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Abstract We study a particle system with hopping (random walk) dynamics on the integer
lattice Z

d . The particles can exist in two states, active or inactive (sleeping); only the former
can hop. The dynamics conserves the number of particles; there is no limit on the number
of particles at a given site. Isolated active particles fall asleep at rate λ > 0, and then remain
asleep until joined by another particle at the same site. The state in which all particles are
inactive is absorbing. Whether activity continues at long times depends on the relation be-
tween the particle density ζ and the sleeping rate λ. We discuss the general case, and then,
for the one-dimensional totally asymmetric case, study the phase transition between an ac-
tive phase (for sufficiently large particle densities and/or small λ) and an absorbing one. We
also present arguments regarding the asymptotic mean hopping velocity in the active phase,
the rate of fixation in the absorbing phase, and survival of the infinite system at criticality.
Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The
phase transition appears to be continuous in both the symmetric and asymmetric versions of
the process, but the critical behavior is very different. The former case is characterized by
simple integer or rational values for critical exponents (β = 1, for example), and the phase
diagram is in accord with the prediction of mean-field theory. We present evidence that the
symmetric version belongs to the universality class of conserved stochastic sandpiles, also
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known as conserved directed percolation. Simulations also reveal an interesting transient
phenomenon of damped oscillations in the activity density.

Keywords Interacting particle systems · Absorbing-state phase transition · Sandpiles ·
Interacting random walkers

1 Introduction

Interacting particle systems with conservation have attracted great interest in physics, prob-
ability, and allied fields, in part because they afford simple examples of phase transitions
in systems maintained far from equilibrium. In these models the local dynamics conserves
the number of particles, although certain sites may act as particle sources or absorbers. One
broad important class of models subsumes exclusion models, in which particles interact-
ing via on-site exclusion (and possibly an additional short-range interaction) execute biased
hopping on a lattice. Important examples are driven diffusive systems [28, 29, 42, 49] and
the totally asymmetric exclusion process [4, 35, 50]. In another class of models there is no
exclusion (any number of particles may occupy the same site) but the particles exist in two
states that may be termed active and inactive, such that activation of an inactive particle re-
quires the intervention of one or more active ones. This class includes so-called conserved
lattice gases [36–39, 48] and stochastic sandpile models [9, 10, 14, 40, 41]. Such models
exhibit self-organized criticality [2, 3, 5, 22] when coupled to a suitable control mecha-
nism [7, 12].

In this paper we study a system of activated random walkers (ARW) on the lattice. For
theoretical analysis, it is convenient to define the model (ARW1) on the infinite integer
lattice Z

d . We assume, in this case, that there are infinitely many particles in the system,
each of which can be in one of two states: A (active) or S (inactive or sleeping). Each A-
particle performs an independent, continuous time, simple symmetric random walk on Z

d ,
with the same jump rate, which we assume, without loss of generality, to be equal to 1.
When an A-particle jumps to a site with an S-particle or particles, any such particle at this
site is immediately activated (i.e., switches to state A). Each isolated A-particle goes to sleep
(switches to state S), at a rate λ > 0. [From this rule it follows that if two or more particles
occupy the same site, then they are all of type A or all of type S (the latter situation can
only arise in the initial condition).] Since S-particles are immobile, at any given site, at most
one A-particle can go to sleep, and (if undisturbed), remain in state S forever after. The
limit λ → ∞ corresponds to the model studied by Jain [25], in which any isolated particle
immediately becomes immobile.

We assume that initially the particles are distributed according to a product Poisson mea-
sure with mean ζ , and all the particles are active.

In numerical studies the following one-dimensional model (ARW2) is used. The system
is a chain of L sites with either periodic or open boundaries. Initially N particles are ran-
domly placed in the system. (In the case of periodic boundaries the particle number is con-
served.) As in ARW1, each nonisolated A-particle hops at unit rate. An isolated A-particle
has a somewhat different dynamics: it hops at rate p ≤ 1 and goes to sleep at rate q = 1 −p.
Thus in ARW2 isolated A-particles have a smaller hopping rate than nonisolated ones, while
in the ARW1 all A-particles have the same jump rate. While certain details such as the phase
boundary may differ between the two versions, we expect the global properties to be the
same. For the question of whether or not the system fixates, the two models are equivalent
via λ = q/p. The case p = 0 again represents the model studied in [25].
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A natural generalization of the model is to allow the A-particles to execute a biased
random walk. We shall in fact be particularly interested in the completely asymmetric case.
Another possible generalization is to assume that each S-particle is activated at rate 0 < α ≤
+∞, when it shares its site with an A-particle. One could go even further, by assuming that
the rate at which an A-particle activates S particles at a given site depends on the number of
S particles at the site (zero-range rule). There is however a substantial difference between the
case α < +∞, and the case α = +∞, described at the beginning of this section. If α < +∞,
during evolution the A-particles may share a site along with one or more S-particles, so that
this model is a kind of dynamic contact process. If α = +∞, the situation changes, and we
believe this model belongs to the universality class of stochastic conserved sandpiles. In this
work, we only consider the case α = +∞ (instantaneous reactivation).

The primary motivation for the present study is the stochastic conserved sandpile, gener-
ally known as Manna’s model [40, 41]. In infinite volume, this model is defined as follows.
We assume that initially there are infinitely many particles, distributed in such a way that
at each site of Z

d we have Poisson mean ζ > 0 number of particles. Each site is equipped
with an exponential rate 1 clock, and each time a clock rings at a site bearing 2d or more
particles, 2d particles move from the site to randomly chosen nearest neighbors. That is,
(differently from the deterministic Bak-Tang-Wiesenfeld sandpile model [2, 3]), each par-
ticle chooses its direction among the 2d possibilities with probability (2d)−1, independent
of any other particle. In contrast to the deterministic sandpile [5], very little is known rigor-
ously about this system, and the ARW model is a reasonable caricature that seems to capture
some essential aspects of Manna’s model.

The ARW model may also be viewed as a special case of a diffusive epidemic process,
in which an infected particle performs a simple symmetric random walk with jump rate
DB , and recuperates at a given rate, while a healthy particle performs a simple symmetric
random walk with jump rate DA. (Healthy particles are infected on contact with infected
ones.) The ARW model corresponds to DA = 0. The generalized CP (in the case DA = DB )
was proposed in the late 1970’s by Spitzer, and later was studied in detail in [30–33]. The
diffusive epidemic process has also been studied via renormalization group and numerical
simulation [13, 19–21, 26, 34, 44, 53, 54]. A general conclusion from these studies is that
there are three distinct regimes of critical behavior, for DA < DB , DA = DB and DA > DB .
It is not yet clear whether the ARW model falls in the first regime, or, alternatively, that
DA = 0 marks a special case.

The ARW with symmetric hopping is closely related to the conserved lattice gas model
(CLG) [36–39, 48], the principal difference being that in the CLG a site can be occupied by
at most one particle, while active particles are those having at least one occupied neighbor.
The CLG and the conserved stochastic sandpile share the same essential features, namely,
a continuous phase transition between an active and an absorbing state, conservation of
particles, and coupling between the order parameter (activity) and particle density, with the
particle configuration frozen in regions devoid of activity. There is evidence [9, 15, 46] that
the CLG and conserved stochastic sandpile exhibit the same critical behavior, and we should
expect the same to apply to the symmetric ARW model.

Numerical analysis and some general theoretical arguments suggest that the ARW model
exhibits a phase transition in the parameters λ and ζ , and that there should be two distinct
regimes:

(i) Low particle density. There is a phase transition in λ in this case, namely if λ is large
enough, then system locally fixates, i.e. for any finite volume � there is almost surely
a finite time t� such that after this time there are no A particles within �. If λ is small
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enough there is no fixation, and we expect that there is a limiting density of active
particles in the long-time limit.

(ii) High particle density. In this case there is no phase transition. For any λ > 0, the system
does not fixate.

The balance of this paper is organized as follows. In Sect. 2 we study ARW2 with totally
asymmetric walks via mean-field theory. Section 3 contains a detailed study of the criti-
cal behavior for totally asymmetric walks, including power laws and scaling relations, via
Monte Carlo simulations, and ends mentioning the symmetric case, which belongs to an-
other universality class. In Sect. 4 we quote the few known mathematical results and discuss
a collection of open problems.

2 Mean-Field Theory

In this section we develop a mean-field theory (MFT) for the ARW2 model defined in
Sect. 1. As is usual in this type of approach, we treat the state of each site as statistically
independent. Although the discussion is formulated for the totally asymmetric case, this
‘one-site’ approximation in fact yields the same predictions for the symmetric version.

For n ≥ 1, let pn(t) be the fraction of sites having exactly n A-particles. We denote the
fraction of sites occupied by an S-particle by p′

1(t), and the fraction of vacant sites by p0(t).
Normalization implies,

p′
1 +

∞∑

n=0

pn = 1

while the particle density is

ζ = p′
1 +

∞∑

n=0

npn.

Let

ρ∗ =
∞∑

n=2

npn,

so that the density of A-particles is ρa = ρ∗ + p1 = ζ − p′
1.

We now obtain the equations of motion for the pn, starting with n = 0. The rate of
transitions into n = 0 is pp1, that is, to enter the state 0 a site must have a single A-particle,
which leaves at rate p. The rate of transitions out of state 0 is:

∞∑

n=2

npn,0 + pp1,0

where pn,m is the joint probability for a pair of nearest-neighbor sites j and j + 1 to harbor
n and m A-particles, respectively. (p1,0 is the joint probability for a site to be empty, and its
neighbor on the left occupied by a single A-particle.) The reason is that to exit state zero, a
site must be in that state and have a nearest neighbor on the left with one or more particles
capable of jumping onto it.

The mean-field approximation consists in factoring all joint probabilities: pn,m → pnpm.
Combining the rates for transitions into and out of state zero, and applying the mean-field
factorization, we obtain:
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dp0

dt
= pp1 − ρ̃p0,

where

ρ̃ ≡ ρ∗ + pp1.

Proceeding in the same manner we obtain equations of motion for the other one-site proba-
bilities:

dp1

dt
= ρ̃(p0 − p1) + 2p2 − p1,

dp′
1

dt
= qp1 − ρ̃p′

1,

dp2

dt
= ρ̃(p1 + p′

1 − p2) − 2p2 + 3p3

and for n ≥ 3,

dpn

dt
= ρ̃(pn−1 − pn) − npn + (n + 1)pn+1. (1)

These equations conserve normalization and the particle density ζ . For ζ < 1 there is an
inactive solution, p′

1 = ζ , p0 = 1 − ζ .
We seek an active stationary solution by introducing a ‘quasi-Poisson’ ansatz,

pn = A
λn

n! for n ≥ 3.

Substituting this hypothesis in (1) (with n ≥ 4) one finds λ = ρ̃. Using the equations for n =
3, 2, 1, and 0, we obtain p2 = Aρ̃2/2, p1 + p′

1 = Aρ̃, p1 = Aρ̃2/(q + ρ̃), and p0 = pp1/ρ̃.
Normalization then implies

A =
[
eρ̃ + pρ̃

q + ρ̃
− 1

]−1

.

With the stationary distribution in hand, we may write

ζ = ρ∗ + p1 + p′
1 = A(ρ̃)ρ̃eρ̃ = ρ̃eρ̃

eρ̃ + pρ̃/(q + ρ̃) − 1
. (2)

A plot of the active particle density ρa = ζ − p′
1 versus ζ , is shown in Fig. 1, for p = 1/2.

To locate the critical point ζc , we evaluate the limit of the r.h.s. of (2) as ρ̃ → 0, yielding

ζc = 1 − p.

For densities smaller than ζc , ρ̃ = 0 and ζ = p′
1, i.e., all particles eventually go to sleep. The

stationary activity density grows ∝ ζ −ζc for ζ > ζc . Numerical integration of the mean-field
equations shows that the solution indeed converges to the stationary one found above. For an
initial Poisson distribution, or one in which a fraction ζ < 1 of sites are singly occupied and
the rest vacant, the approach to the stationary state is monotonic, and exponentially rapid
away from the critical point. At the critical point the activity density decays algebraically,
ρa ∼ t−1. These are the usual characteristics of a mean-field theory for an absorbing-state
phase transition [42].
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Fig. 1 Comparison of
simulation (squares) and
mean-field theory (solid line) for
the stationary activity density ζa
at p = 0.5

The mean-field analysis is readily extended to the two-site approximation, in which the
dynamical variables are the joint probabilities pi,j for a pair of neighboring sites to have
occupations i and j [42]. (In this case three-site probabilities are approximated so: pi,j,k �
pi,jpj,k/pj .) The pair approximation again yields ζc = 1 − p. The stationary density of
active sites is slightly less than in the simple MF approximation (a reduction of about 6%,
near the critical point), and the relaxation at the critical point again follows ρa ∼ t−1. Finally,
we note that for model ARW1 (jump rate unity for all A particles, sleep rate λ for isolated
A particles), the mean-field analysis yields the critical density

ζc = λ/(1 + λ),

in agreement with simulations and rigorous results (Theorem 6).

3 Simulation Results

We performed Monte Carlo simulations of the ARW2 model on rings of L = 100 to 8000
sites. Stationary and time-dependent properties were determined from averages over 105–
106 independent realizations of the process, starting from an initial configuration in which
all particles are in state A. In simulations, we select an A-particle (a list of such particles is
maintained), and if it is not isolated, it jumps to the right. If the selected particle is isolated
then it goes to sleep with probability q , and jumps forward with probability p = 1 − q . The
time increment associated with each event is �t = 1/n, with n the number of A particles
just before the event. (For ζ < 1, a finite system must eventually become trapped in an
absorbing configuration. In practice, however, the lifetime of the quasi-stationary metastable
state observed in simulations is very long for p > pc . It appears, moreover, that the quasi-
stationary properties observed in simulations converge to a well-defined limit as the system
size L → ∞, that is, to the true stationary properties of the infinite system.)

3.1 Phase Diagram

We studied the stationary density of A-particles ρa , the moment ratio m = 〈ρ2
a 〉/ρ2

a , and the
survival probability Ps(t), that is, the probability that not all walkers are asleep. The varia-
tion of the stationary activity density with walker density ζ (for fixed sleeping probability
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q = 1/2) is shown in Fig. 1. Note that the data represent extrapolations to the infinite-size
limit based on results for systems of size 100, 200, . . . ,3200. The simulation result is very
close to, although systematically smaller than, the mean-field prediction. (The small but
nonzero difference between simulation and MFT cannot be attributed to a finite size effect.)
The pair approximation is in somewhat better agreement with simulation. For example, the
stationary activity density near the critical follows

ρa = B(ζ − ζc).

For p = 1/2, for example, simple MFT yields an amplitude of B = 1.70; the amplitude in
the pair approximation is 1.60, while simulation yields B = 1.46.

Of particular interest is the location of the phase boundary. For ζ ≤ 1 (with p fixed
at 1/2), the data for ρa fall very nearly on a straight line that intercepts ρa = 0 at ζ =
0.5, as predicted by MFT. For any finite system size the quasi-stationary activity density at
ζ = 1/2 is nonzero, but ρa approaches zero with increasing system size. Finite-size scaling
theory [17, 18, 45] predicts a power-law dependence of the stationary order parameter ρa on
system size along the critical line:

ρa(pc, ζ,L) ∼ L−β/ν⊥ (3)

where β and ν⊥ are the critical exponents associated, respectively, with the order parameter
and the correlation length [42]. (Away from the critical line ρa converges exponentially to
its stationary value as L → ∞.) A similar picture holds for the lifetime τ(p, ζ,L) defined
in terms of the survival probability Ps(t). In a finite system, for ζ < 1, we expect Ps ∼
exp(−t/τ ). Along the critical line, finite-size scaling theory predicts

τ(pc, ζ,L) ∼ Lν||/ν⊥ (4)

with ν|| the critical exponent associated with the correlation time. Rather than attempt a
systematic justification of these scaling ideas here, we simply note that the behaviors implied
by (3) and (4) have been amply confirmed in studies of many absorbing-state transitions (as
well as in equilibrium critical phenomena), including conserved stochastic sandpiles.

Power-law scaling of ρa and τ with L provides an effective criterion for locating the
critical point in simulations; we use it to determine pc for ζ = 0.25, 0.5 and 0.75. Our
results agree, to within statistical uncertainty, with the mean-field prediction pc = 1 − ζ . In
all three cases we find

β/ν⊥ = 0.5

to within a statistical uncertainty of less than 0.5%, strongly suggesting the value 1/2 for
this exponent ratio (see Fig. 2). The lifetime τ (Fig. 3) can be fit to high precision with the
expression τ = C + c′L, where C and c′ are constants, so that the ratio

ν||/ν⊥ = 1.

Finally, the fact that the order parameter ρa is proportional to ζ − ζc near the transition
implies the exponent value

β = 1.

Using the finite-size scaling relations we then have

ν⊥ = ν|| = 2.
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Fig. 2 Stationary order
parameter versus system size for
ζ = 0.25 and p = 0.75

Fig. 3 Lifetime τ versus system
size as in Fig. 2

The moment ratio m has been found to take a well-defined value at the critical point
of an absorbing-state phase transition [11, 27]. Consistent with this result we find m →
mc = 1.298(4) at all three ζ values studied. We note that while β = 1 is characteristic of
mean-field-like transitions to an absorbing state, the values of ν⊥, ν|| and mc , are not typical
of other known universality classes for absorbing-state phase transitions [23, 42, 43]. We
suspect that the anisotropic dynamics underlies this difference.

The model exhibits a somewhat different behavior at the end of the critical line, ζ = 1,
p = 0. In this case an isolated particle goes to sleep at rate 1, i.e., it can never jump forward.
Simulations reveal no quasi-stationary state at this point: the activity density decays to zero
monotonically, for all system sizes (L = 100, . . . ,800) investigated. The activity density
again grows ∝ ζ − 1 near the transition, so that β retains its value of unity.

3.2 Approach to the Steady State

We studied two kinds of initial condition. In one, N = ζL active walkers are inserted ran-
domly and independently into the system; in the other (for ζ = 1/2), only even-numbered
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Fig. 4 Main graph: scaled
activity density ρ∗ = L1/2ρa(t)

versus scaled time t∗ = t/L, for
ζ = p = 1/2 with an alternating
initial configuration. Data for
system sizes L = 200, 400, 800,
4000 and 8000 are superposed
(sharper maximum corresponds
to larger size). Inset: activity
density versus time on log scales,
L = 4000

sites are initially occupied by an active walker. (We call these random and alternating ini-
tial configurations, respectively. In studies with random initial conditions each realization
is performed using a different, independent initial configuration.) The two initial states lead
to the same quasi-stationary properties, but the approach to the latter is different in the two
cases.

Consider first the evolution of ρa (averaged over 105 independent realizations) at the
critical point ζ = p = 1/2, using the alternating initial configuration. Figure 4 shows that the
evolution is nonmonotonic, as has been found for the stochastic sandpile (with symmetric
dynamics) at its critical point [8]. The main graph of Fig. 4 shows ρ∗ ≡ L1/2ρa(t) as a
function of t∗ = t/L. (The definitions of the scaling variables ρ∗ and t∗ are motivated by
the finite-size scaling results discussed above.) Under this rescaling, data for L = 200, 400,
800, 4000 and 8000 collapse onto a master curve. (The collapse is not perfect; the secondary
maximum near t∗ = 0.8 becomes sharper as the system size is increased.)

The inset of Fig. 4 shows the overall relaxation to the quasi-stationary state. The initial
decay appears to follow a power law ρa ∼ t−δ with δ = 0.50. At absorbing state phase
transitions one expects the scaling relation δ = β/ν||, which is indeed verified if we insert
the values β = 1 and ν|| = 2 found above. The initial growth of the moment ratio is expected
to follow m − 1 ∼ t1/z, with the dynamic exponent z equal to the ratio ν||/ν⊥ [52]. In fact
we find m − 1 ∝ t , consistent with the exponent ratio found above.

For random initial conditions the general picture is similar, although there are some dif-
ferences in detail. The relaxation is again nonmonotonic, with a collapse of data for various
system sizes using the scaling variables ρ∗ and t∗, but the secondary maximum (which falls
near t∗ = 0.7), is smooth, rather than cusp-like as for the alternating initial condition. The
initial decay again appears to follow a power law, with δ � 0.51. The initial growth in the
moment ratio follows m − 1 ∼ t1/z, but with 1/z = 1.025 rather than the expected value
of unity. The slightly larger apparent exponents observed with random initial conditions
may reflect corrections to scaling due to relaxation of long-wavelength modes present in the
initial distribution (and which are strictly excluded in the alternating case).

Some understanding of the relaxation may be gleaned from the spatial distribution of the
particles. Figure 5 shows the spatio-temporal evolution of a typical realization at the critical
point, ζ = p = 1/2, for random initial conditions. We see that after an initial transient, all of
the active particles are confined to a relatively narrow band. During coalescence into a single
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Fig. 5 Typical evolution of a
system at the critical point
ζ = p = 1/2, with a random
initial configuration, L = 160. In
each horizontal sweep, the height
of the line represents the number
of particles at site x, with a
sleeping particle corresponding
to height −1. The graph at the
left shows the number n of active
particles versus time

band, the activity density decreases rapidly; coalescence appears to be irreversible. Studies
of larger rings confirm these observations. The time for the activity to become confined
to a single band grows with system size, but is typically smaller than L/2. (We have not
determined if the time grows linearly with L or more slowly.) The active region propagates
through the system at a steady rate, expanding or contracting due to intrinsic fluctuations
and to the varying density of sleeping particles it encounters as it moves. The boundaries of
the active region move at a speed somewhat greater than unity: in large systems the speed
is 1.18–1.20 (sites per unit time). Repeated encounters of the active band with regions rich
in sleeping particles may be connected with the revivals observed in the activity density
(Fig. 4). We observe the coalescence into a single band of activity, and the same speed
of propagation, in studies with the alternating initial configuration. (Naturally the initial
transient is different in the two cases.) In the infinite system, activity cannot be confined to
a narrow band, but we should expect, on the basis of the foregoing observations, a steady
coarsening of the activity pattern.

We have also studied the distribution of first passage times τ0 to the origin of the ARW2
model on the line (i.e., in a system without periodic boundaries); τ0 is defined as the time at
which a particle first jumps from site −1 to the origin. To study its distribution we simulate
the system on the lattice extending from x = −L to x = 0. We determine the probability
density p(τ0) up to a certain maximum time, by studying a series of lattice sizes L, until
p(τ0) stabilizes. Figure 6 shows the density obtained for a lattice size of 105 sites, for a
system at the critical point, ζ = p = 1/2. The same result is obtained for 106 sites, within
the uncertainty. The data can be fit with a power-law, p(τ0) ∼ τ−α

0 , with α = 1.50(1). Thus
the mean first passage time to the origin diverges at the critical point. It is curious that an
interacting particle system with totally asymmetric jumps shares the same exponent as that
of a symmetric random walk. For an unbiased random walk the first return is the smallest
time when it is positive, whereas τ0 is determined by the smallest lattice interval [−x,0]
where the presence of initial particles exceeds the gaps of activity. This subtle heuristics
explains why the tail of τ0 decays with exponent 1/2, though it is not so clear why its
density is so smooth.
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Fig. 6 (Color online)
Distribution density of the time
of the first jump to the origin for
a system at the critical point
ζ = p = 1/2, with an alternating
initial configuration, and L = 105

sites. The blue line has slope
−1.50

3.3 The Symmetric Case

We performed a series of studies of the symmetric ARW2 model at density ζ = 1/2. In con-
trast to the asymmetric case, the critical value of the hopping probability, pc , is considerably
higher than its mean-field value, pc = min{ζ,1}. In terms of the ARW1, it means that

ρc >
λ

1 + λ
,

and there are partial mathematical results in this direction (Theorem 5). Studies using rings
of up to 12800 sites yield pc = 0.87835(2). (Our criterion for criticality is that the station-
ary activity density follow a power law, ρa ∼ L−β/ν⊥ .) These studies yield the exponent ratio
β/ν⊥ = 0.23(1), very different from the result of 0.5 found in the asymmetric case. A study
of the growth of m − 1 at the critical point, in a system of 12800 sites, yields the dynamic
exponent z = 1.51(1). The stationary value of the moment ratio m at the critical point is
mc = 1.15(1). The results for β/ν⊥, z and mc are all quite far from the corresponding val-
ues in the asymmetric case. They are, on the other hand, rather close to those found for a
conserved stochastic sandpile [9]: β/ν⊥ = 0.217(6), z = 1.50(4) and mc = 1.14(1).

These results support the assertion (based on considerations of symmetry) that the sym-
metric ARW model falls in the conserved stochastic sandpile universality class. Since scal-
ing properties of sandpile models are rather subtle, we defer a full characterization of the
symmetric model to future work. It is nevertheless clear that the symmetric and asymmetric
ARW exhibit very different critical behavior. On a qualitative level the difference is quite
dramatic if we compare the evolution of the asymmetric model (Fig. 5) with that of the
symmetric model at its critical point (Fig. 7). In the latter case there is no tendency for the
activity to become confined irreversibly to a narrow band; active regions are seen to branch
as well as coalesce.

As noted above, the model studied by Jain [25] corresponds to setting p = 0 in the sym-
metric ARW. The properties demonstrated in [25] are in fact very different than those ob-
tained here, for p > 0. In the former case the active phase, which exists for ζ > ζc = 1, has
ρa ∝ ζ − ζc , so that the critical exponent β = 1, and the stationary probability distribution
in the active phase is uniform on the set of allowed configurations (i.e., those in which no
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Fig. 7 (Color online) A typical
realization of the symmetric
ARW model near the critical
point. Time increases downward,
with white, light blue, dark blue
and black points representing
empty sites, sites with an inactive
particle, sites with an active
particle, and sites with ≥ 2
particles, respectively

site is empty). Since the active phase has a product measure, correlation functions are iden-
tically zero and the critical exponent ν⊥ is undefined. The difference between the scaling
properties observed for p > 0, and those found in [25] may be understood by noting that
in our case an isolated particle, while active, may evade becoming immobile by jumping to
an occupied site. In this process it may reactivate a sleeping particle. Thus the number of
active particles fluctuates while total particle number is conserved, a hallmark of models in
the conserved stochastic sandpile universality class. When p = 0, by contrast, the number
of mobile particles is fixed at N − L in the stationary state.

It is also worth noting that although the asymmetric ARW (with p > 0) shares the critical
exponent value β = 1 with the model studied in [25], it is different since the exponent ν⊥
is well defined, and the model satisfies finite-size scaling. Again, the asymmetric ARW
features a fluctuating number of active particles when p > 0.

4 Rigorous Results, Conjectures and Open Problems

In this section we will summarize the few existing rigorous results concerning the ARW
model, discuss some conjectures and present several open problems, whose understanding
may shed some light on the long-time behavior of the system.

A rigorous understanding of this model is still in its embryonic stage, and some of the
open questions appear to be quite difficult and mathematically challenging.

4.1 General Case

We start with the first basic fact, proved in [47] using the Diaconis-Fulton [6, 16] repre-
sentation of the model. The representation provides an Abelian property for the dynamics
of the system with finitely many particles, and—what is particularly important—provides
monotonicity for the occupation times in ζ as well as in λ.

Theorem 1 ([47]) For d � 1 and any translation-invariant random walk and λ > 0, there
exists ζc ≡ ζc(λ) ∈ [0,∞], such that if the initial distribution is i.i.d Poisson with density ζ
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then

P (system locally fixates) =
{

1, ζ < ζc

0, ζ > ζc.

Moreover, ζc is non-decreasing in λ.

For fixed λ the value of ζc(λ) is not known, however some theoretical arguments suggest,
and numerical simulations support, that the following holds:

Conjecture 1 For any dimension, any random walk, and any λ > 0,

0 < ζc(λ) < 1.

4.1.1 Supercritical Regime

Using Peierls type argument one can show that ζc(λ) < +∞:

Theorem 2 ([32]) Consider simple symmetric random walks on Z
d , d � 1. There exists

ζ0 < ∞ such that ζc(λ) < ζ0 for all λ.

Recently E. Shellef improved this estimate:

Theorem 3 ([51]) Under the same hypotheses,

ζc(λ) � 1. (5)

Another approach to prove (5) is to show mass conservation for this model:

Theorem 4 ([1]) For i.i.d. initial conditions, simple symmetric random walks, if there is
local fixation, then each particle jumps finitely many times. By the mass transport principle,
this implies that whenever there is fixation the density of the limiting state in the same as the
density of the initial state, in particular it implies (5).

However, the following problem remains open:

Problem 1 Show strict inequality in (5).

Another interesting question about the supercritical regime is the following:

Problem 2 For each ζ > ζc , show that there is a unique non-trivial invariant distribution,
ergodic with respect to spatial translation, whose particle density is ζ .

4.1.2 Subcritical Behavior

On the other hand, it is rather easy to get convinced that ζc ought to be strictly positive.
Despite the recent progress in the one-dimensional case (see [47]), there are no results in
higher dimensions:
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Theorem 5 ([47]) For d = 1, bounded range random walks and any λ > 0 we have that
0 < ζc � 1. For nearest-neighbor walks we have:

λ

1 + λ
� ζc � 1.

The proof of the above theorem again relies on the Diaconis-Fulton representation of the
dynamics, in particular it uses the Abelian property and certain monotonicity for finite parti-
cle systems. Conceptually all the ingredients of the proof can be used in higher dimensions,
with the exception of the last estimate, which in dimensions �2, if repeated straight for-
wardly, boil down to the need for refined bounds on growth intensity of a Diffusion Limited
Aggregation type growth model, and the analog of the one-dimensional argument produces
unsatisfactory estimates. Thus, we have

Problem 3 Show that ζc > 0 for d � 2.

Though Theorem 5 establishes the fact that ζc > 0 in one-dimension for a rather broad
class of walks, it does not give a satisfactory description of the final absorbing state, nor
correct estimates for the fixation time. We may therefore state several important questions.

Problem 4 Describe the distribution of the final configuration after fixation (in any dimen-
sion, including d = 1). Numerical analysis suggests that it depends on the initial distribu-
tion. It seems however to be less sensitive when ζ ∼ ζc , when the final state is prominently
different from a Bernoulli.

Problem 5 Establish the rate of fixation, i.e., the asymptotic behavior of the probability that
there is an active particle at the origin after time t , for t large enough. We believe that if
ζ is small enough, the decay should be exponential. However when ζ approaches ζc we do
not exclude the possibility that decay may become slower (stretched exponential, or even
algebraic).

The following problems constitute possible intermediate steps to understand the behavior
of the system in the subcritical regime.

Problem 6 Consider an infinite volume system with only k < +∞ particles, which are all
initially located at the origin and in state A. Let τ̂k denote the (a.s. finite) time when the
system fixates, i.e., when all particles become inactive. For any k > 0 find an asymptotic
bound for P (̂τk > n) as n → +∞. Prove the Large Deviation Principle for τ̂k .

Problem 7 As before, consider a finite system of k particles and denote by Lk(s) and Rk(s)

positions of the leftmost and rightmost particles in the system, and by LA
k (s) and RA

k (s)

position of the leftmost and rightmost A-particles in the system—which do not necessarily
coincide with Lk(s) and Rk(s), but for all times satisfy inequalities LA

k (s) ≥ Lk(s) and
RA

k (s) ≤ Rk(s).
How does RA

k (s) − LA
k (s) behave during the time interval [0, τ̂k]?

What can we say about the distribution of Rk(̂τk) − Lk(̂τk), the diameter of the configu-
ration in the final state, and about its displacement with respect to the origin |0 − Lk(̂τk)|?
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4.1.3 At Criticality

We have good reason to believe that at the critical density the system does not fixate in any
dimension (see comments in the next subsection). However time intervals between succes-
sive visits of active particles to the origin will diverge to infinity. It is not clear that here we
are observing an aging phenomenon in one of accepted senses.

4.2 Totally Asymmetric Dynamics in One Dimension

The description of the totally asymmetric walk in one dimension is relatively well under-
stood. Let x0(t) denote the position of a tagged particle starting at the origin.

Theorem 6 ([24]) For d = 1, and the totally asymmetric walk,

ζc = λ

1 + λ
.

If ζ < ζc , then

P [ηA
s (0) > 0 for some s ≥ t] � c1e

−c2t .

If ζ > ζc , then

lim
t→∞

x0(t)

t
= vd > 0. (6)

If ζ = ζc , and initially all particles in the system are A-particles, then the system does
not fixate (!). However,

lim
t→∞

x0(t)

t
= 0. (7)

The limit (6) implies that there is a current and that the tagged particle has an asymp-
totic velocity. This is related to Problem 2, as the limiting speed should be the density of
active particles in the (unique) non-trivial ergodic invariant distribution with total density of
particles ζ .

The limit (7) tells us that there is no current in the system. This should be related to the
absence of a non-trivial ergodic invariant distribution with total density ζc , i.e., the phase
transition is not of first order.

Moreover, it motivates the following problem. Consider a system with critical density,
and denote by τ̃i (0) the time spent between arrivals of the (i − 1)-th and i-th A-particle at
the origin.

Problem 8 Characterize the behavior of τ̃i (0) when i → +∞.

We believe that the system exhibits behavior reminiscent of so-called aging for disordered
systems.

Problem 9 Explain the origin of the ‘spikes’ in the time-dependent density of active parti-
cles in Fig. 4.
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