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Abstract
In the present work we constrain three different profiles of a Lemaître–Tolman–
Bondi model using supernovae type Ia and baryon acoustic oscillation data. 
We use two distinct parameter estimation approaches, namely, the χ2 and the 
complete Likelihood functional. It has been argued that these two approaches 
are not equivalent and indeed our analysis shows a specific example of their 
departure. The combined analysis of BAO  +  SNIa offers a stringent test for 
these models. In addition, we improve common practice in the literature 
by carefully calibrating the supernovae in the appropriate inhomogeneous 
background dynamics. We address subtle issues in order to propagate the 
primordial BAO scale to the present epoch.
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1. Introduction

At the turn of the last century, observations of distant supernovae type Ia (SNIa) [1, 2] together 
with the observation of the cosmic microwave background [3] and the large-scale structure  
[4–7] led us to consider that the universe could be accelerating. In the framework of a 
Friedmann–Lemaître–Robertson–Walker (FLRW) universe, the source for this acceleration 
has to be an exotic component dubbed dark energy. The simplest dark energy alternative is 
to include a constant term in the dynamic equations, which indeed is how the current con-
cordance model describes dark energy, i.e. as a cosmological constant. As is well-known, 
the ΛCDM model is successful in accommodating much observational data within a single 
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consistent scenario. Notwithstanding, there are still open issues that challenge the ΛCDM 
model from an observational point of view (see [8] for a recent review).

Despite the cosmological constant, that arguably displays from theoretical inconsistency, 
there are several other candidates for dark energy such as quintessence fluids [9], K-essence 
[10] and Chaplygin gas [11] just to name a few. There is also the possibility of mimicking dark 
energy by modifying the gravitational interaction. In these scenarios one changes General 
Relativity for other theories like f(R) theories [12], DBI Galileons [13] or Brane world cos-
mology [14] that produce an early or late time accelerating expansion of the universe.

Within the scope of general relativity (GR), there are two possible routes to induce the pre-
sent acceleration. The first is to consider phenomenological averaging approaches that explore 
the fact that smoothing does not commute with GR dynamics and hence smoothing spacetime 
on cosmological scales and then evolving through Einstein’s equations should give a different 
result as to using the full dynamics and then smoothing at the end (see [15] for observational 
constraints).

The other possibility is to revoke the Copernican Principle (CP), hence one can construct 
inhomogeneous models that can suppress the need for dark energy [16–19]. Their validity 
relies on the underdetermination of the model from observational data. Our data comes only 
from our past null cone and hence there is a collection of geometries compatible with the 
observational data. These models are effective with inhomogeneities of the order of a few 
fractions of the Hubble radius. However, they are not effective to simultaneously explain all 
datasets available today. In particular, the Kinematic Sunyaev–Zel’dovich (kSZ) effect is very 
stringent and a powerful probe of inhomogeneities since it carries information not only from 
the light-cone but also within it. With mild assumptions one can show that, even with their 
extra degrees of freedom, LTB models will hardly be able to incorporate simultaneously all 
the observational datasets [20–22]. Notwithstanding, LTB can still be interesting exact solu-
tions to probe the impact of inhomogeneities on observational data [23–25].

In a FLRW model the dynamics is entirely encoded in the scale factor. In inhomogeneous 
models, the spatial dependence gives extra degrees of freedom, which in principle could better 
accommodate the data. Thus, it seems critical to have at least two independent observations 
to restrict inhomogeneous models. It is expedient that the number of free parameters of each 
model should be as low as possible and the number of independent observations as high as 
possible. In particular, in this paper we use the joint light-curve analysis sample [26] known 
as the JLA sample. This extended sample of 740 supernovae combines low-redshift samples 
(z  <  0.1), the third year Sloan Digital Sky Survey sample (SDSS-II, 0.05  <  z  <  0.4), the third 
year SuperNova Legacy Survey (SNLS, 0.2  <  z  <  1) and the Hubble space telescope sample 
(HST, z  >  1).

The goal of this article is to implement a comparative analysis using two different statis-
tical approaches of the best fit of inhomogeneous models using SNIa and baryon acoustic 
oscillation (BAO) data. We test the validity of the χ2 minimization method as compared to 
the extremization of the Likelihood functional. It has been argued that these two approaches 
are not equivalent and indeed our results show a concrete example of their departure. The 
breakdown of the χ2 minimization is rooted in the dependence of the normalization factor of 
the Likelihood functional with the nuisance parameters in the supernovae distance modulus.

We consider three different profiles of a Lemaître–Tolman–Bondi (LTB) model of the uni-
verse. Contrarily to some analysis in the literature, we carefully calibrate the SNIa data for an 
LTB dynamics. In an LTB universe, there are also subtle adjustments to propagate the primor-
dial BAO scale to the present epoch. The combined analysis of BAO  +  SNIa offers a stringent 
test for the models presented in this article.
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The paper is organised as follows. In the next section we briefly review the main points of 
an LTB model and its dynamics. In section 3 we specify the inhomogeneous matter profiles 
and in section 3.2 we describe how to incorporate the BAO physics in an LTB dynamics. In 
section 4 we characterize the SNIa and BAO data used to fit the models and discuss the results 
in section 5. Section 6 is reserved for final comments and conclusions.

2. The LTB model

The standard cosmological model describes our universe being on average homogeneous and 
isotropic where the background is assumed to be a FLRW metric. This is the mathematical 
form ulation of the cosmological principle which is a possible way to implement the Copernican 
principle, namely, the statement that we are not in a privileged location in the universe. For 
most of the last century, homogeneity and isotropy were only valuable assumptions but recently 
it has been shown they are consistent with observation (if one accepts the existence of dark 
energy and dark matter). Even though there is no direct confirmation of spatial homogeneity, 
observational data does support spatial isotropy with respect to our point of observation [15].

In the present work we shall drop homogeneity but still maintain the isotropy condition. 
Thus, the observable universe will be modeled by an inhomogeneous but spherically sym-
metric metric, which we assume to be of the LTB type [27–29]. This family of metrics can be 
written4 as

( )
( )

( )′= −
+

− Ωs t
X t r

E r
r X t rd d

,

1 2
d , d .2 2

2
2 2 2 (1)

where θ θ ϕΩ = +d d sin d2 2 2 2 is the solid angle and prime denotes partial derivatives with 
respect to the radial coordinate, i.e. = ∂′X Xr . The energy function E(r) can be related to the 
non-constant spatial curvature and X(t, r) plays the role of a scale function that can depend 
both on time and radial coordinates. It is straightforward to check that (1) reduces to an FLRW 
metric when ( ) ( )=X t r a t r,  and ( ) κ= −E r r2 2 with κ = ±0, 1.

The LTB metric (1) has two effective scale factors, namely, the transverse or angular scale 
factor X(t,r) which is associated with the area radius of each S2 sphere and the parallel or radial 
scale factor ( )′X r t, . Thus, contrasting to the FLRW metric, which has only one Hubble factor, 
it is convenient to define two Hubble parameters

( ) ( )
( )

( ) ( )
( )∥≡ ≡
′

′
⊥H t r

X t r

X t r
H t r

X t r

X t r
,

˙ ,

,
and ,

˙ ,

,
, (2)

that represent, respectively, the transverse and radial expansion rates. The dots in the above 
equation denote partial derivatives with respect to time coordinates, i.e. = ∂X X˙ t . It is also 
possible to define a geometrical mean out of these Hubble parameters as

¯ ( ) [ ( ) ( )]∥
/= ⊥H t r H t r H t r, , , .LTB

2 1 3 (3)

The matter content is described by a pressureless inhomogeneous fluid whose stress-energy 
tensor can be written as ( )ρ=µν µ νT t r u u, , where µu  is the four-velocity field of the fluid. Due 
to the symmetries of (1), the analogue Friedmann-like equation reads

− =⊥H
E

X

M

X

2 2
,2

2 3 (4)

4 Units in which c  =  1 will be assumed in the following.
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where M(r) is another free function of r that can be interpreted as the gravitational mass inside 
a spherical shell of radius r. This mass function is connected to the energy density through 
the relation

( )ρ
π

=
′
′

t r
G

M

X X
,

1

8
.

2 (5)

Equations (4) and (5) compose the dynamic field equations for a dust LTB spacetime. The 
time derivative of (5) combined with (4) implies a continuity equation for the energy density

( ) ( ) ( )∥ρ ρ+ + =⊥t r H H t r˙ , 2 , 0. (6)

The above equation prompts us to define another mean Hubble factor through an arithmetic 
mean as

⟨ ⟩( ) ( )∥= +⊥H t r H H,
1

3
2 . (7)

The analogy between an LTB model and an FLRW universe can be carried further by defin-
ing a dimensionless matter and curvature density parameters evaluated today given, respec-
tively, as

Ω = Ω =
⊥ ⊥

r
M r

H r X r
r

E r

H r X r

2
and

2
.M K

0
2

0
3

0
2

0
2

( ) ( )
( ) ( )

( ) ( )
( ) ( ) (8)

Note that equation  (4) means that these two density parameters are related by 
( ) ( )Ω + Ω =r r 1M K . Additionally, labeling the present values of the Hubble factor and the 

scale function, respectively, as ( ) ( )≡⊥ ⊥H r H t r,0 0  and ( ) ( )≡X t r X r,0 0 , we can recast (4) as 
[30, 31]

( ) ( ) ( ) ( )
( )

( ) ( )
( )

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥

= Ω +Ω⊥ ⊥H t r H r r
X r

X r t
r

X r

X t r
,

, ,
.M K

2
0

2 0
3

0
2

 (9)

The main difference from the homogeneous Friedmann equation is that LTB generalization 
(9) has space and time dependence. All the LTB quantities depend not only on time but also 
on the radial coordinate r. Notwithstanding, the whole formalism is covariant under radial 
coordinate re-definition. Indeed, the LTB metric (1) and all the formulae are covariant under 
the change → ( )r f r . Therefore, by a suitable choice of radial coordinate one can choose freely 
the value of the scale function today X0(r). A convenient choice that will be assumed in what 
follows is X0(r)  =  r. This gauge fixation is similar to the normalization of the scale factor 
today for an FLRW universe, i.e. choosing a(t0)  =  1.

The Friedmann-like equation (9) can be integrated to give the age parameter ( )∆t r . The 
spatial inhomogeneity of the metric induces a spatial dependent age parameter. It is conveni-
ent to fix the age parameter as the time spanned since the Big Bang time ( )t rB  which is defined 
as the time when ( ) =X t r, 0B . Thus, integrating (9) gives

( ) ( )
( )

( )

∫∆ = − =
Ω +Ω⊥ −

t r t t r
H r

y

y

1 d
,

x t r

M K

B
0 0

,

1 (10)

where ( ) ( )/ ( ) ( )= = −x t r X t r X r r X t r, , ,0
1 . The Big Bang time works as a constant of inte-

gration and as such is a free function of the model. The model is formally specified once 
the matter density parameter ( )Ω rM  and the Big Bang time ( )t rB  are given. In principle one 
could choose arbitrarily these two functions at each spatial location. However, it has been 
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shown [32, 33] that even a small spatial dependence on the Big Bang time can produce too 
large inhomogeneities today to agree with the observed CMB. Thus, we commonly assume 
a simultaneous Big Bang time such that ( ) = ∗t r tB  with ∗t  a constant. With the hypothesis of 
a simultaneous Big Bang, the numerical value of ∗t  is not important and we can set it to zero. 
Equation (10) calculated today gives

( ) ∫=
Ω + Ω

⊥
−

H r
t

y

y

1 d
,

M K

0
0 0

1

1 (11)

where t0 is the age of the universe which is chosen to be t0  =  13.7 Gyr.5 Note that ( )⊥H r0  is 
measured in units of −Gyr 1. For each ΩM, equation (11) allows us to calculate the Hubble fac-
tor today ( )⊥H r0  which then can be used in (9) to generate the scale factor X(t, r) and all its 
derivatives for each radius and time.

The above procedure yields the background dynamics. In order to compare the LTB model 
with observations, we also need to construct the light paths. This is accomplished by solving 
the appropriate null geodesics for the model. The LTB spacetime is spherically symmetric 
which implies that an observer at its center of symmetry (r  =  0) will measure incoming radial 
trajectories. Thus, we can consider with full generality radial geodesics to follow a line with 
θ ϕ= =d d 0. The null geodesics has a vanishing interval, i.e. =sd 02 , hence, (1) show us that 

for null geodesics we have

( )
( )λ λ

= −
+
′t r X t r

E r

d

d

d

d

,

1 2
, (12)

where λ is an affine parameter and we kept the minus sign inasmuch we are considering 
incoming trajectories. It can be shown [31] that for two successive light rays, obeying the 
above radial null geodesic and emitted, respectively, at time t1 and δ+t t1 , the period between 
wavefronts satisfies

( ) ( )
( )

δ
λ λ

δ λ
= −

+

′t r X t r t

E r

d

d

d

d

˙ ,

1 2
. (13)

Recalling the redshift definition, namely ( ) / ( )λ ν ν λ= −z 10 , (13) can be recast as

( ) ( )
( )λ λ

= +
+

′z
z

r X t r

E r

d

d
1

d

d

˙ ,

1 2
. (14)

Equations (12) and (14) determine the null geodesic equations in terms of the redshift

( )
( ) ( )

= −
+
′
′

t

z

X t r

z X t r

d

d

,

1 ˙ ,
, (15)

( )
( ) ( )

=
+

+ ′
r

z

c E r

z X t r

d

d

1 2

1 ˙ ,
, (16)

where we have explicitly re-introduced the speed of light ≈c 0.3 Gpc Gyr−1.6

5 Comparing to the best fit ΛCDM model, that corresponds to fix H 71 Km Mpc s0
1 1     = − − .

6 Note that writing the speed of light in units of Gpc Gyr−1 we obtain the luminosity distance in Gpc since we have 
set our time scale in Gyr.
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In order to solve (15) and (16) we need two initial conditions. A suitable choice is the point 
at z  =  0 given by ( ( ) ( ) )= =t t r0 , 0 00 . Thus, solving the system (15) and (16) we have the 
light curve ( ( ) ( ))t z r z, .

In an LTB universe, the angular diameter distance measured by an observer at the center is 
directly related to the scale function. With the procedure described above, we have the scale 
function at every point X(t,r) and the radial null trajectory ( ( ) ( ))t z r z, , hence, we can follow the 
scale function throughout the geodesics and obtain the angular diameter distance as a function 
of the redshift

( ) ( ( ) ( ))=d z X t z r z, .A
LTB (17)

In addition, we can also calculate the luminosity distance directly through its relation with 
the angular diameter distance [34, 35], namely

( ) ( ) ( )= +d z z d z1 .L A
LTB 2 LTB (18)

Finally, in order to relate the inhomogeneous LTB model with the SNIa observations we 
also need the distance modulus

( ) ( )
 

⎛

⎝
⎜

⎞

⎠
⎟µ ≡ − =z m M

d z
5 log

10 pc
,L

th
LTB

10

LTB

 (19)

where m is the apparent magnitude of a source with absolute magnitude M. For every matter 
density profile ( )Ω rM  we can run the above scheme and fit the observational data.

3. The void profiles

As is well known, in the ΛCDM model the observed dimming of distant supernovae can only 
be explained by the ad hoc hypothesis of a dark energy component responsible for driving the 
recent accelerating expansion of the universe. However, within spherically symmetric inho-
mogeneous models, it is possible to generate the observed dimming of distant objects via a 
local underdense region.

In the present work, we analyze three different profiles of matter distributions, namely the 
CGBH, Gaussian-like and the Cν-ln2 profile which we describe below. All three profiles share 
two main properties. They describe a local spherically symmetric underdense vicinity that 
smoothly approaches unity in the faraway region (see figure 1). The parameters of each profile 
are chosen such as to recover asymptotically the FLRW spacetime. This asymptotic behaviour 
also guarantees that in the far past all models approach an FLRW universe.

In [36], Garcia-Bellido and Haugbølle proposed a model with six parameters that is com-
pletely characterized by the matter density ( )Ω rM  and the transverse expansion rate today 

( )⊥H r0 . Their parameterization fixes the inner and outer values of ΩM and ⊥H 0 and also how 
large and smooth is the transition from the inner and outer regions. They have also considered 
a more constrained profile (CGBH) by requiring a simultaneous Big Bang time. This extra 
condition imposes a relation between the expansion rate and the matter density and hence this 
model has only a single free function.

The CGBH profile can be parameterized as

Ω = Ω + Ω −Ω
− − ∆
+ ∆

⎡
⎣⎢

⎤
⎦⎥

r
r r r

r r

1 tanh 2

1 tanh 2
,M M M Mout in out

0

0
( ) ( ) [( )/ ]

( / )

 
(20)
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where ΩM in is the matter density at the center of the void and r0 is the typical size of the void. 
The ∆r parameter controls the steepness of the transition from inside to outside the void. In 
order to well adjust the observational data, the typical size of the void in LTB models is of the 
order of Gpc. The last parameter ΩMout, as previously mentioned, was fixed to unity in order to 
asymptotically recover the flat FLRW model. The second profile is similar to the CGBH but 
has one parameter less and displays a Gaussian-like transition from inside the void to the outer 
region. The matter density for the Gaussian profile reads

( )( ) ( )Ω = Ω + Ω −Ω −r e .M M M M
r
rout in out 0

2

 (21)

All the parameters have the same physical interpretation as before.
The third and last profile follows a similar reasoning of the previous parameterization. It is 

a void model that smoothly changes the matter density from an underdense environment with 
ΩM in to an outer denser region with matter density ΩMout. The profile reads

( ) ( )
( ) ( )

( ) ( )
ν

ν
Ω = Ω + Ω −Ω

+

+ +

ν

ν

+

+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

r

1 ln

1 1 ln
,M M M M

r

r

r

r

r

r

r

r

in out in

3
2

3
2

0 0

0 0

 

(22)

where ν plays a similar role as ∆r for the CGBH profile. A nice feature that distinguishes the 
above profile from the CGBH is the independence of the value of the matter density at r0 with 
respect to the transition parameter. In the Cν-ln2 parameterization ( )Ω rM 0  depends only on 
ΩM in and ΩMout. Indeed, a direct calculation shows that

( ) ( / )
( / )

 Ω =
Ω − Ω ∆

+ ∆
r

r r

r r

tanh 2

1 tanh 2
CGBH profileM

M M
0

in out 0

0

 (23)

( ) ( )   νΩ = Ω +Ωr
1

2
C -ln 2 profileM M M0 out in

 
(24)

Figure 1. Matter density parameter today as a function of the radial coordinates. In all 
three profiles the outer density parameter is chosen to be unity, Ω = 1M,out . The others 
are free parameters to be adjusted with observational data. To plot the profiles we used 
Ω = 0.3M,in , ν∆ = =r 0.5 and r0  =  3.
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In figure 2, we depict the transverse and radial expansion rates (2) and the geometrical 
mean H̄ LTB for these three different profiles. It is worth noting that for the CGBH model the 
difference between the transverse and radial expansion rates is prominently larger than in the 
other models.

3.1. Deceleration parameter

The two expansion rates in an LTB model, viz. the transverse ( )⊥H r0  and the radial ( )∥H r0  
expansion rates, can be used to define two different deceleration parameters. Thus, in analogy 
to the FLRW metric, we can define the transverse and radial deceleration parameters as

( ) ( )
( ) ( )

= −⊥
⊥

q t r
X t r

X t r H t r
,

¨ ,

, ,
,

2 (25)

( ) ( )
( ) ( )∥

∥
= −

′

′
q t r

X t r

X t r H t r
,

¨ ,

, ,
.

2 (26)

The LTB solution reduces to an FLRW metric when ( ) ( )=X r t a t r, , with a(t) being the 
scale factor. One can immediately verify that in this case both deceleration parameters defined 

above merge into the FLRW parameter, i.e. ∥= = = −⊥q q q a

aH

¨
2. Figure 3 shows both decel-

eration parameters as a function of radius at different times.
In all cases the expansion today is decelerated contrasting with the ΛCDM model that 

describes a late time accelerating universe. This is a general feature of LTB models which is 
considered in the literature as a powerful manner to distinguish a homogeneous and isotropic 
evolution from inhomogeneous models [37, 38].

Figure 2. Plot of the three expansion rates today: transverse ( )⊥H r0 , the radial ( )∥H r0  
and the geometrical mean ¯ ( )H t r,LTB 0 . The parameters used to plot the three profiles was 
Ω = 1Mout , ν∆ = =r 0.5, Ω = 0.3M in  and r0  =  3.
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Besides the two deceleration parametesr defined above, we can still combine them to form 
an effective deceleration parameter. In LTB spacetimes the expansion factor of a time-like con-
gruence of static observers with δ=µ µv 0 is given by ∥Θ = ∇ = +µ

µ
⊥v H H2 . On the other hand, 

in an FLRW universe we can write the deceleration parameter as /= − − Θ Θq 1 3 ˙ . Therefore, 
we define an effective LTB deceleration parameter simply by replacing the expansion factor for 
its LTB version. Using (15), the effective deceleration parameter in terms of the redshift reads

( )
( ) ( )

[ ( ) ( )]
( ) ( )∥

∥
∥

⎡
⎣⎢

⎤
⎦⎥= − +

+
+

+
⊥

⊥q z
z H z

H z H z z
H z

z
H z1

3 1

2

d

d
2

d

d
.eff

2 (27)

Note that for large redshift the effective parameter approaches the FLRW behaviour. 
Figure 4 shows the evolution in redshift of the effective deceleration parameter for the three 
profiles. Additionally, we included for comparison the flat ΛCDM (with Ω = 0.3m ) and the 
Einstein–de Sitter (EdS) models. The deceleration parameter for all inhomogeneous models 
changes sign twice displaying decelerating expansion for small z. This behaviour is in agree-
ment with the transverse and parallel deceleration parameters described above.

3.2. BAO in LTB models

The standard model describes the primordial nucleosynthesis and recombination processes 
within a homogeneous and isotropic universe. The BAO is a characteristic length scale 
imprinted in the matter distribution that encodes the physics of this early phase of the universe. 
This small signal excess occurs at length separations of the order of 150 Mpc.

In order to deal with BAO observations in inhomogeneous models, one has to tackle differ-
ent effects coming from the spatial dependence of the background dynamics. In particular, in 

Figure 3. Plot of the radial and transverse deceleration parameters as a function of r 
at different times. The vertical dashed line marks the typical size of the void r0. Note 
that close to time t0 all the curves are positive, hence, displaying deceleration universes 
today.
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an LTB model the physical length depends not only on time but also on the radial coordinates. 
Furthermore, the model has two distinct expansion rates, i.e. the transverse ( )⊥H t r,  and the 
radial ( )∥H t r,  expansion rates. In an arbitrary inhomogeneous model, one has to start the BAO 
analysis from first principles. However, the profiles (20)–(22) together with the hypothesis of 
a simultaneous Big Bang time guarantee that our LTB models have the valuable property of 
approaching the FLRW dynamics in the far past. Therefore, we can assume that these mod-
els are indistinguishable from an FLRW universe during recombination. The crucial step is 
then to properly propagate the initial condition through the inhomogeneous LTB dynamics. 
The transverse and radial components evolve differently, hence, following [39], we should 
describe them separately.

The spherical symmetry of the LTB metric considerably simplifies the evolution of the 
transverse length. Indeed, one can choose the coordinate systems such that θ ϕ= =˙ ˙ 0. In addi-
tion, these conditions are stable for timelike geodesics. Therefore, an initial angular separation 
θd  between neighbor geodesics is preserved along the trajectory. Thus, the angular physical 

length at emission is given by ( ) ( )∫ θ θ= =θθ⊥L t r g X t r, d , de e . The radial physical length is 
obtained in a similar manner. A material particle initially at rest will continue at the same radial 
position and this evolution is again stable for timelike geodesics. For an initial radial separa-

tion rd , the radial physical length at emission is ( ) ( ) / ( )∥ ∫= ≈ +′L t r g r X t r r E r, d , d 1 2e rr e . 
These lengths can be related to the observed physical lengths, respectively, as

( ) ( )
( )

( )=⊥ ⊥L t r
X t r

X t r
L t r,

,

,
, ,

e
e (28)

( ) ( )
( )

( )∥ ∥=
′
′

L t r
X t r

X t r
L t r,

,

,
, .

e
e (29)

The above relations express the background evolution of the physical length in the LTB 
model. The first-order corrections are not so straightforward as in the homogeneous and iso-
tropic case. In an FLRW universe, the evolution of sub-horizon first-order perturbations is 
exclusively time dependent, hence, spatial dependence on BAO scale comes only from non-
linear corrections. Nowadays cosmological observations precision is accurate enough to urge 
for an adequate control of these effects. As argued in [40–42] these effects can produce a 
shift in the acoustic scale, which in turn might generate systematics compared to expected 

Figure 4. Effective deceleration parameter for the three models compared with the flat 
ΛCDM and the EdS model.
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statistical errors in the next generation of surveys. Notwithstanding, for the present analysis 
we shall keep only up to first-order perturbations.

The evolution of linear perturbations in inhomogeneous models is more complicate than 
in FLRW. One of the key issues is the mixing of first-order perturbation modes. As is well 
known [33, 43], the decoupling of linear order perturbations is a direct consequence of the 
symmetries of the background FLRW metric. In an LTB universe a coupling is expected 
between the scalar, vector and tensor modes. The crucial coupling in an LTB universe is 
between the scalar and tensor modes. Indeed, due to the spherical symmetry of the background 
LTB metric, it can be shown that vector modes can be disregarded compared to the other  
comp onents. Furthermore, the mode-coupling depends on the specific matter profile of the 
model. Fortunately, for the CGBH profile these nonlinear effects are subdominant [39, 44] and 
one can approximately consider the BAO scale to be constant in coordinate space. The validity 
for the Gaussian and Cν-ln2 profiles follows from their lower difference between the radial 
and transverse expansion rates (see figure 2).

The LTB models considered here approach the dust FLRW behaviour either for large spa-
tial distances ( = ∞�r r r0) or far in the past ( ( )= ∞t t z  with �∞z 1000). Therefore, we can 
assume that early times baryonic dynamics in our model is indistinguishable from the FLRW 
case. This feature guarantees the use of the spatial independent Big Bang BAO scale as an 
initial condition for our models. Additionally, in the far past, the approximate homogeneity 
and isotropy of the universe allows us to assume the BAO scale to be spatial coordinate inde-
pendent at constant time hypersurfaces

( ( )) ( )≈ ∞L t r z L t r, , .e e
BAO BAO

 (30)

The asymptotic BAO scale can be computed within a ΛCDM scenario for which we use 
the fitting formulae for an adiabatic cold dark matter developed in [45]. The asymptotic BAO 
scale depends on the sound horizon ls at the drag epoch which can be approximated by

( )
( / )

( )
 

/
=

Ω

+ Ω
l z

h

h

44.5 ln 9.83

1 10
Mpc,s

M

b

drag

eff
eff
2

eff
eff
2 3 4 (31)

where ΩM
eff, Ωb

eff and heff are, respectively, the effective total density, effective baryon density 
and the effective normalised Hubble factor. In a conventional ΛCDM model we would have 
instead the total matter parameter Ω0, the baryonic parameter Ωb and the normalised Hubble 
factor /(   )= ⋅ ⋅− −h H 100 Km Mpc s0

1 1 . However, since in the asymptotic regime our model 
is only approximately homogeneous and isotropic we need to evolve backwards in time the 
LTB dynamics up to the time of emission and use the effective values in the above fitting 
formulae.

The emission time has to be far enough in the past to reach the asymptotic FLRW 
behaviour. Due to computational economy we select the emission time as ze  =  100 
when the LTB inhomogeneities7 are still of the order of 1%. At this stage we can assume 
Ω = ΩM M

eff
out and Ω = Ωfb b M

eff
out where fb is the fraction of baryon to total matter. The nor-

malised Hubble factor reads /(   )= ⋅ ⋅− −h H 100 Km Mpc seff 0
eff 1 1  where the effective Hubble 

parameter is given by

7 The inhomogeneities can be characterized through the density contrast δρ ρ ρ= ∞t r t r t r, , ,m m m( )( ) ( )/ , hence, the 

statement that LTB inhomogeneities are small means that δρ �t r, 1%( ) .
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[ ( ) ( )]

( ) ( )( )
∥

/

=
Ω + + −Ω +

⊥H
H z H z

z z1 1 1
.

e e

M e M e

0
eff

2 1 3

eff 3 eff 2 (32)

The single difference in the above procedure from [39] is the use of the geometrical mean 
Hubble parameter (3), instead of the arithmetic mean Hubble parameter (7). This modifica-
tion has the advantage of the geometrical mean converge faster to the FLRW regime than the 
arithmetic mean.

The sound horizon gives the comoving BAO scale which in a flat FLRW universe equals 
the physical BAO scale today8. Recalling that the asymptotic spatial limit of the LTB model 
at any time is an FLRW universe, we have ( ) ( )=∞L t r l z, s

BAO
0 drag . In order to relate the sound 

horizon (31) with the radial and transverse physical scales using (28)–(30) one performs a 
cross-multiplication to obtain

( ) ( ( ) ( ))
( ( ))

( )
( )

( )∥ =
′
′

′
′

∞

∞
L z

X t z r z

X t r z

X t r

X t r
l z

,

,

,

,
,

e

e
s

BAO

0
drag (33)

( ) ( ( ) ( ))
( ( ))

( )
( )

( )=⊥
∞

∞
L z

X t z r z

X t r z

X t r

X t r
l z

,

,

,

,
.

e

e
s

BAO

0
drag (34)

There is one last step to connect the above relations to the observational data. The sensi-
tivity of current surveys provides only a combined distance scale ratio from the spherically 
averaged power spectrum [46, 47]. In an FLRW universe, the physical observable associated 
with the BAO scale is the ratio

( )
( )

θ =
l z

D z
,

s

V
FLRW

drag

FLRW (35)

where ( )D zV
FLRW  encodes the dilation scale as the cube root of the product of the radial dilation with 

the square of the transverse dilation [6, 48]. The radial dilation is given by ( ) / ( )=D z z H zz
FLRW FLRW , 

whereas the angular or transverse dilation is simply the comoving angular diameter distance that 
can be written in term of the diameter distance as ( )+ z D1 A

FLRW. Thus, we write

( ) (( ) )
( )

/⎡
⎣⎢

⎤
⎦⎥

= +D z z D
z

H z
1 .V A

FLRW FLRW 2
FLRW

1 3

 (36)

Even though (35) gives a BAO observable, actual measurements usually refer to the 
model-independent quantities ( )θ∆ ∆z2  where θ∆  is the angular in the sky and ∆z is the red-
shift interval corresponding to the comoving sound horizon. In an FLRW universe we have 

/( ) θ= + ∆D l z1A s BAO  and / ( )= ∆l z H zs BAO  hence we find

( )
( )

 / /θ∆ ∆ =z z
l

D z
for FLRW.s

V

2 1 3 1 3 (37)

In accordance with [39, 49], we shall define in the LTB model a characteristic BAO length 
dz(z) as the LTB analogue of the above relation. Thus, we define the length

( )  
/⎛

⎝
⎜

⎞
⎠
⎟θ

=
∆ ∆

d z
z

z
for LTB.z

2 1 3

 (38)

8 The identification of the comoving sound horizon with the physical BAO scale today is valid if we assume the 
normalization of the scale factor a(t0)  =  1.
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The angular scale is again related to the angular diameter distance with the difference that we 
must use the transverse BAO length

( )
( )

θ∆ = ⊥L z

d z
.

A
BAO

BAO

LTB (39)

In a similar manner, from (16) and the metric (1), the redshift separation reads

( ) ( ) ( )∥ ∥∆ = +z z H z L z1 .BAO
BAO (40)

Thus, combining the above equations with (33) and (34) we obtain

( )
( )

( )  ( )∥
/⎡

⎣
⎢

⎤

⎦
⎥ ξ=

+
d

z

z

H z

d z
z l z

1
,z

A
s

LTB
LTB 2

1 3

drag (41)

where the redshift dependent function ( )ξ z  reads

ξ =
′
′

′
′

∞

∞

∞

∞

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟z

X t z r z

X t r z

X t r

X t r

X t z r z

X t r z

X t r

X t r

,

,

,

,

,

,

,

,
.

e

e

e

e

0

1 3

0

2 3

( ) ( ( ) ( ))
( ( ))

( )
( )

( ( ) ( ))
( ( ))

( )
( )

/ / 
(42)

4. Observational data

4.1. Type Ia supernovae

In this paper we use the joint light-curve analysis sample [26] which is known in the literature 
as the JLA sample. This extended sample of 740 spectroscopically confirmed type Ia super-
novae with high quality light curves consist of several low-redshift samples (z  <  0.1), the 
third year sample from the Sloan Digital Sky Survey (SDSS-II, 0.05  <  z  <  0.4), the third year 
superNova legacy survey (SNLS, 0.2  <  z  <  1) and the Hubble space telescope sample (HST, 
z  >  1). The observational distance modulus is modeled, in the context of the light curve fitter 
spectral adaptive light curve template (SALT2) [50], by

µ α β= + − −�m X C Mi B i i i B
SNIa

, 1, (43)

where α, β and MB are nuisance parameters in the distance estimate which are fitted simulta-
neously with the cosmological parameters. The absolute B-band magnitude is related to the 
host stellar mass (Mstellar) by a simple step function

     

 

⎧
⎨
⎪

⎩⎪
=

<

+∆

�
M

M M M

M

if 10

otherwise
B

B

B M

1
stellar

10

1
 (44)

The light-curve parameters ( )�m X C, ,B 1  result from the fitting of a model of SNe Ia spectral 
sequence to the photometric data. We can build the χ2 function as

( )
[ ( ) ( )]

∑θ δ
δ θ

χ
µ µ

σ σ
=

−

+=

M
M z

, ,
, ;

B
i

i B i

i

2

1

740 SNIa
th
LTB 2

2
int
2

 (45)

where the supernovae parameters are denoted by ( )δ α β=: ,  and the cosmological parameters 
by ( )θ ν= Ω ∆r r: , , ,M in 0 . The propagated error from the covariance matrix of the light-curve 
fitting is
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σ σ α σ β σ ασ βσ αβσ σ= + + + − − + µ� � �2 2 2 ,i m i X i C i m X i m C i X C i z i
2

,
2 2

,
2 2

,
2

, , , ,
2

B B B1 1 1

 
(46)

where σµz i,
2  represents the contribution to the distance modulus coming from redshift uncer-

tainties and peculiar velocities. Following [51, 52] we shall simulate these effects by the dis-
tance-redshift relation for an empty universe, hence

( / )

⎛
⎝
⎜

⎞
⎠
⎟σ σ=

+
+

µ
z

z z

5

log 10

1

1 2
.z i z i

i

i i
, , (47)

In the above expression σ σ σ= +z i i,
2

spec,
2

pec
2  with σ ispec,  representing the redshift measure-

ment error and σ = 0.0012pec  is the uncertainty due to peculiar velocity. Finally, a floating 
term σint is also included in (45) to account for both intrinsic variations in the supernova lumi-
nosity and systematic effects.

Originally, the term σint was not considered as a free parameter to be optimised in the χ2 
approach but should rather be determined by an iterative procedure. We start with a guess 
value for σint (usually around 0.15) and perform the minimization procedure to obtain the best-
fit values for the supernova and cosmological parameters. Then, with these best-fit values, we 
fine-tune σint such that the reduced χ2 goes to unity. The procedure is repeated with this new 
value of σint as input. The iteration ends when the value of σint converges.

The authors of [51] have exposed the limits of validity of the usual uncorrected χ2 approach. 
This happens when the covariance depends on the free parameters of the underlying model. In 
this case, one should use a parameter fitting based on the Likelihood function

( ) ( ) ( ( ) )∑θ δ θ δ δσ χ σ σ σ= + +L M M, , , : , , , ln ,B B
i

N

iint
2

int
2

int
2

 (48)

where now σint is also considered as a free parameter. In this paper we shall follow both meth-
ods and compare their results in section 5.

4.2. The BAO sample

The characteristic BAO scale detected in the correlation function of different matter distribu-
tion gives a powerful standard ruler to probe the angular diameter distance-redshift relation and 
the Hubble parameter. The BAO scale has been measured at different redshift values, namely at 
z  =  0.106 by the 6dFGS [53], z  =  0.35 and 0.57 by the SDSS [54, 55], z  =  0.44, 0.6 and 0.73 
by the WiggleZ collaboration [56]. There is also an additional point presented by Carnero et al 
[57] at z  =  0.55 indicating the angular correlation. All data are summarized in the table 1.

Table 1. BAO data summarized.

Sample z σ±dz dz

6dFGS 0.106 ±0.336 0.015
SDSS 0.35 ±0.1126 0.0022
SDSS 0.57 ±0.0732 0.0012
WiggleZ 0.44 ±0.0916 0.0071
WiggleZ 0.6 ±0.0726 0.0034
WiggleZ 0.73 ±0.0592 0.0032
Sample z θ σ∆ ± θ

Carnero et al 0.55 ±� �3.90 0.38
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Then, the Likelihood approach is thus given by

∑ γ γχ
θ θ

σ
= − − +

∆ −∆

θ

−⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦d d z C d d z; ;
0.55

i j
z i z

LTB
i ij z j z

LTB
j

BAO
BAO
2

,
,

1
,

2

2
( ) ( ) [ ( )]

 
(49)

where ( )γ ν= Ω ∆r r f: , , , ,M bin 0  and −Cij
1 is the inverse covariance matrix expressed in terms 

of the dz:

=
−

− −
−

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

C

4444 0. 0. 0. 0. 0.
0. 206 612 0 0. 0. 0.
0. 0 694 444 0. 0. 0.
0. 0. 0. 23 857 22 747 10 586
0. 0. 0. 22 747 128 729 59 907
0. 0. 0. 10 586 59 907 125 536

.ij
1

 

(50)

5. Results

In this section we describe the result of the best fit parameters of the LTB model for the three 
profiles. Both the CGBH and Cν-ln2 profiles have three parameters to specify their matter 
distribution plus an extra parameter fb in order to include the BAO analysis. In contrast, the 
Gaussian profile has only two parameters plus the fb. Apart from this, there is also the superno-
vae parameters (α, β, MB

1  and ∆M) which, naturally, are the same for all cases. The numerical 
results are summarized in tables 2–4. For comparison, the table 5 show the results of a corre-
sponding analysis for the flat ΛCDM model setting H0  =  71 Km Mpc−1 s−1.

Table 2 shows the best fit parameters for the CGBH model using the χ2 and Likelihood 
approaches. We display the best fit values separately for the JLA, the BAO and the JLA  +  BAO 
combined analysis. Tables 3 and 4 show, respectively, the same information for the Gaussian 
and Cν-ln2 profiles. Note that the supernovae parameters (α, β, MB

1  and ∆M) have similar 
results for the three cases. This is consistent with the idea that these parameters are not very 
sensitive to cosmological evolution. In contrast, the cosmological parameters (ΩM,in, ∆r, ν and 
r0) do show some appreciable differences. In particular, the Cν-ln2 model requires the highest 
matter density within the void ΩM,in relative to the CGBH and Gaussian models. This feature 
is robust in the sense that it appears in both χ2 and Likelihood approaches.

The contour levels for each profile using only SNIa, i.e. only the JLA sample, are depicted 
in figures 5–7. In these figures, the dashed contours indicate the σ1 , σ2  and σ3  confidence 
regions for the χ2 approach, while the solid lines show the contours for the Likelihood 
approach. Figure 5 displays the Gaussian profile while the CGBH and Cν-ln2 profiles are 
shown, respectively, in figures 6 and 7. Note that the contour levels for the χ2 and Likelihood 
approaches are similar in shape and area. However, there is an interesting difference from the 
results of [51]. Here there is a significant bias in the best fit values and the Likelihood contours 
are slightly bigger than the χ2.

Figures 8 and 9 display the 1D probability distributions function (PDF) of the σint parameter 
for all models. Figure 8 considers only the JLA sample while figure 9 depicts the combined 
analysis of JLA  +  BAO. The dashed straight line in each panel indicates the value obtained from 
the χ2 approach. Note that in all cases the χ2 values are excluded with respect to the Likelihood 
approach. This can also be seen through the contour levels. The two approaches give disjoint 
results at σ1  in the planes (β, r0), (β,α), (∆r, β), (ν, β) and (ΩM in, β). Thus, our analysis exhibits 
a concrete example of the issues and criticisms related to the χ2 approach discussed in [51].
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Table 2. Best fit parameters for the CGBH model in the χ2 and Likelihood approaches.

CGBH ΩM in r0 ∆r 100 fb α β MB
1 ∆M /χ d.o.f.min

2 σint

χJLA
2

−
+0.09 0.02

0.03
−
+3.88 2.12

2.47
−
+3.89 2.44

2.12 ���
−
+0.12 0.02

0.02
−
+2.66 0.19

0.19 − −
+19.22 0.05

0.05 − −
+0.04 0.03

0.03 713.61/733 0.02

LJLA −
+0.11 0.03

0.03
−
+4.15 2.42

2.97
−
+3.79 2.85

2.34 ���
−
+0.11 0.02

0.02
−
+2.26 0.20

0.20 − −
+19.25 0.05

0.05 − −
+0.03 0.35

0.35 ���
−
+0.06 0.03

0.03

χBAO
2

−
+0.38 0.06

0.08
−
+3.31 0.46

1.22 0.51−0.17 −
+5.62 3.92

5.53 ��� ��� ��� ��� 1.03/3 ���

χ +JLA BAO
2

−
+0.12 0.02

0.02
−
+3.16 0.17

0.17
−
+0.73 0.15

0.97
−
+15.30 0.70

8.59 ��� ��� ��� ��� 761.07/743 0.03

+LJLA BAO −
+0.12 0.02

0.02
−
+3.72 0.29

0.31
−
+1.68 0.32

0.60
−
+16.81 0.32

7.69 ��� ��� ��� ��� ���
−
+0.07 0.02

0.02
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 Z
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Table 3. Best fit parameters for the Gaussian model in the χ2 and Likelihood approaches.

Gaussian ΩM in r0 100 fb α β MB
1 ∆M /χ d.o.f.min

2 σint

χJLA
2

−
+0.16 0.02

0.02
−
+4.28 0.66

0.99 ���
−
+0.12 0.02

0.02
−
+2.65 0.18

0.18 − −
+19.27 0.04

0.04 − −
+0.04 0.03

0.03 714.56/734 0.03

LJLA −
+0.17 0.02

0.02
−
+4.27 0.75

1.23 ���
−
+0.11 0.02

0.02
−
+2.25 0.19

0.19 − −
+19.30 0.05

0.04 − −
+0.03 0.03

0.03 ���
−
+0.07 0.03

0.02

χBAO
2 0.26−0.06 7.39−1.48 18.9−13.29 ��� ��� ��� ��� 1.09/4 ���

χ +JLA BAO
2

−
+0.17 0.01

0.01
−
+5.08 0.27

0.32
−
+16.31 1.98

2.23 ��� ��� ��� ��� 741.52/744 0.02

+LJLA BAO −
+0.19 0.02

0.02
−
+5.04 0.35

0.40
−
+14.49 2.20

2.33 ��� ��� ��� ��� ���
−
+0.07 0.02

0.02
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Table 4. Best fit parameters for the Cν-ln2 model in the χ2 and Likelihood approaches.

Cνln-2 ΩM in r0 ν 100 fb α β MB
1 ∆M /χ d.o.f.min

2 σint

χJLA
2

−
+0.18 0.02

0.02
−
+3.12 0.46

0.61 0.04+1.66 ���
−
+0.12 0.16

0.16
−
+2.63 0.19

0.19 − −
+19.29 0.04

0.04 − −
+0.05 0.03

0.03 713.98/733 0.03

LJLA −
+0.21 0.03

0.02
−
+3.02 0.50

0.69 0.08+2.28 ���
−
+0.11 0.02

0.02
−
+2.23 0.20

0.20 − −
+19.33 0.05

0.05 − −
+0.03 0.03

0.03 ���
−
+0.07 0.03

0.03

χBAO
2 0.26−0.12 5.23−1.65 0.58+4.95 19.54+2.53 ��� ��� ��� ��� 1.21/3 ���

χ +JLA BAO
2

−
+0.21 0.02

0.02
−
+4.40 0.36

0.40 0.34+1.45
−
+20.97 3.30

3.09 ��� ��� ��� ��� 742.59/743 0.14

+LJLA BAO −
+0.22 0.02

0.02
−
+3.54 0.24

0.29 0.03+1.46
−
+11.65 2.13

2.42 ��� ��� ��� ��� ���
−
+0.07 0.02

0.02
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Table 5. Best fit parameters for the ΛCDM model in the χ2 and Likelihood approaches.

ΛCDM ΩM 100 fb α β MB
1 ∆M /χ d.o.f.min

2 σint

χJLA
2

−
+0.312 0.029

0.030 ���
−
+0.123 0.014

0.014
−
+2.665 0.158

0.158 − −
+19.022 0.023

0.023 − −
+0.043 0.022

0.021 715.793/735 0.019

LJLA −
+0.329 0.032

0.034 ���
−
+0.107 0.015

0.015
−
+2.265 0.170

0.172 − −
+19.032 0.026

0.029 − −
+0.028 0.024

0.024 ���
−
+0.064 0.027

0.022

χBAO
2 0.255−0.195 21.325−14.08 ��� ��� ��� ��� 1.997/5 ���

χ +JLA BAO
2

−
+0.312 0.025

0.026
−
+14.712 3.193

3.867 ��� ��� ��� ��� 718.035/745 0.019

+LJLA BAO −
+0.328 0.019

0.019
−
+13.301 2.181

2.479 ��� ��� ��� ��� ���
−
+0.054 0.019
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In section  3.2 we introduced the parameter fb and described how one can use standard 
rulers (BAO) within LTB scenarios. Independently of the statistical approach used (χ2 or 
Likelihood), there appears a tension between BAO and SNIa best fit results (see the planes 
(ΩM in, r0) and (ΩM in, ∆r) in figure 10 and the planes (ΩM in, ν) and (ν, r0) in figure 12). It has 
been argued in the literature (see [39]) that this discrepancy comes from the evolution of a 
non-zero shear in LTB models. Indeed, the spatial dependence and the difference in the evo-
lution of the two LTB expansion rates ( ∥H  and ⊥H ) work differently in fitting BAO and SNIa 
data. In particular, the low value of ΩM in needed to fit the SNIa data increases the expansion 
rate that ends up over-stretching the BAO scale near the center. In this sense, the tension 
observed in our analysis has a pure geometrical origin associated with the LTB dynamics. 
Figures 10–12 show that using only BAO to fit the parameters disagrees with the best fit of 
using only SNIa at least at σ3  of confidence level.

In the case of the CGBH profile model, figure 10 shows that the BAO data favours a denser 
void (higher matter density) as compared to the SNIa data. For the Gaussian model, figure 11 
indicates that BAO favours not only higher values of matter density inside the void but also 
bigger voids, i.e. higher values of parameter r0. In the case of the Cν-ln2, there is still the 
same tension between BAO and SNIa best fit values yet to a smaller extent as compared to the 
CGBH model.

Figure 5. Contour Level best fit parameters in the χ2 (dashed red lines) and likelihood 
(solid blue lines) approaches with the JLA sample only for the Gaussian model.
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There are several ways of performing model comparison. For instance, the (corrected) 
Akaike information criterion9 (AIC) [58] proposes to compare different models through a 
quantity defined as

( ) ( )
π= + + +

−
− −

LAIC N k
k k

N k
ln 2 2

2 1

1
,min (51)

where k is the number of free parameters and N is the number of data points. Another possibil-
ity is the Bayesian information criterion (BIC) [59] which uses the quantity

( )π= + +LBIC N k Nln 2 ln .min (52)

Figure 6. Contour Level best fit parameters for χ2 (dashed red lines) and Likelihood 
(solid blue lines) approaches with the JLA sample only for the CGBH model.

9 We have reintroduced the term N ln 2( )π , in AIC and BIC, in order to obtain the L2 ln ˆ−  value, where L̂ is the 
maximum Likelihood function.
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Figure 8. PDF for σint in the Likelihood approach for the CGBH (left panel), Gaussian 
(middle panel) and Cν-ln2 (right panel) models with the JLA only. The red dashed line 
indicates the values obtained in the χ2 approach.

Figure 7. Contour Level best fit parameters in the χ2 (dashed red lines) and L (solid 
blue lines) approaches with the JLA sample only for the Cν-ln2 model.
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Figure 9. PDF for σint in the Likelihood approach for the CGBH (left panel), Gaussian 
(middle panel) and Cν-ln2 (right panel) models with the combined JLA  +  BAO. The 
red dashed line indicate the values obtained in the χ2 approach.

Figure 10. σ1 , σ2  and σ3  contour level best fit parameters for the CGBH model in the 
χ2 approach (three left panels), with the JLA only (dashed red lines) and the combined 
JLA  +  BAO (dotted black lines), and in the Likelihood approach (three right panels), 
with the JLA only (solid blue lines) and the combined JLA  +  BAO (solid black lines). 
The dashed brown lines are the contours for the BAO only.

Figure 11. σ1 , σ2  and σ3  contour level best fit parameters for the Gaussian model in 
the χ2 approach (left panel), with the JLA only (dashed red line) and the combined 
JLA  +  BAO (dotted black lines), and in the Likelihood approach (right panel), with 
the JLA only (solid blue lines) and the combined JLA  +  BAO (solid black lines). The 
dashed brown lines are the contours for the BAO only.
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A model is viewed as favored by the data when a lower AIC or BIC value is obtained. 
Note that their difference comes from the last two terms in AIC and the last one in BIC. 
Thus, for a large amount of data points ( �N 1) BIC is a little more sensitive to an incre-
ment of parameter than AIC. Indeed, by an increment → δ+k k k, AIC changes by an amount 

[ ( )/( )] ( )δ δ δ+ + − − − − + −Ok N k N2 1 2 1 1k k k
2  while BIC is proportional to δ Nlnk .

Table 6 summarises the results of each profile and the ΛCDM model for SNIa and 
SNIa  +  BAO using the AIC and BIC information criterions. In both criterions the ΛCDM is 
favored with respect to the LTB models. Note that for the combined analysis SNIa  +  BAO, the 
ΛCDM is notoriously more favored. In order to obtain the Bayes factor Bij, we can use a rough 
approximation [60] that is worthy as →∞N . In this limit it can be shown that

[ ] [ ]
→

− +BIC i BIC j B

B

2 ln

2 ln
0,

ij

ij
 (53)

where BIC[ j ] denotes BIC for model j. This relation is know as the Schwarz criterion and 
does not give the precise value of Bij but it is easer to manage and does not require evaluation 
of prior densities through the use of the Maximum Likelihood Estimator to the parameters on 
each model. Of course, the relative error of this approximation is higher (of order ( )O 1 ) and 
is not getting the correct value of the Bayes factor. But, keeping in mind the rough interpreta-
tion of the Bayes factor on the logarithmic scale suggested in section 3.2 of [60], the relation 
(53) shows that in larges samples it should provide a reasonable indication of the evidence. 
Our results are summarized in Table 7, where we denote, respectively, the ΛCDM, Gaussian, 
CGBH and Cν-ln2 cases as models 1, 2, 3 and 4. It is worth noting that for the analysis using 
only SNIa data the evidence against the Gaussian model is strong ( ⩽ ⩽B6 2 ln 10ij ) in contrast 
with both CGBH and Cν-ln2 models which indicate very strong evidence ( >B2 ln 10ij ) to 
the ΛCDM model. For the JLA  +  BAO combined analysis the evidence of the ΛCDM is very 
strong against the three LTB models.

Table 6. Comparison of the information criterion for the best-fit parameterization of 
the three void models and the ΛCDM model using JLA and JLA  +  BAO data. The 
columns three and four show the difference with respect to ΛCDM model which has the 
lower values ( mutatis mutandis for columns seven and eight).

JLA JLA  +  BAO

Model AIC BIC ∆AIC ∆BIC AIC BIC ∆AIC ∆BIC

CGBH −621.1 −584.4 2.6 11.7 −602.3 −579.3 63.7 72.9
Gaussian −618.7 −586.6 5 9.5 −622.5 −604.1 43.5 48.1

Cν-ln2 −610.4 −573.7 13.3 22.4 −607.4 −584.4 58.6 67.8

ΛCDM −623.7 −596.1 0 0 −666.0 −652.2 0 0

Table 7. Bayes factor for JLA and JLA  +  BAO, considering the ΛCDM, Gaussian, 
CGBH and Cν-ln2, respectively, as models 1, 2, 3 and 4.

JLA JLA  +  BAO

B2 ln 12 9.5 48.2
B2 ln 13 11.7 72.9
B2 ln 14 22.4 67.8
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6. Conclusions

In this paper we have presented exact inhomogeneous LTB models that can suppress the need of 
dark energy to explain the present acceleration of the universe. Within this scenario, the observa-
tional data indicate that we live in a large inhomogeneous void of the order of few Gigaparsec. In 
particular, we considered three different profiles of void LTB universe models. Both the CGBH 
and Cν-ln2 profiles have three cosmological parameters unlike the Gaussian profile that has only 
two parameters. In order to include the BAO analysis, we have added an extra parameter fb that 
represents the Baryon fraction over the total matter content. In addition, there are also the super-
novae nuisance parameters in the distance estimate which are the same in all cases.

We performed the best fit analysis and constrained the space of parameters for the inhomo-
geneous models. This analysis was carried out using BAO and SNIa data separately and also 
the JLA  +  BAO combined analysis. We have been careful to calibrate SNIa data specifically 
for the LTB dynamics. The dependence on the background dynamics does not change sig-
nificantly from an FLRW background but this calibration is necessary and should be checked 
every time.

We have also tested the validity of the χ2 minimization compared to the complete Likelihood 
approach. Our results corroborate with [51] presenting a specific example where these two 
approaches are not equivalent. The supernovae parameters (α, β, MB

1  and ∆M) have similar 
results for all cases, but present bias in both approaches. On the other hand, the cosmological 
parameters (ΩM in, ∆r, ν and r0) have considerable deviation regardless of the method. For 
example, the Cν-ln2 model presents higher matter density ΩM in than the CGBH and Gaussian 
models. The contour levels for the χ2 and Likelihood approaches display similar shapes and 
areas but significant bias in the best fit values with the Likelihood contours slightly bigger 
than the χ2.

Figure 12. σ1 , σ2  and σ3  contour level best fit parameters for the Cν-ln2 model in the 
χ2 approach (three left panels), with the JLA only (dashed red lines) and the combined 
JLA  +  BAO (dotted black lines), and in the Likelihood approach (three right panels), 
with the JLA only (solid blue lines) and the combined JLA  +  BAO (solid black lines). 
The dashed brown lines are the contours for the BAO only.
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Figures 8 and 9 show the 1D probability distribution function (PDF) of the σint parameter 
for the three models, considering, respectively, only the JLA sample and the JLA  +  BAO 
combined analysis. These results also agree with the issues and criticisms related to the χ2 
analysis.

We found a tension between the confidence contours coming separately from SNIa and 
BAO data. This discrepancy stems from the behaviour of the LTB radial and transverse expan-
sion rates, which works differently for BAO and SNIa. Indeed, the low value of ΩM in needed to 
fit the SNIa data increases the expansion rate that consequently stretches the BAO scale near 
the center. This discrepancy was seen at more than 3σ in figure 10, for CGBH, and at lower 
confidence level for Gaussian and Cν-ln2 models (figures 11 and 12).

Finally, we have analysed the AIC and BIC information criteria in order to evaluate the 
best model. The Gaussian model is slightly favored in comparison with the CGBH and Cν-ln2 
models. But still the ΛCDM is the best favored. The main difference in the profiles is the num-
ber of parameters where the Gaussian profile has one less than the others. This is an advantage 
in the information criterion and given the proximity of the result it is arguably the reason for 
it to exceed the other models. We have also calculated an approximate Bayes factor, which 
when using only SNIa data indicates strong evidence for the ΛCDM model against Gaussian 
model in contrast with both the CGBH and Cν-ln2 models that suggests very strong evidence 
for the ΛCDM model. For the combined BAO  +  SNIa analysis, the ΛCDM model has very 
strong evidence against the three LTB models.
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