 + ζ |1〉1 |1〉2). (6.5.3)

The density operators for each subsystem are

ρ1 =
1

1 + |ζ|2
[|0〉1 1 〈0|+ |ζ|

2|1〉1 1 〈1|] (6.5.4)

ρ2 =
1

1 + |ζ|2
[|0〉2 2 〈0|+ |ζ|

2|1〉2 2 〈1|]. (6.5.5)

Then the corresponding von Neumann entropies are

S(ρ1) = −
{

1

1 + |ζ|2
ln

[
1

1 + |ζ|2

]
+
|ζ|2

1 + |ζ|2
ln

[
|ζ|2

1 + |ζ|2

]}
= S(ρ2). (6.5.6)

When ζ = 0 we have a non-entangled system |0〉1 |0〉2 and S(ρ1) = S(ρ2) = 0, as expected. When we
have |ζ|= 1 we obtain S(ρ1) = S(ρ2) = ln 2, which represents maximal entanglement for this state indicating
maximal quantum correlations. Information about these correlations is destroyed upon tracing over one of the
subsystems [60]

6.6 Bogoliubov Transformations Approach to Unruh Effect

The metric (2.2.37) is conformal to the whole of Minkowski space, for under the conformal transformation

gµν → e−2aξgµν , (6.6.1)

reduces to dη2 − dξ2. Since the wave equation is conformally invariant, we can write it in Rindler coordinates as
follows

e2aξ�ϕ =

(
∂2

∂η2
− ∂2

∂ξ2

)
ϕ =

∂2

∂ū∂v̄
= 0, (6.6.2)

which has the following mode solutions

ūk =
1√
4πω

eikξ±iωη, (6.6.3)

with
ω = |k|> 0, −∞ < k <∞. (6.6.4)

The + sign in the expression (6.6.3) applies in region L and the − sign in region R. These modes are positive
frequency with respect to the time-like Killing vector +∂η in R and −∂η in L, satisfying

L±∂η ūk = −iωūk. (6.6.5)
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We define

u
(R)
k =

{
1√
4πω

eikξ−iωη in R

0 in L
(6.6.6)

u
(L)
k =

{
0 in R

1√
4πω

eikξ+iωη in L
(6.6.7)

The set (6.6.6) is complete in the region R, while the set (6.6.7) is complete in L. As we see before, the field
can be expanded by the modes solutions of the wave equation in Minkowski space,

ϕ =

∞∑
k=−∞

(akuk + a†ku
∗
k), (6.6.8)

or in the Rindler modes

ϕ =

∞∑
k=−∞

(b
(1)
k u

(L)
k + b

(1)†
k u

(L)∗
k + b

(2)
k u

(R)
k + b

(2)†
k u

(R)∗
k ), (6.6.9)

where we can identify two alternative Fock spaces, thus two vacuum states; the Minkowski vacuum state |0M 〉
and the Rindler vacuum state |0R〉, defined by

ak |0M 〉 = 0 (6.6.10)

or
b
(1)
k |0R〉 = b

(2)
k |0R〉 = 0. (6.6.11)

By inspection of the Rindler modes, we have that these modes are non-analytic at the point u = v = 0.
Therefore the Rindler modes cannot be a combination of pure positive frequency Minkowski modes, but must
also contain negative frequencies [12]. The mixing of positive and negative frequencies implies that the vacuum
states cannot be the same, in other words, the vacuum associated with one set of modes contains particles
associated with the other set of modes.

In order to determine what Rindler particles are present in the Minkowski vacuum, we must determine the
Bogoliubov transformation between the two sets of modes. From the expression (4.3.5) we can observe that the
Bogoliubov coefficients in this situation can be obtained by a Fourier transform of the Rindler modes. In [12] is
named an alternative form, referring to a method due to Unruh [13], where is indicated that the combinations

u
(R)
k + e−πω/au

(L)∗
−k (6.6.12)

u
(R)∗
−k + eπω/au

(L)
k (6.6.13)

are analytic and bounded, both for all real u, v and in any point in the lower half complex u and v planes, in
contrast with the separated Rindler modes (6.6.6) (6.6.7).

Since the modes (6.6.12) and (6.6.13) share the positive frequency analyticity propertoes of the Minkowski
modes uk, they must also share a common vacuum state |0M 〉, thus we can expand the field in a new form

ϕ =

∞∑
k=−∞

1√
2 sinh(πω/a)

[
d

(1)
k (eπω/2au

(R)
k + e−πω/2au

(L)∗
−k )

+ d
(2)
k (e−πω/2au

(R)∗
−k + eπω/2au

(L)
k )

]
+ h.c. (6.6.14)

where
d

(1)
k |0M 〉 = d

(2)
k |0M 〉 = 0. (6.6.15)
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The operators b
(1,2)
k can be related to d

(1,2)
k taking the inner products (ϕ, u

(R)
k ), (ϕ, u

(L)
k ) with the expansion

field given by (6.6.9) and then with (6.6.14). After this procedure, we obtain

b
(1)
k =

1√
2 sinh(πω/a)

[eπω/2ad
(2)
k + e−πω/2ad

(1)†
k ] (6.6.16)

b
(2)
k =

1√
2 sinh(πω/a)

[eπω/2ad
(1)
k + e−πω/2ad

(2)†
−k ]. (6.6.17)

These Bogoliubov transformations give as the required relation between the vacuum states |0R〉 and |0M 〉.
Considering an accelerated observer with a hyperbolic trajectory at ξ = constant. The vacuum state for this

accelerated observer |0R〉 is the state associated with modes which are positive frequency with respect to η. For

instance, an accelerated observed in L will detect particles counted by the number operator b
(1)
k b

(1)†
k . If the field

is initially prepared in the Minkowski vacuum state |0M 〉, then an accelerated observer will detect

〈0M | b(1)
k b

(1)†
k |0R〉 =

e−πω/a

2 sinh(πω/a)
=

1

e2πω/a − 1
(6.6.18)

particles in the mode k. This is precisely the Planck spectrum for radiation at temperature

T =
a

2π
(6.6.19)

which is in exact agreement with the result obtained in (7.2.7). Then an accelerated observer perceives the vacuum
in the flat space as a set of thermal particles. Under a conformal transformation we could obtain a thermal bath
seen by an inertial observer in curved space. This is the so-called Hawking effect.

Finally, one can invert the Bogoliubov transformations (6.6.16) and (6.6.17) in order to express the creation

and annihilation operators d
(1,2)
k or ak in terms of the Rindler creation and annihilation operators b

(1,2)
k and

apply this expansion to the state |0M 〉. This procedure will give explicitly the form in which Rindler particles
are composing the Minkowski vacuum. The Minkowski vacuum in terms of Rindler particles has the following
two-mode squeezed states form [64, 65, 66]

|0k〉M ∼
1

cosh r

∞∑
n=0

tanhn r |nk〉R |nk〉L , (6.6.20)

where

cosh r =
1√

1− e−2πω/a
, (6.6.21)

and |nk〉R , |nk〉L refer to the mode decomposition in region R and L, respectively, of Rindler space and

|0M 〉 =
∏
j

|0j〉M . (6.6.22)

Tracing out over the degrees of freedom associated with Rindler region L, we obtain the density matrix for
the region R given by

ρ =
∏
j

1

1− e−2πωj/a

∑
nj

e−2πnjωj/a |nj〉RR 〈nj | , (6.6.23)

that corresponds precisely with a thermal density matrix. Then the Minlowski vacuum corresponds to a thermal
state in each Rindler wedge at temperature T = a/2π.
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6.7 Entanglement in Noninertial Frames

Quantum information has been explored widely in the framework of the quantum mechanics formalism. Diverse
areas such that quantum optics, atomic physics, solid-state physics, have explored the creation of entangled states
and its application as a tool resource for quantum information processing. Nevertheless, under realistic laboratory
conditions, entanglement is degrading through uncontrolled coupling to environment.

Exploring the relativistic aspects of the physical systems that are involved in the quantum information pro-
cessing, may contribute in task of controlling and enhance the entanglement in realistic conditions. The field of
relativistic quantum information are interested in the quantum field effects as an environment of the qubits; the
quantum decoherence induced by the quantum field and the entanglement dynamics and its observer-dependent
nature.

In this section we review the results reported by Fuentes-Schuller and Mann in [54] where they investigated
the entanglement between two modes of a noninteracting massless scalar field when one of the observers describing
the state is uniformly accelerated. By Unruh effect, they found that the entanglement is degraded. On the other
hand, although the quantum field induce decoherence in the qubit, if we place two or more, the mutual influences
via the quantum field will enhance the entanglement [23]. With this in mind we discuss the results in the Ref. [57]
where is demonstrated that, in the presence of curvature, the amount of entanglement can be increased. We can
evidence two kinds of studies in this framework. The first one, is related to study the entanglement of bosonic
free modes of a scalar field. The second one, study the entanglement between detectors. This last one is adopted
in the next chapter, where we show the entanglement extraction and stability of two UD accelerated detectors in
the Minkowski vacuum.

In order to stablish the entanglement degradation due to the Unruh effect, we consider that two modes, a and
b, of a free massless scalar field in Minkowski space-time, are maximally entangled form an inertial perspective,
that is, the quantum field is initially in the state

1√
2

(|0a〉M |0b〉M + |1a〉M |1b〉M ). (6.7.1)

The states are |0j〉M and |1j〉M are the vacuum and single particle excitation states of the mode j in Minkowski
space. The inertial observed, called Alice, has a detector which only detects mode a and the accelerated observer,
called Rob, has a detector sensitive only to mode b. Since Rob has a uniform acceleration α, the states corre-
sponding to mode b must be expressed in Rindler coordinates in order to describe what Rob sees. We use then
the expression (6.6.20).

t

zL R

Alice

Rob

Figure 6.8: Schematic diagram for the entanglement between an inertial and accelerated observers [54].
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In this situation is considered that the rest of the modes in the field, apart from a and b, are in the vacuum.
Therefore, we can trace over all the modes except for a and b. From the expression (6.6.20) and

|1b〉M =
1

cosh2 r

∞∑
n=0

tanhn r
√
n+ 1 |(n+ 1)b〉R |nb〉L , (6.7.2)

we can rewrite the expression (6.7.1) in terms of Minkowski modes and Rindler modes, such that tracing over the
region L, we obtain

ρAR =
1

2 cosh2 r

∑
n

tanh2n rρn, (6.7.3)

where

ρn = |0, n〉 〈0, n|+
√
n+ 1

cosh r
|0, n〉 〈1, n+ 1|+

√
n+ 1

cosh r
|1, n+ 1〉 〈0, n|+ n+ 1

cosh2 r
|1, n+ 1〉 〈1, n+ 1| , (6.7.4)

where |n,m〉 = |na〉M |mB〉R. In order to measure the entanglement degradation, the logarithmic negativity is
calculated. It is defined as

N(ρ) = log2||ρT ||1 (6.7.5)

where ||ρT ||1 is the trace norm of the density matrix. For the density matrix ρAR the logarithmic negativity reads

N(ρAR) = log2

(
1

2 cosh2 r
+ Σ

)
(6.7.6)

where

Σ =

∞∑
n=0

tanh2n r

2 cosh2 r

√(
n

sinh2 r
+ tanh2 r

)2

+
4

cosh2 r
. (6.7.7)

For vanishing acceleration, r = 0, N(ρAR) = 1 as expected. In the limit r → ∞, the negativity is exactly 0.
The wide set of physical implications that these results open will be discussed beside the results of the following
chapter.
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Chapter 7
Entanglement stability of entangled accelerated
detectors

In this chapter are presented the main results of this work. We examine the entanglement stability of a pair of
accelerated two-level atoms weakly coupled with a massless scalar field in Minkowski vacuum. We obtain the
entanglement by the excitation of the atomic system due to Unruh effect and its mutual influences by the field.
We identify the mutual influences of atoms via fields as a coherence agent in each response function terms. The
thermal spectrum measured by the accelerated atoms is found for a long observational time interval. In addition,
we obtain a general expression for the mean life of those entangled states for different accelerations and on-times
switching.

7.1 Two identical atoms coupled with a massless scalar field

Let us consider two identical two-level atoms interacting with a massless scalar field in a four-dimensional
Minkowski space-time. Here we consider that the atoms are moving along different hyperbolic trajectories.
Let us first establish the dependence between the proper times by the structure of Rindler coordinates [12]

t = a−1eaξ sinh(aη), z = a−1eaξ cosh(aη). (7.1.1)

The lines of constant η are straight lines (z ∼ t), whereas the lines of constant ξ are hyperbolae z2−t2 = a−2e2aξ ≡
constant. The proper acceleration is defined by ae−aξ = α−1, and the proper time of the atoms τ is related to
ξ and η by τ = eaξη. We assume that the j-th atom accelerates uniformly with acceleration α−1

j , j = 1, 2. The
dependence between the proper times is given by the lines of constant η, such that

τ2(τ1) = τ1e
a(ξ2−ξ1), (7.1.2)

with ea(ξ2−ξ1) = α2/α1.

The time evolution of the atom-field quantum system with respect to the coordinate time t is described by
the total Hamiltonian H which reads

H = HA +HF +Hint,

where HA is the free atomic Hamiltonian, HF is the free field Hamiltonian and Hint describes the interaction
between the atoms and the fields.
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t

L R

α1 α2

τ1 τ2 (τ1)

z

η0   const

ηf   const

Figure 7.1: Schematic diagram for the entanglement formation between two accelerated observers.

Let us briefly discuss each of such terms. We may express the atomic Hamiltonian in the Dicke notation
as [67]

HA =
ω0

2

[
Sz1 (τ)⊗ 1l2

dτ1
dt

+ 1l1 ⊗ Sz2 (τ)
dτ2
dt

]
(7.1.3)

where Szi = (|ei〉 〈ei| − |gi〉 〈gi|)/2 is associated with the i-th atom and |gi〉, |ei〉 is the ground and excited state of
the i-th atom, respectively. Also, τi is the proper time of the i-th atom. The eigenstates and respective energies
are given by

Egg = −ω0 |gg〉 = |g1〉 |g2〉 ,

Ege = 0 |ge〉 = |g1〉 |e2〉 ,

Eeg = 0 |eg〉 = |e1〉 |g2〉 ,

Eee = ω0 |ee〉 = |e1〉 |e2〉 , (7.1.4)

where a tensor product is implicit. Another possible choice is the Bell-state basis. The Bell states are known as
the four maximally entangled two-qubit states. In terms of the above product states, the Bell states are expressed
as ∣∣Ψ±〉 =

1√
2

(|g1〉 |e2〉 ± |e1〉 |g2〉) , (7.1.5)

∣∣Φ±〉 =
1√
2

(|g1〉 |g2〉 ± |e1〉 |e2〉) . (7.1.6)

The Hamiltonian (7.1.3) is showing a degeneracy associated with the eigenstates |ge〉 and |eg〉. Any linear
combination of these degenerate eigenstates will be an eigenstate of the atomic Hamiltonian and these linear
combination must have the same degenerate energy value. Then (7.1.5) are eigenstates of HA. On the other
hand, it is clear that (7.1.6) are not eigenstates of the atomic Hamiltonian.

The free Hamiltonian of the quantum field which governs the field time evolution is given by

HF =
1

2

∫
d3x

[
(ϕ̇(x))2 + (∇ϕ(x))

2
]
, (7.1.7)
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where the dot represents the derivative with respect to t. Finally we assume that the coupling between the atoms
and the field is described by a monopole interaction in the form

Hint(t) =

2∑
j=1

gjm
(j)(τj(t))ϕ[xj(τj(t))]

dτj(t)

dt
. (7.1.8)

The quantity gj is the coupling constant of the j-th atom, ϕ[xj(τj(t))] is the field at the point of the j-th atom.
Hereafter we set g1 = g2 = g and we assume that g is small.

As mentioned above, we consider that the atoms are moving along world lines xµ1,2(τ1,2) parametrized by the
proper times τ1,2. Since in this case the proper times of the atoms do not coincide, we write the time-evolution
operator as [57]

U = exp

[
−i
∫
dτ1g

[
m(1)(τ1)ϕ (xµ1 (τ1)) + m(2)(τ2(τ1))ϕ (xµ2 (τ2(τ1)))

dτ2(τ1)

dτ1

]]
. (7.1.9)

Preparing the field ϕ in the Minkowski vacuum state |0M 〉 and the atoms in the collective ground state |gg〉, the
amplitude in first-order perturbation theory for a general transition is given by

A|gg;0M 〉→|ω;ϕf 〉 = ig 〈ω;ϕf |
∫ τf

τ0

dτ1

[
m(1)(τ1)ϕ (xµ1 (τ1))

+ m(2)(τ2(τ1))ϕ (xµ2 (τ2(τ1)))
dτ2(τ1)

dτ1

]
|gg; 0M 〉 . (7.1.10)

In the interaction picture, we have

m(k)(τj) = eiHAτjm(k)(0)e−iHAτj , (7.1.11)

where

m(j)(0) = |e(j)〉〈g(j)|+|g(j)〉〈e(j)|

is the monopole matrix of the j-th atom [56, 57]. The transition probability to all possible atomic and field states
in first-order approximation is given by

Γ|ω′〉→|ω〉(∆ω, τ0, τf ) = g2
∑
ω,i,j

[
m

(i)∗
ωω′m

(j)
ωω′Fij(∆ω, τ0, τf )

]
(7.1.12)

where ∆ω = ω − ω′, i = 1, 2, j = 1, 2 and the matrix elements are given by

m
(1)
ωω′ = 〈ω|m(1) ⊗ 1l2 |ω′〉

m
(2)
ωω′ = 〈ω| 1l1 ⊗m(2) |ω′〉 .

Note that ω can be any of the energies given in Eq. (7.1.4) and also |ω〉 can be any of the states {|gg〉, |Ψ±〉,
|ee〉}.
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τ1’ τ2’

G11

G12

G21

G22+

+

+

+

τ1 τ2

z

t

Figure 7.2: Individual and crossed correlation functions. Crossed correlation functions give the infor-
mation of the mutual influences of atoms via the quantum field.

The corresponding response functions are defined by

Fij(∆ω, τ0, τf ) =

∫ τf

τ0

dτ1

∫ τf

τ0

dτ ′1e
−i∆ω(τi(τ1)−τj(τ ′1))G+

ij(τ1, τ
′
1)
dτj(τ

′
1)

dτ ′1

dτi(τ1)

dτ1
, (7.1.13)

whereG+
ij(τ1, τ

′
1) = 〈0M |ϕ (xi(τi(τ1)))ϕ (xj(τj(τ

′
1))) |0M 〉 is the positive-frequency Wightman function in Minkowski

space-time for a massless scalar field, which is given by

G+
ij(τ, τ

′) =
1

8π2

1

σ(τ, τ ′)
, (7.1.14)

where σ(τ, τ ′) is given by

2σ(τ, τ ′) = (xi(τ)− xj(τ ′))2

= −(ti(τ)− tj(τ ′)− iε)2 + |xi(τ)− xj(τ
′)|2.

We are interested in the entanglement generation of a pair of atoms travelling in different hyperbolic world lines.
Hence we study the transition |gg〉 → |Ψ±〉, with ∆ω = ω0 > 0. The appearance of cross terms in the transition
probability has its origin in the fact of working with two atoms, both interacting with a common scalar quantum
field.

We may define the total transition rate as follows

R|ω′〉→|ω〉(∆ω,∆t) =
dΓ|ω′〉→|ω〉(∆ω,∆t)

d(∆t)
, (7.1.15)

where Γ|ω′〉→|ω〉(∆ω,∆t) is given by Eq. (7.1.12). In order to present an explicit expression for the total transition
rate, one needs to properly evaluate in detail each of the response functions Fij(∆ω, τ0, τf ). This is the topic of
the next Section.
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7.2 Individual response functions, F11(∆ω,∆t) and F22(∆ω,∆t)

Let us first evaluate the contribution F11(∆ω) to the total response function. The associated Wightman function
G+

11 is given by

G+
11 (τ1 − τ ′1) = − 1

16π2α2
1 sinh2

(
τ1−τ ′1
2α1

− iε
α1

) . (7.2.1)

Using known series identities [47] we can rewrite (7.2.1) as

G+
11(τ1 − τ ′1) = − 1

4π2

∞∑
n=−∞

((τ1 − τ ′1)− 2iε+ 2πiα1n)
−2
. (7.2.2)

Changing variables to
ψ = τ1 − τ ′1 η = τ1 + τ ′1, (7.2.3)

we have,

F11(∆ω,∆t) =
1

2

∫ ∆t

−∆t

dψ (2|ψ|−2∆t) e−i∆ωψG+
11(ψ), (7.2.4)

where ∆t = τf − τ0. The evaluation of the integral leads us to [46]

F11(∆ω,∆t) =
∆t

2π2

{
π|∆ω|Θ(−∆ω) + |∆ω|

(
Si∆ω∆t− π

2

)
+

π|∆ω|
e2πα1|∆ω| − 1

+

∫ ∞
∆t

dψ cos(∆ωψ)

(
1/(2α1)2

sinh2 ψ/(2α1)
− 1

ψ2

)}
+

1

2π2

{
cos (∆ω∆t) + log

(
∆t

2πε

)
− 1

+

∫ ∆t

0

dψ
cos(∆ωψ)− 1

ψ
+

∫ ∆t

0

dψψ cos ∆ωψ

(
1/(2α1)2

sinh2 ψ/(2α1)
− 1

ψ2

)}
. (7.2.5)

For details concerning such a calculation we refer the reader the Appendix B.2. We are interested in the rate

Rij(∆ω,∆t) =
dFij(∆ω,∆t)

d(∆t)
(7.2.6)

which is related to the mean life of states. From the expression (B.2.3) found in Appendix B.2 we obtain that for
large time intervals we have the following expression

lim
∆t→∞

R11(∆ω,∆t) =
|∆ω|
2π

{
Θ(−∆ω)

[
1 +

1

e2πα1|∆ω| − 1

]
+ Θ(∆ω)

1

e2πα1∆ω − 1

}
. (7.2.7)

The above equation shows us that the equilibrium between the uniformly accelerated atom and scalar field in the
Minkowski vacuum state |0M 〉 is the same as that which would have been achieved had this atom followed an
inertial trajectory but immersed in a bath of thermal radiation at the temperature β−1

1 = 1/2πα1.
Analogously, for the response function F22,

G+
22 (τ2(τ1), τ2(τ ′1)) = − 1

16π2α2
2 sinh2

(
τ1−τ ′1
2α1

− iε
α1

) . (7.2.8)

Performing similar steps as before, we can rewrite (7.2.8) as

G+
22(ψ) = − 1

4π2

α2
1

α2
2

∞∑
n=−∞

(ψ − 2iε+ 2πiα1n)
−2
, (7.2.9)
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such that, the expression for the response function F22(∆ω,∆t) yields

F22(∆ω,∆t) = −1

2
e2a(ξ2−ξ1)

∫ ∆t

−∆t

dψG+
22(ψ)(−2|ψ|+2∆t)e−i∆ωe

a(ξ2−ξ1)ψ. (7.2.10)

From the expression (B.2.6) in the Appendix B.2, we obtain an asymptotic expression ∆t→∞ for R22(∆ω,∆t)
which is just Eq. (7.2.7) with the replacement α1 → α2. We observe that, for large time intervals, the equilibrium
between the atom 2 and scalar field in the Minkowski vacuum state is the same as the equilibrium of this atom
in an inertial trajectory and a bath of thermal radiation at the temperature β−1

2 = 1/2πα2.

7.3 Crossed response functions, F12(∆ω,∆t) and F21(∆ω,∆t)

The first two response functions discussed above correspond to individual atomic transitions. Therefore one
expects that the response functions F12(∆ω,∆t) and F21(∆ω,∆t) exhibit the existence of cross-correlations
between the atoms mediated by the field. In order to unveil such a behavior, we now proceed to evaluate such
contributions. It is easy to show that the positive frequency Wightman functions for both cases are equal and
are given by

G+
21 (τ2(τ1), τ ′1) = G+

12 (τ1, τ2(τ ′1))

= G+
c (τ1 − τ ′1) (7.3.1)

where

G+
c (τ1 − τ ′1) = − 1

16π2α1α2
G+
c0(τ1 − τ ′1) (7.3.2)

and

G+
c0(τ1 − τ ′1) =

[
sinh

(
τ1 − τ ′1

2α1
− 4iε

(α1 + α2)
+
φ

2

)
sinh

(
τ1 − τ ′1

2α1
− 4iε

(α1 + α2)
− φ

2

)]−1

(7.3.3)

and

coshφ = 1 +
(α1 − α2)2 + |∆x|2

2α1α2
(7.3.4)

with |∆x|2= (x2 − x1)2 − (y2 − y1)2. Hence one has that:

F21(∆ω,∆t) =
1

2
ea(ξ2−ξ1)

∫ ∆t

−∆t

dψ

∫ −|ψ|+2τf

|ψ|+2τ0

dη e−i∆ω(a−/2α1)ηe−i∆ω(a+/2α1)ψ G+
c (ψ), (7.3.5)

where we used Eq. (7.2.3) and where a− = α2 − α1 and a+ = α2 + α1. After some algebraic manipulations, one
gets

F21(∆ω,∆t) =
−i

16π2α1∆ωa−

{
e−i∆ω(a−/α1)(∆t+τ0) [I(∆ω,∆t, 1) + I(∆ω,∆t,−α2/α1)]

− ei∆ω(a−/α1)(∆t−τf ) [I(∆ω,∆t,−1) +I(∆ω,∆t, α2/α1)]
}
, (7.3.6)

where

I(∆ω,∆t, σ) ≡
∫ ∆t

0

dψe−iσ∆ωψG+
c0(ψ). (7.3.7)

The contribution for asymptotic time interval is given by∫ ∞
0

dψe−iσ∆ωψG+
c0(ψ) =

4α1

sinhφ
sin(|∆ω|σα1φ)

{[
ν0 +

π

e2πα1σ|∆ω| − 1
+ ζ(∆ω, σ)

]
Θ(−∆ω)

+

[
π

e2πα1σ∆ω − 1
+ ζ(∆ω, σ)

]
Θ(∆ω)

}
, (7.3.8)
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Figure 7.3: The quantity Re[R12]|gg〉→|Ψ+〉 as a function of the inverse accelerations α1, α2 for different
values of ∆ω|∆x|. The quantity ∆ω|∆x| serves as control parameter in the study of entanglement
generation. All physical quantities are given in terms of the natural units associated with the specific
transition |gg〉 → |Ψ+〉. Therefore, in this case ξ1, ξ2 and α1, α2 are measured in units of λ, and ω0 is
given in units of 2πλ−1, where λ = 2π/ω0. Moreover, Re[R12] is measured in units of λ−1.

where we have defined ν0 = 2i log(α1φ) + π and the ζ(∆ω, σ) is a combination of Hurwitz-Lerch zeta functions
that is defined in the Appendix B.3. The expressions (7.3.6) and (7.3.8) clearly display a thermal Planck factor
with a gray-body term, where the contributions with σ = ±1 contain information about the temperature β1 and
contributions with σ = ±α2/α1 comprise the knowledge on the temperature β2. In a similar fashion, one has that

F12(∆ω,∆t) =
i

16π2α1∆ωa−

{
ei∆ω(a−/α1)(∆t+τ0)

× [I(∆ω,∆t,−1) + I(∆ω,∆t, α2/α1)]

− e−i∆ω(a−/α1)(∆t−τf ) [I(∆ω,∆t, 1)

+ I(∆ω,∆t,−α2/α1)]} . (7.3.9)

Observe that F21(∆ω,∆t) = F ∗12(∆ω,∆t). Hence the object of interest is Re[F12(∆ω,∆t)].
In order to study the entanglement generation, we focus attention on the particular transition |gg〉 → |Ψ+〉.

The corresponding matrix elements of this transition are given by

m(1)
gs = m(2)

gs = 1/
√

2, (7.3.10)

and the gap energy is Egs = ω0. We define the cross contribution for the total transition rate as Re[R12]|gg〉→|Ψ+〉
which is properly evaluated in Appendix B.3, see the expression (B.3.7). The behavior of such a quantity as a
function of the inverse accelerations α1, α2 is depicted in the Fig. 7.3, for a fixed small time interval and different
spatial separations |∆x|. One plainly observes the occurrence of maximum values for Re[R12] for specific values
of the accelerations. This result primarily demonstrates how |∆x| can be employed as a control parameter for
entanglement generation from the vacuum state. As expected, a large value of |∆x| corresponds to a significant
reduction on the magnitude of the cross contribution.

Let us specifically consider the condition ∆ω|∆x|� 1. In this case, the behaviour of the cross contribution to
the transition rate as a function of the accelerations is illustrated in Fig. 7.4. We consider not-so-great values for
∆ω∆t. Notice that, for atoms with different relative proper accelerations, cross correlations are negligible. Hence
in this situation the dominant terms in the transition probability are those related to the individual atoms.

On the other hand, the results for greater time intervals are summarized in Fig. 7.5. Observe that the mutual
influences of the atoms in this situation implies in a rather distinct interference pattern in comparison with the
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previous case. In addition, not only the region α1 = α2 in the plot produces sensible contributions to the transition
rate, but we note the appearance of other regions in the plot that also provide important contributions.

In turn, for large ∆ω|∆x| we have a reduction in the value of the cross contributions as emphasized above.
This is illustrated in Fig. 7.6). Furthermore, as in the previous figure, for increasing time intervals the dominant
terms are not determined solely by the region α1 = α2: clearly other regions in the plot are also important to the
transition rate.
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Figure 7.4: The quantity Re[R12]|gg〉→|Ψ+〉 as a function of the inverse accelerations α1, α2 for different
values of ∆ω∆t. We consider a fixed value ∆ω|∆x|= 0.3. For increasing time intervals the dominant
terms are given by the region α1 = α2. The inverse accelerations α1, α2 are measured in units of λ and
Re[R12] is measured in units of λ−1.
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Figure 7.5: The quantity Re[R12]|gg〉→|Ψ+〉 as a function of the inverse accelerations α1, α2 for different
values of ∆ω∆t. We consider a fixed value ∆ω|∆x|= 0.3. Here the values of ∆ω∆t are significantly
higher than those of the previous figure. Here it is clear that maximum values show up in other regions
besides the region in which α1 = α2. The inverse accelerations α1, α2 are measured in units of λ and
Re[R12] is measured in units of λ−1.
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Figure 7.6: The quantity Re[R12]|gg〉→|Ψ+〉 as a function of the inverse accelerations α1, α2 for different
values of ∆ω∆t. We consider a fixed value ∆ω|∆x|= 3.0. Again maximum values are located in other
regions besides the region α1 = α2. The inverse accelerations α1, α2 are measured in units of λ and
Re[R12] is measured in units of λ−1.

In virtue of the discussion just exposed, let us examine more closely the case in which α1 = α2 = α. In this
case, G+

c (ψ) becomes G+
α (ψ) which is defined as

G+
α (ψ) =

−(4
√

2πα)−2

sinh
(
ψ
2α −

2iε
α + φ

2

)
sinh

(
ψ
2α −

2iε
α −

φ
2

) . (7.3.11)

The expression (7.3.5) then reads,

F21(∆ω,∆t) =

∫ ∆t

−∆t

dψ

∫ −|ψ|+2τf

|ψ|+2τ0

dηe−i∆ωψG+
α (ψ). (7.3.12)

One can resort to contour integration methods in order to evaluate the integral in ψ. Observe that the integrand
have simple poles given by

ψ = 2παin+ 4iε± αφ, (7.3.13)

where n is an integer. For ∆ω < 0 we make use of an infinite semicircle that we close on the upper-half Im[ψ] > 0
plane; for n 6= 0 one may take the limit ε → 0 before solving the integral. This contour encloses the poles for
n ≥ 0 and runs in an anticlockwise direction. For ∆ω > 0 we close the contour in an infinite semicircle in the
lower-half Im[ψ] < 0 plane. Now, this contour encloses the poles for n < 0 and runs in the clockwise direction
(see Fig. B.1). In the asymptotic limit, we have

lim
∆t→∞

R21(∆ω,∆t) =
sin(|∆ω|αφ)

2πα sinhφ

{
Θ(−∆ω)

[
1 +

1

e2πα|∆ω| − 1

]
+ Θ(∆ω)

1

e2πα∆ω − 1

}
. (7.3.14)
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Figure 7.7: Equal-acceleration configuration. When the atoms have equal accelerations the parameter
|∆x| is used for improve the entanglement extraction.

In a similar way, we obtain the same asymptotic limit for R12(∆ω,∆t). For the specific transition |gg〉 → |Ψ+〉,
with matrix elements given by Eq. (7.3.10), one has that

Re[R12(Egs)]|gg〉→|Ψ+〉 = Re

[
sin(Egsαφ)

2πα sinhφ

1

e2πα∆ω − 1

]
. (7.3.15)

Let us study in more detail the behaviour of such cross contributions as a function of α for different spatial
separation |∆x|. This is illustrated in Fig. 7.8. One can easily observe that for each |∆x| the function Re[R12(Egs)]
has a maximum value at a given acceleration α = αmax. As expected on the grounds of the above discussions,
such maximum values decrease as |∆x| increases.

Consider the quantity αmax as a function of |∆x|. Then we can express the acceleration as a power series in
|∆x| as follows

αmax(|∆x|) =
1

|∆x|
[
a+ b|∆x|+c|∆x|2+d|∆x|3+ · · ·

]
. (7.3.16)

The graphic of this function is depicted in Fig. 7.9).
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Figure 7.8: The quantity Re[R12]|gg〉→|Ψ+〉 as a function of the inverse acceleration α1 = α2 = α of the
atoms for different values of ∆ω|∆x|. The inverse acceleration α is measured in units of λ and Re[R12]
is measured in units of λ−1.
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Figure 7.9: Plot of αmax as a function |∆x|, as given by Eq. (7.3.16), for values of a ≈ 1.8928, b ≈
17.8431, c ≈ 2.3334, d ≈ −0.18037 in natural units associated with the transition in study. Since the
inverse acceleration α and |∆x| are in units of λ. The blue continuum line represents the fit and the
red points represent the theoretical data obtained from the plot given in Fig. 7.8.

To conclude this Section, let us discuss the total transition rate (7.1.15) within the asymptotic time interval
regime and for small distances between the atoms. We also consider the case of equal accelerations, in which the
cross contributions are given by the Eq. (7.3.15). In this situation one can express the total transition rate as
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follows
R|gg〉→|Ψ+〉 = R11f(Egsαφ), (7.3.17)

where we have defined the function

f(x) = 2

(
1 +

sinx

x

)
. (7.3.18)

This function quantifies the influence of the crossed response functions on the entanglement between atoms, for
asymptotic time intervals. Some special values are given by (n is a positive integer)

f [(2n+ 1)π/2] = 2

(
1 +

2(−1)n

(2n+ 1)π

)
. (7.3.19)

The behaviour of this function is depicted in the Fig. 7.10. There is a great oscillatory regime for large accelerations
and small distances between the atoms. Since the atoms have the same z coordinate, the plot shows that for
φ � 1/∆ωα cross correlations are more important for the rate (7.3.17) in comparison with cases in which the
∆ω|∆x| becomes larger. Therefore, the crossed response functions generate a constructive interference when the
atoms are near each other in space. In turn, these interference terms vanish for large spatial separations between
the atoms. Similar conclusions were reported in Refs. [52, 68, 69, 70].
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Figure 7.10: The quantity f(x) as a function of x = ∆ωαφ.
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7.4 Mean life of entangled states

So far we have studied the formation of entangled states through the excitation of the collective ground state
|gg〉. We have demonstrated that, for uniformly accelerated atoms, the interaction with a common quantum field
can act as a source of entanglement. On the other hand, such an interaction can also induce decoherence effects.
Hence a natural question that emerges is whether such entangled states persist for long time intervals. A possible
measurement of the decay of entangled states is given by the mean life of such states. This is defined as

τ `|ω′〉→|ω〉(∆ω,∆t) = [R|ω′〉→|ω〉(∆ω,∆t)]−1. (7.4.1)

In order to study the stability of the entangled states under spontaneous emission processes one can study
the related transition |Ψ+〉 → |gg〉. The corresponding matrix elements of this transition are again given by
Eq. (7.3.10), and the gap energy is Esg = −ω0. Hence the expression (7.4.1) becomes

τ `|Ψ+〉→|gg〉 =
2

g2

{
R11(−Egs,∆t) +R22(−Egs,∆t) + 2Re[R12(−Egs,∆t)]

}−1

. (7.4.2)

The behavior of the mean life as a function of the accelerations for a relatively small time interval and with the
condition |∆ω||∆x|� 1 is depicted in the Fig. 7.11. Note that such a function falls off quickly with the acceleration.
This result has a clear-cut meaning: quantum entanglement disappears for sufficiently large accelerations.

Fig. 7.12 presents a similar situation as the previous figure but with |∆ω|∆t� 1. We note the emergence of
an oscillatory regime. This implies that the mean life of the entangled states displays maximum values at given
accelerations of the atoms. In such a scenario one concludes that the mutual influence of atoms will contribute
to the entanglement stability only for long times intervals. On the other hand, Fig. 7.13 shows that, for larger
values of |∆ω||∆x|, the oscillations are less severe than the previous case.

Figure 7.11: The quantity g2|∆ω|τ `/2 as a function of the accelerations of the atoms. We consider the
fixed values |∆ω||∆x|= 0.3 and |∆ω|∆t = 1.2. The inverse accelerations α1, α2 are measured in units
of λ
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Figure 7.12: The quantity g2|∆ω|τ `/2 as a function of the accelerations of the atoms. We consider
the fixed values |∆ω||∆x|= 0.3 and |∆ω|∆t = 60.0. We have the presence of interference effects that
provide more stability for the entangled states. The inverse accelerations α1, α2 are measured in units
of λ

Figure 7.13: The quantity g2|∆ω|τ `/2 as a function of the accelerations of the atoms. We consider the
fixed values |∆ω||∆x|= 3 and |∆ω|∆t = 60.0. The inverse accelerations α1, α2 are measured in units of
λ
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Chapter 8
Concluding remarks

The thermal nature of the Unruh effect is still a mystery. However it is not the only one; we have other
situations where we can perceive the vacuum as a black body radiating, such as moving mirror, universe in
expansion and black holes. All of them are covering a situation where relativity, quantum mechanics, gravity and
thermodynamics are involved. The unexpected and exotic properties of the quantum vacuum gave the vacuum
an important role in the fundamental physics. Why? Since we have defined the vacuum as a state of minimum
energy, we automatically open a wide set of extraordinary possibilities. The fundamental characteristic of the
above mentioned physical situations is the existence of horizons, a surface that determine two (or more) causally
disconnected regions. We could say that thermal radiation has a topological origin.

These manifestations of the vacuum lead us to think that there is something more fundamental that the
structure we are using. With the asymptotic freedom, these important effects of vacuum allow us to perceive
how we can surpass the obstacles to achieve the unification of the forces of Nature. These kind of results as we
presented here, show that there is a thermodynamic connection in a fundamental level.

On the other hand, these results strengthen the fact that the entanglement is becoming an observer dependent
phenomena. With this kind of situations we can perform experimental devices where these local properties of the
entanglement will bring information about the space-time structure. Because in relativistic quantum information
while a detector sees the same thermal bath in diverse scenarios, the way in which two separated detectors become
entangled senses a difference [59]. Quantum correlations acquired by space-like separated detectors interacting
with the same quantum field are dramatically sensitive to the space-time background and the state of motion of
the detectors [59]. These systems that are currently treated in relativistic quantum information are a potential
useful tool to probe the geometry of the space-time, stablish quantum communication satellite network and
observe directly quantum gravity effects as quantum fluctuations of curvature.

Therefore, the main results of the work are presented in the last chapter where we have studied two identical
uniformly accelerated two-level atoms weakly coupled with a massless scalar field prepared in the Minkowski
vacuum state. We have shown the possibility of generation of entanglement between such two atoms initially
prepared in the ground state. We also found that the associated response function contains terms related to
cross correlations between the atoms mediated by the field. Since the atoms move along different world lines,
such crossed terms present thermal contributions with different temperatures. The crossed terms of the response
function are modulated by an oscillating function. In addition, such contributions are accompanied by a gray
body factor, composed by a linear combination of derivatives of Hurwitz-Lerch zeta-functions, whose arguments
have information on the accelerations and the energy gap. The appearance of the aforementioned gray body
factor may be understood in the sense of Ref. [53], in which the authors demonstrate the emergence of a thermal
noise produced by the fluctuations of the fields and field correlations between the two trajectories. Moreover, we
also presented a general expression for the mean life of the entangled states. In general, we found that atoms
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with same acceleration will be less correlated for an increasing |∆x|, as expected.

With the results obtained here we can conclude that there is a non zero probability for the system of two
accelerated atoms to become entangled. It is clear that thermal effects can produce decoherence, but we are
evidencing that there is an interference pattern produced by the presence of the interaction between the two
atoms and the field where we can extract coherence quantum properties as it is the entanglement enhancement.
Furthermore, decoherence effects and open quantum systems have been studied by modelling dissipative envi-
ronment as a collection of harmonic oscillators, spin chains and others [71],[72],[73],[74], our environment here
is a quantum field in space-time background, following this, can we talk about the space-time as a collection of
harmonic oscillators or a spin set? When we are talking about gravitational waves, this could not be an ambiguous
idea.

Our treatment can be extended to a complex scalar field, spinor fields or electromagnetic field and in the
infinite acceleration limit, extend this for the Schwarzschild spacetime. Since the presence of boundaries will affect
the vacuum fluctuations of the quantum field, a natural extension for this work is to discuss the mean life times
of these accelerated entangled in presence of a reflecting plane. In order to continue the investigation of boundary
effects, it can be generalized to the problem where we have more than one boundary. In the case of the presence
of two parallel reflecting planes, we may compute the green function as an infinite image sum [12]. Thinking of
experimental setups, these situations, would give us a technique to improve coherence in quantum information
processing and new interesting results in cavity-QED. On the other hand, to clarify explicitly the contributions of
vacuum fluctuations and radiation reaction, it can be used to this situation the formalism presented by Dalibard,
Dupont-Roc and Cohen-Tannoudji [70, 75, 76] (known as DDC formalism). It can be interesting to obtain a
general expression for different accelerations and on-time switching for the contributions of vacuum fluctuations
and radiation reaction.

Furthermore, in order to clarify certain questions about the stochastic properties involved in the Unruh effect,
such as quantum noise, correlation and dissipation, it can be applied the influence functional method introduced
by Raval, B. L. Hu and Anglin [53]. Finally following [59] and taking into consideration the interference pattern
structure where we have regions of high entanglement stability, obtained in this work, we could add one inertial
detector and study the properties involved in a quantum teleportation protocol, such negativity, fidelity and other
control parameters.

Let us remark the following final words to clarify the thermodynamic connection. James Clerk Maxwell, with
its treatise on electricity and magnetism, introduced the electromagnetic waves, a new form of matter. In the
same form, quantum field theory gives us a wide spectrum of new forms of matter, that were condensed in the
standard model. In order to show the existence of these new forms of matter, a great effort was made as we
can observe in the particle accelerators, where, apart from consolidating experimentally the standard model, new
forms are being discovered, for example, the pentaquark. Furthermore, with the existence of gravitational waves,
we are able to explore the universe not only with electromagnetic waves, but with gravitational waves.

There is a quantum theory or a fully interactive theory for three of the four fundamental interactions. As
we see above, the proposal of an existence of ether in order to understand failures in the classical theory of
electromagnetic waves propagation, was a proposal with a geometrical basis, in the same form, currently a
geometrical question is inquiring us about the behaviour of gravitational waves in the framework of a quantum
field theory, it could be exposing certain failures of the theory in order to find a quantum theory of gravity.

As it occurred in 1900 with the black body radiation, a thermodynamic phenomena, where the electromag-
netic waves are the principal physical entity, nowadays, the semi-classical treatment of gravity is showing us
thermodynamic phenomena, where we have particles been created by external gravitational fields, places where
we have gravitational waves too. As it occurred in 1900 with the black body radiation that the classical theory
fails and the great mind of Planck gave us the begin of quantum mechanics, can a great change of paradigm occur
again with these thermodynamic phenomena exposed by quantum field theory in curved space-time?.

The failures of the modern theories in the search of a model beyond the standard model are showing us that
our consciousness is still in a certain form in the classical paradigm. Our task must be to identify how these
failures have a classical foundation and transform them. As we see above, the construction of mental images is
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resulting insufficient to understand the new paradigm, can this alternative perception of the world with thinking
without images, topology without points trough the symphony of the universe, the melody and the thermodynamic
phenomena of vacuum, bring us the pathway beyond the standard model to grand unification theory? As Planck
said ”an act of despair... I was ready to sacrifice any of my previous convictions about physics”. The only safe
aspect about the present theory is that it will show that it is so unsuitable like his predecessors.
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Appendix A
Thermal States

The black-body radiation, that we have found in the Unruh effect and in the expressions of the finite time response
functions of the entangled detectors, has been studied as a electromagnetic radiation emitted by a hot body. This
radiation is also known as thermal light. The properties of this thermal states are studied by applying the laws of
statistical mechanics to the radiation within an enclosed cavity at a temperature T . In this appendix we explore
the origin of the Planck factor that appears in the Unruh effect, specifically in the mean particle number, and
why we can say that this effect has a thermal nature.

The radiation pattern consists of a continuous spectrum of oscillating modes, with the energy density within
the angular frequency range ω to ω + dω given by the Planck’s law (recovering constants)

ρ(ω, T )dω =
h̄ω3

π2c3
1

eh̄ω/kBT − 1
dω. (A.0.1)

The expression (A.0.1) has sense if the energy of the radiation is quantized. We can consider each individual
mode as a harmonic oscillator of angular frequency ω. The energy has the well known form

En =

(
n+

1

2

)
h̄ω, (A.0.2)

where as before n is a positive integer.
We consider a single radiation mode at angular frequency ω inside the cavity. The probability that there will

be n photons in the mode is given by the Boltzmann’s Law:

Pω(n) =
e−En/kBT∑∞
n=0 e

−En/kBT
. (A.0.3)

Substituting the definition of energy (A.0.2), the probability reads

Pω(n) =
e−nh̄ω/kBT∑∞
n=0 e

−nh̄ω/kBT
, (A.0.4)

which can be written in the form

Pω(n) =
xn∑∞
n=0 x

n
, (A.0.5)

being
x = e−h̄ω/kBT . (A.0.6)
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Using the series identity
∞∑
n=0

xn =
1

1− x
, x < 1, (A.0.7)

we find

Pω(n) = e−nh̄ω/kBT
(

1− e−h̄ω/kBT
)
. (A.0.8)

The mean photon number is given by

(A.0.9)

n̄ =

∞∑
n=0

nPω(n)

=

∞∑
n=0

nxn(1− x)

= x(1− x)
d

dx

( ∞∑
n=0

xn

)

= x(1− x)
d

dx

(
1

1− x

)
= x(1− x)

1

(1− x)2

=
x

1− x
,

which, with the definition (A.0.6), gives the Planck formula

n̄ =
1

eh̄ω/kBT − 1
. (A.0.10)

The probability can be expressed in terms of the Planck formula

Pω(n) =
1

n̄+ 1

(
n̄

n̄+ 1

)n
. (A.0.11)

This distribution is called the Bose-Einstein distribution.

The magnitude of the energy fluctuations from the mean value at thermal equilibrium is given by

〈
∆E2

〉
= kBT

2 ∂ 〈E〉
∂T

. (A.0.12)

Then the energy fluctuations of the black body radiation in the angular frequency range ω to ω + dω yields

(A.0.13)

〈
∆E2

〉
dω = kBT

2 ∂

∂T
(V ρdω)

= kBT
2V dω

∂ρ

∂T

=

(
h̄ωρ+

π2c3

ω2
ρ2

)
V dω,
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where V is the volume of the cavity and ρ is the spectral energy density. These energy fluctuations can be written
in the following form

(A.0.14)

〈
∆E2

〉
dω = density of states× energy fluctuations per mode× volume

=
ω2

π2c3
dω ×

〈
(∆(nh̄ω))2

〉
× V

=
ω2

π2c3
(∆n)2(h̄ω)2V dω.

Comparing (A.0.13) with (A.0.14) we find that

(∆n)2 =
π2c3

h̄ω3
ρ+

(
π2c3

h̄ω3
ρ

)2

. (A.0.15)

If we express the spectral density (A.0.1) in terms of n̄, we have

ρ =
h̄ω3

π2c3
n̄, (A.0.16)

then
(∆n)2 = n̄+ n̄2. (A.0.17)

The Einstein’s understanding assume that the first term in (A.0.13) is due to the particle nature of the light,
while the second is given by the thermal fluctuations of the energy of the electromagnetic radiation. This last
term has a classical origin and is called the wave noise. The first term has its origin in the quantization of energy
of the electromagnetic radiation. It is given by the photon nature of light.

123



124



Appendix B
Further developments

B.1 Convergence values of interest

In this appendix we enlist some sums results of the text

∞∑
k=−∞

e2πσ∆ωk = Θ(−∆ω)

[
1 +

1

e2πσ|∆ω| − 1

]
+ Θ(∆ω)

[
1

e2πσ∆ω − 1

]
(B.1.1)

∞∑
l=1

sin(∆ωLl)

l
(

2α+ (lL)2

4α

) =
e−iL∆ω

8
√
α2 (8α2 + L2)

{
−iL2

2F1

(
1,

2i
√

2α

L
+ 1;

2i
√

2α

L
+ 2; e−iLω

)

+ iL2e2iL∆ω
2 F1

(
1,

2i
√

2α

L
+ 1

2i
√

2α

L
+ 2; eiLω

)

+ L
(

2
√

2α− iL
)

2F1

(
1, 1− 2i

√
2α

L
; 2− 2i

√
2α

L
; e−iLω

)

+ iL
(
L+ 2i

√
2α
)
e2iLω

2F1

(
1, 1− 2i

√
2α

L
; 2− 2i

√
2α

L
; eiLω

)

− 2
√

2αL 2F1

(
1,

2i
√

2α

L
+ 1;

2i
√

2α

L
+ 2; e−iLω

)

+ 2
√

2αLe2iLω
2F1

(
1,

2i
√

2α

L
+ 1;

2i
√

2α

L
+ 2; eiLω

)
− 2iL2eiLω log

(
1− e−iLω

)
+ 2iL2eiLω log

(
1− eiLω

)
− 16iα2eiLω log

(
1− e−iLω

)
+ 16iα2eiLω log

(
1− eiLω

)
(B.1.2)

where 2F1(a, b; c; z) is the hypergeometric function defined for |z|< 1 by the power series

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (B.1.3)
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where (q)n is the Pochhammer symbol defined by

(q)n =

{
1 for n = 0

q(q + 1) · · · (q + n− 1) for n = 0
. (B.1.4)

The functions f
(c)
s1 and f

(c)
s2 are defined as follows

f (c)
s1 =

∞∑
k=1

sin(∆ω(2z − kL))

(2z − kL)

(√
z2

α2 + 1− zLk

2α2

√
z2

α2 +1

)

=
i

2Lα
e−i∆ω(L+2z)

√
z2 + α2

{
e4i∆ωz

[
Φ

(
e−i∆ωL, 1,

L− 2z

L

)
− Φ

(
e−i∆ωL, 1,

Lz − 2z2 − 2α2

Lz

)]
+ e2i∆ωz

[
Φ

(
ei∆ωL, 1,

L− 2z

L

)
+ Φ

(
ei∆ωL, 1,

Lz − 2z2 − 2α2

Lz

)]}
(B.1.5)

f (c)
s2 =

∞∑
k=1

sin(∆ω(2z − kL))

(2z + kL)

(√
z2

α2 + 1 + zLk

2α2

√
z2

α2 +1

)

=
−i

2Lα
e−i∆ω(L+2z)

√
z2 + α2

{
−Φ

(
e−i∆ωL, 1,

L+ 2z

L

)
+ Φ

(
e−i∆ωL, 1,

Lz + 2z2 + 2α2

Lz

)
+ e2i∆ω(L+2z)

[
Φ

(
ei∆ωL, 1,

L+ 2z

L

)
− Φ

(
ei∆ωL, 1,

Lz + 2z2 + 2α2

Lz

)]}
(B.1.6)

B.2 Explicit calculation of F11 and F22

In this Appendix we concisely perform the evaluation of the individual contributions of the atoms to the total
response function. In order to study the contribution (7.2.4), we perform the Fourier transform with the help of
contour integration methods. From the expression (7.2.2) one notes the existence of second order poles of the
form

ψ = 2iε− 2πiα1n, (B.2.1)

where n is an integer. One must treat separately the cases of n 6= 0 and n = 0. For n 6= 0 we may take the
limit ε→ 0 before solving the integral. For ∆ω < 0 we make use of a semicircle of radius R that we close on the
upper-half Im[ψ] > 0 plane. This contour encloses the poles for n ≥ 0 and runs in an anticlockwise direction.
For ∆ω > 0 we close the contour in a semicircle of radius R in the lower-half Im[ψ] < 0 plane. Now, this contour
encloses the poles for n < 0 and runs in the clockwise direction (see Fig. B.1). We consider the limit R → ∞
such that the contribution from the arcs will vanish by the Jordan’s lemma. We obtain, for the atom 1

F11(∆ω,∆t) =
∆t

2π2

{
π|∆ω|Θ(−∆ω) + |∆ω|

(
Si∆ω∆t− π

2

)
+

π|∆ω|
e2πα1|∆ω| − 1

+

∫ ∞
∆t

dψ cos(∆ωψ)

(
1/(2α1)2

sinh2 ψ/(2α1)
− 1

ψ2

)}
+

1

2π2

{
cos (∆ω∆t) + log

(
∆t

2πε

)
− 1

+

∫ ∆t

0

dψ
cos(∆ωψ)− 1

ψ
+

∫ ∆t

0

dψψ cos ∆ωψ

(
1/(2α1)2

sinh2 ψ/(2α1)
− 1

ψ2

)}
. (B.2.2)
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Figure B.1: Contour used to perform the integral of R11(∆ω,∆t) and R22(∆ω,∆t).

This is the expression (7.2.5). By the definition (7.2.6), we have

R11(∆ω,∆t) =
|∆ω|
2π

{
Θ(−∆ω) +

1

e2πα1|∆ω| − 1
+

cos(∆ω∆t)

π∆ω∆t
+

Si∆ω∆t

π
− 1

2

}
+

1

2π2

∫ ∞
∆t

dψ cos(∆ωψ)

(
1/(2α1)2

sinh2 ψ/(2α1)
− 1

ψ2

)
, (B.2.3)

where Si(z) is the sine integral function given by [82]

Si(z) =

∫ z

0

sin t

t
dt. (B.2.4)

In an analogous way, for the individual contribution of the atom 2 given by Eq. (7.2.10) one has that (using the
same contour depicted in the Fig. (B.1))

F22(∆ω,∆t) =
∆t

2π2

{
π|∆ω|Θ(−∆ω) + |∆ω|

(
Si∆ω∆t− π

2

)
+

π|∆ω|
e2πα2|∆ω| − 1

+

∫ ∞
∆t

dψ cos(∆ωψ)

(
1/(2α2)2

sinh2 ψ/(2α2)
− 1

ψ2

)}
+

1

2π2

{
cos (∆ω∆t) + log

(
∆t

2πε

)
− 1

+

∫ ∆t

0

dψ
cos(∆ωψ)− 1

ψ
+

∫ ∆t

0

dψψ cos ∆ωψ

(
1/(2α2)2

sinh2 ψ/(2α2)
− 1

ψ2

)}
, (B.2.5)

and consequently

R22(∆ω,∆t) =
|∆ω|
2π

{
Θ(−∆ω) +

1

e2πα2|∆ω| − 1
+

cos(∆ω∆t)

π∆ω∆t
+

Si∆ω∆t

π
− 1

2

}
+

1

2π2

∫ ∞
∆t

dψ cos(∆ωψ)

(
1/(2α2)2

sinh2 ψ/(2α2)
− 1

ψ2

)
. (B.2.6)
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B.3 Explicit calculation of F12 and F21

Figure B.2: Contour used for perform the integral of R12(∆ω,∆t) and R21(∆ω,∆t).

In this Appendix we perform the explicit evaluation of the cross contributions F12 and F21. As above, we
shall employ the method of residues. The integral (7.3.7) can be expressed as,

I(∆ω,∆t, σ) =

∫ ∞
0

dψe−iσ∆ωψG+
c0(ψ)−

∫ ∞
∆t

dψe−iσ∆ωψG+
c0(ψ). (B.3.1)

For the first term on the right-hand side of the expression (B.3.1), the simple poles of the integrand are given by

ψn = 2πiα1n+
8iεα1

α1 + α2
± α1φ, (B.3.2)

where n is an integer. Making use of the following auxiliary integrals∮
C

dze−i∆ωσz log(z)G+
c0(z),

∮
C

dze−i∆ωσzG+
c0(z),

we shall perform the integral for ∆ω < 0 with a contour such that it encloses the poles for n ≥ 0 and runs in
an anticlockwise direction. For processes with ∆ω > 0 we employ a contour such that it encloses the poles for
n < 0 and runs in the clockwise direction (in this case one may perform the limit ε→ 0 before the evaluation of
integral, see Fig.B.2). In the limit ρ→ 0 and R→∞ and we obtain the following expression∫ ∞

0

dψe−iσ∆ωψG+
c0(ψ) =

4α1

sinhφ
sin(|∆ω|σα1φ)

{[
ν0 +

π

e2πα1σ|∆ω| − 1
+ ζ(∆ω, σ)

]
Θ(−∆ω)

+

[
π

e2πα1σ∆ω − 1
+ ζ(∆ω, σ)

]
Θ(∆ω)

}
. (B.3.3)

This is the expression (7.3.8), where we have defined the function

ζ(∆ω, σ) = ζ1(∆ω, σ) + cot(|∆ω|α1σφ)ζ2(∆ω, σ), (B.3.4)
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with

ζ1(∆ω, σ) = −ie−2πα1σ∆ω
{

Re
(

Φ(0,1,0)
(
e−2πα1σ∆ω, 0, χ

))
+ e2πα1σ∆ω

[
1 + log(2α1

√
π) + e2πα1σ∆ω Re

(
Φ(0,1,0)

(
e2πα1σ∆ω, 0, χ

))]}
(B.3.5)

and

ζ2(∆ω, σ) = 8ie−2πα1σ∆ω
{

Im
(

Φ(0,1,0)
(
e−2πα1σ∆ω, 0, χ

))
− e2πα1σ∆ω

[π
2

+ e2πα1σ∆ω Im
(

Φ(0,1,0)
(
e2πα1σ∆ω, 0, χ

))]}
. (B.3.6)

In the above, Φ (z, s, α) the Hurwitz–Lerch zeta-function, Φ(0,1,0) (z, s, α) is its first derivative with respect to
its second variable and χ = 1 + (iφ/2π). Recalling Eq. (7.3.6), we observe that the contributions with σ = 1
are associated with β−1

1 = 1/2πα1 whereas the contributions with σ = α2/α1 are related to β−1
2 = 1/2πα2.

The contribution of the cross correlations to the total transition rate is given by the real part of the following
expression

[R12]|g〉→|s〉 =
i

16π2α2
1Egsa−

{
iEgsa−

[
eiEgs(a−/α1)(∆t+τ0) [I(Egs,∆t,−1) + I(Egs,∆t, α2/α1)]

+ e−iEgs(a−/α1)(∆t−τf ) [I(Egs,∆t, 1) + I(Egs,∆t,−α2/α1)]
]

+ α1G
+
c0(∆t)

[
eiEgs(a−/α1)τ0

(
eiEgs∆tα2/α1 + eiEgs∆t(2α2−α1)/α1

)
− eiEgs(a−/α1)τf

(
e−iEgs∆tα2/α1 + e−iEgs∆t(2α2−α1)/α1

)]}
, (B.3.7)

where Egs = ω0.
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