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Hard rigid rods on a Bethe-like lattice
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We study a system of long rigid rods of fixed length k with only excluded volume interaction. We show
that, contrary to the general expectation, the self-consistent field equations of the Bethe approximation do not
give the exact solution of the problem on the Bethe lattice in this case. We construct a new lattice, called the
random locally treelike layered lattice, which allows a dense packing of rods, and we show that the Bethe
self-consistent equations are exact for this lattice. For a four-coordinated lattice, k-mers with k � 4 undergo a
continuous isotropic-nematic phase transition. For even coordination number q � 6, the transition exists only for
k � kmin(q), and is discontinuous.
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I. INTRODUCTION

The study of the ordering transition in systems with only
excluded volume interactions has a long history. Depending on
the shape of the molecules involved, these systems can exhibit
different ordered states and undergo transitions between them.
Many different shapes have been studied in literature: hard
spheres [1], hard squares, hexagons, triangles, tetrominoes,
banana-shaped molecules [2–7], etc. In this paper, we study
phase transitions in a system of hard rigid rods [8].

The hard rigid rods problem has a long history, starting
with the seminal work of Onsager [9]. Onsager argued that
this system would show a first-order phase transition from an
isotropic to a nematic phase at sufficiently high densities, in
the limit of large aspect ratio. Flory studied the hard-rods
problem on a lattice [10], still allowing the rods to have
continuous orientations, and using a mean-field approximation
again found an isotropic-nematic transition. Zwanzig studied
a system of hard rods in the continuum, but restricting rod
orientations to a discrete set [11], also finding a transition
to a nematic phase as the density of rods is increased with
a jump in the order parameter at the transition point. The
relation between continuous and discrete models is discussed
in Ref. [12].

For models in continuous space of dimensions d � 3, if
the aspect ratio of the rods is high enough, the existence
of an isotropic-nematic transition is well accepted [8]. Our
interest is in lattice models. Rods occupying k consecutive
sites along any one lattice direction will be called k-mers. For
dimers (k = 2), it can be shown rigorously that orientational
correlations decay exponentially, except in the limit when all
sites are occupied by rods. The exact entropy per site at full
coverage can be determined for a class of periodic lattices in all
dimensions [13]. In the case of full coverage, the orientational
correlations have a power law tail in all dimensions d � 2
[14,15].

The question whether the lattice model of rigid rods with
k � 2 undergoes a phase transition remained unsettled for
a long time [16]. Recently, Ghosh and Dhar argued that
k-mers on a square lattice, for k � 7, would undergo two
phase transitions, and the nematic phase would exist for
only an intermediate range of densities ρ∗

1 < ρ < ρ∗
2 [17].

The first transition, from the low-density isotropic to an
intermediate-density nematic phase has been studied in several
recent Monte Carlo studies [18–21]. On the square lattice, the
transition is found to be in the Ising [18] or equivalently in
the liquid-gas universality class [22], and on the triangular and
hexagonal lattices, it is in the q = 3 Potts model universality
class [18,19]. The existence of a transition to a state with an
orientational order was shown rigorously for a specific model
of polydispersed hard-rod system on a two-dimensional square
lattice [23]. The second transition from nematic to unordered
state at ρ∗

2 is much less understood. In Ref. [17], a variational
estimate of the entropy of the nematic and ordered states
suggests that 1 − ρ∗

2 should vary as 1/k2 for large k, but not
much is known about the nature of transition. Linares et al.
estimated that 0.87 � ρ∗

2 � 0.93 for k = 7, and proposed an
approximate functional form for the entropy as a function of
the density [21].

In spite of many studies, for k � 3, there are no exact
solutions known so far, except for the trivial case of one
dimension. The only possible candidate solution is the case
of k-mers on the Bethe lattice. We want to distinguish
between the Bethe approximation (BA), considered as an ad
hoc closure approximation scheme (the pair approximation)
for the Bogoluibov-Born-Green-Kirkwood-Yvon hierarchy of
coupled equations [24,25], and the exact solution of a statistical
mechanical model on the Bethe lattice. The BA for the problem
of hard rods has already been presented in the literature
[19,26]. The important difference is that an exact solution,
even on a contrived lattice, ensures well-behavior conditions
like the convexity of free energy. It is well known that the
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BA for simple spin models, like the Ising model, becomes
exact on the Bethe lattice. However, we show that the existing
treatments of k-mers on the Bethe lattice are unsatisfactory.
In fact, on the Bethe lattice, if the surface effects are ignored,
a uniform nematic order is not possible if the coordination
number is greater than four. This has led us to introduce a
new lattice, to be called the random locally treelike layered
(RLTL) lattice). We show that there is no difficulty in defining
the high-density phase for the k-mers on the RLTL lattice, and
that the Bethe’s self-consistent field equations are exact on
this lattice. Thus k-mers on the on the RLTL lattice is the only
nontrivial case where the hard-rods problem for k � 3 can be
solved exactly so far.

The Bethe lattice is defined as the part of a uniformly
branching tree graph far away from the surface [27,28]. Given
that in a uniformly branching tree, most of the sites are a
finite distance from the surface, disentangling the surface
contribution from that of sites deep inside requires some
care [29–31]. There are some prescriptions for separating
the surface contribution from bulk given in literature [32]. A
rather careful and detailed discussion for the case of the Ising
model on the Bethe lattice is given in Ref. [33]. One considers
correlation functions deep inside a Cayley tree, whose values
are independent of the boundary conditions on the surface of
the tree. This can be realized for all nonzero external magnetic
fields. Then thermodynamic quantities like the free energy are
obtained by integrating these correlation functions with respect
to the appropriate conjugate field.

Another way to realize a lattice for which the BA is exact
is to work with random graphs of fixed-coordination number.
One can show that in the limit when the number of sites N in the
graph tends to infinity, the length of the shortest loop through a
randomly picked site in the graph increases as ln N [34]. Then,
the graph looks like a loopless graph of uniform coordination
number, up to a distance of order ln N . In the limit of large N ,
it looks like a Bethe lattice, except that there is no surface. This
makes the study of the different models on the Bethe lattice
numerically feasible [35–38]. In this case, there is no surface,
but the introduction of randomness introduces frustration, and
one does not get full coverage in the limit when the activity
of k-mers tends to infinity. These difficulties are avoided on
the RLTL lattice: the high-density phase for the k-mers is well
defined and we will show that the Bethe’s self-consistent field
equations give the exact solution.

The rest of the paper is organized as follows. We begin
with a recapitulation of the conventional treatment of the self-
consistent equations for the hard-rods system on the Bethe
lattice in Sec. II, and then point out the problems with this
derivation. In Sec. III, we describe the RLTL lattice where
every site in the lattice has the same even coordination number
q. In Sec. IV, we derive the exact annealed partition function
of the problem on this lattice, and show that the resulting
self-consistent equations are the same as obtained earlier for
the Bethe lattice. In Sec. V, we analyze the behavior of these
equations for the RLTL with coordination number four, and
show that it undergoes a continuous transition for k � 4. In
Sec. VI, we discuss the case q � 6. We find that in this case,
the system undergoes a first-order transition for k � kmin(q).
Section VII contains some concluding remarks.

Y

X

FIG. 1. A four-coordinated Cayley tree with four generations is
shown. Two X-mers (horizontal thick solid lines) and one Y-mer
(vertical thick solid line) with k = 4 are placed on the tree. The
weight of the configuration is z2

1z2.

II. k-MERS ON A four-COORDINATED BETHE LATTICE

We start with a recap of the derivation of the self-consistent
equations satisfied by densities for a system of k-mers on
a Bethe lattice of coordination number four. Generalization
to higher even coordination numbers is straightforward. The
Bethe lattice corresponds to the core of the Cayley tree with
the same coordination number. The sites of the Cayley tree
may be ordered by their generation, starting with m = 0 for
the sites on the surface and ending at m = M for the central
site of a tree with M generations. Each site of the Cayley tree,
other than those on the surface, has four bonds attached to it.
Two of them will be said to be of type X and the remaining
two to be of type Y. A k-mer occupies k − 1 consecutive bonds
(and k sites) of the same type. We associate an activity z1 with
an X-type k-mer (referred to as X-mer in the following) and an
activity z2 with a Y-type k-mer (Y-mer). No two k-mers may
overlap, so that each site of the lattice has at most one k-mer
passing through it. Figure 1 shows a four-coordinated Cayley
tree occupied by three 4-mers.

The Cayley tree is composed of four rooted subtrees that
are connected to the central site. We define partial partition
functions for these rooted subtrees with fixed configuration of
the root bond. We specify the type and the configuration of the
root bond. The root bond may be empty, or if it is occupied
by a k-mer, then we specify the number of sites in earlier
generations already occupied by this k-mer. There are 2k such
partial partition functions, which we denote by gx,j and gy,j ,
where the first subscript denotes the type of the root bond and
j = 1, . . . ,k − 1 is the number of sites that are currently part
of the k-mer. j = 0 corresponds to the case when the root bond
is empty.

The recursion relations obeyed by the partial partition func-
tions are obtained by building a subtree with one additional
generation by connecting three subtrees to a new root bond and
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FIG. 2. Building a subtree with M + 1 = 4 generations of sites
by connecting q − 1 = 3 subtrees with M = 3 generations of sites to
a new root site and bond (denoted by dashed lines). If the root bond of
the new subtree is in the Y direction, then two of the existing subtrees
will have their root bond in the X direction.

new root site. This process is illustrated in Fig. 2. We attach a
weight z1/k

1 and z
1/k

2 to each occupied site of X-mer and Y-mer,
respectively. The recursion relations are (see Fig. 3)

g′
x,0 = (

gx,0 + z
1/k

1 gx,k−1
)
g2

y,0 + z
1/k

2 gx,0

k−1∑
j=0

gy,j gy,k−1−j ,

(1a)

g′
y,0 = (

gy,0 + z
1/k

2 gy,k−1
)
g2

x,0 + z
1/k

1 gy,0

k−1∑
j=0

gx,j gx,k−1−j ,

(1b)
g′

x,j = z
1/k

1 gx,j−1g
2
y,0, j = 1, . . . ,k − 1, (1c)

g′
y,j = z

1/k

2 gy,j−1g
2
x,0, j = 1, . . . ,k − 1, (1d)

where the prime denotes partial partition functions of subtrees
with one additional generation of sites.

The partial partition functions are multiplied by the appro-
priate activity each time a k-mer grows such that the weight of

y,j−1g

x,0gx,0g

y,0g

x,0g x,0g x,0gx,0g

y,k−1g y,0g

x,mg x,k−1−mg

=(b)

= + + Σ
m=0

k−1
(a)

y,0
´

y,jg´

g

FIG. 3. Diagrammatic representation of Eq. (1) for g′
y,j , j =

0, . . . ,k − 1.

a k-mer is z1 or z2 depending on its type. The partial partition
functions grow exponentially with the number of iterations. To
calculate the densities in the core of the tree (Bethe lattice), it
is useful to define ratios of partial partition functions

Ri,j = gi,j

gi,0
, i = x,y and j = 0, . . . ,k − 1, (2)

such that Rx,0 = Ry,0 = 1. The recursion relations obeyed by
the ratios are easily derived from Eq. (1):

R′
x,j = z

1/k

1 Rx,j−1

Dx

, j = 1, . . . ,k − 1, (3a)

R′
y,j = z

1/k

2 Ry,j−1

Dy

, j = 1, . . . ,k − 1, (3b)

where

Dx = 1 + z
1/k

1 Rx,k−1 + z
1/k

2

k−1∑
j=0

Ry,jRy,k−1−j , (4a)

Dy = 1 + z
1/k

2 Ry,k−1 + z
1/k

1

k−1∑
j=0

Rx,jRx,k−1−j . (4b)

We study the fixed points of these recursion relations. The
fixed point corresponds to sites deep inside the Cayley tree,
very far very far from the surface. Also, if only one single
stable fixed point exists, the boundary conditions at surface
sites (which determine the initial values of the recursions)
have no effect on the behavior at points deep inside [30,31].

A natural choice of the starting weights for the recursion
equations are such that all k-mers are completely contained
within the Cayley tree. This corresponds to gx,0 = gy,0 = 1,
gx,1 = z

1/k

1 , and gy,1 = z
1/k

2 , with gx,j = gy,j = 0 for all
j > 1. However, for these choices of initial conditions the
recursion relations under iteration converge to a fixed point
that corresponds to the isotropic system because the initial
conditions themselves are symmetric. The isotropic fixed point
is stable with respect to perturbations where the initial condi-
tions are still symmetric with respect to the two directions.
However, it is unstable to asymmetric perturbations.

For surface terms that break the x–y symmetry, we find
that on repeatedly iterating the recursion relations, the R’s
converge to a stable fixed point R∗, which may be determined
by iterating Eq. (3). Then,

R∗
x,j =

(
z

1/k

1

Dx

)j

≡ αj
x , j = 0, . . . ,k − 1, (5a)

R∗
y,j =

(
z

1/k

2

Dy

)j

≡ αj
y , j = 0, . . . ,k − 1, (5b)

where the variables αx , αy satisfy the equations

αx

(
1 + z

1/k

1 αk−1
x + kz

1/k

2 αk−1
y

) = z
1/k

1 , (6a)

αy

(
1 + z

1/k

2 αk−1
y + kz

1/k

1 αk−1
x

) = z
1/k

2 . (6b)
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Knowing the fixed point solution, the density at the central
site may be calculated. The grand canonical partition function
of the system on the Cayley tree is given by

� = g2
x,0g

2
y,0 + z

1/k

1 g2
y,0

k−1∑
j=0

gx,j gx,k−1−j

+ z
1/k

2 g2
x,0

k−1∑
j=0

gy,j gy,k−1−j . (7)

Then, the densities ρx (ρy) of sites that are part of X-mers
(Y-mers) are given by

ρx = z
1/k

1 g2
y,0

∑k−1
j=0 gx,j gx,k−1−j

�
, (8a)

ρy = z
1/k

2 g2
x,0

∑k−1
j=0 gy,j gy,k−1−j

�
. (8b)

At the fixed points, the densities simplify to

ρx = kz
1/k

1 αk−1
x

1 + kz
1/k

1 αk−1
x + kz

1/k

2 αk−1
y

, (9a)

ρy = kz
1/k

2 αk−1
y

1 + kz
1/k

1 αk−1
x + kz

1/k

2 αk−1
y

. (9b)

Eliminating αx and αy from Eqs. (9) and (6), we obtain

z1(1 − ρx − ρy)k = ρx

k

(
1 − k − 1

k
ρx

)k−1

, (10a)

z2(1 − ρx − ρy)k = ρy

k

(
1 − k − 1

k
ρy

)k−1

. (10b)

The Bethe lattice solution described above is not very
satisfactory. In particular, in the limit of large z1 and z2, one
gets the fraction of sites occupied by k-mers tending to one.
However, it is easy to see that this can only be achieved with
a very special choice of boundary conditions at the surface of
the tree.

Also, if we consider a tree with coordination number q � 6,
then at any root vertex of a subtree, the process of exchanging
the labels of different branches is clearly a symmetry operation
on the lattice. The presence of this local symmetry implies that
there can be no nematic order in the deep inside region, with
one type of bonds preferentially occupied. Consider the case
q = 6. Generalization to higher q is straightforward. Let the
three directions be denoted as x, y, and z. We assume that the
system has uniform nematic order. Then consider a site O deep
inside the lattice. Let the probabilities that this is occupied by
a k-mer of type x, y, or z be ρx,ρy , and ρz, respectively. We
assume that ρz > ρx = ρy . Now consider a site O ′, which is a
neighbor of O in the x direction. In the subtree away from O

rooted at O ′, we can interchange the labels of the y and z bonds
without affecting the configuration in the rest of the Bethe
lattice. Therefore, at this site ρz = ρy . But this contradicts our
assumption of uniform nematic order, and hence there can be
no uniform nematic order on a Bethe lattice of coordination
number �6. This makes the Bethe lattice unsuitable for the
study of isotropic-nematic transition in the hard-rod problem.

mm−1

FIG. 4. Schematic diagram of the random lattice with N = 6 sites
per layer and coordination number q = 4. A possible configuration
of bonds between layers m − 1 and m is shown, with the solid and
dotted lines being bonds of two different types.

III. THE RLTL LATTICE CONSTRUCTION

For simplicity, we discuss the random lattice with coor-
dination number q = 4. Generalization to other coordination
numbers is straightforward. We consider a set of M layers,
numbered from 1 to M , with N sites in each layer. A layer
m is connected to the adjacent layer m − 1 by N bonds of
type X and N bonds of type Y. The connections are made by
randomly pairing each site of the mth layers with exactly one
site in the (m − 1)th layer with an X bond, similarly randomly
pairing each site with a site in the neighboring layer using Y
bonds. The total number of such possible pairings is (N !)2.
This is illustrated in Fig. 4.

We can impose open or periodic boundary conditions. For
a 2q coordinated lattice, there are (N !)qM different possible
graphs, in the case of periodic boundary conditions (layer M

is connected to layer 1), and (N !)q(M−1) different possible
graphs for the case of open boundary conditions. We consider
annealed models on this lattice, thus we average the partition
function over all possible configurations of the bonds.

We can associate different degrees of freedom with the
vertices, and consider statistical mechanical models on these
lattices. For example, we can attach an Ising spin Sj to each
vertex j of the lattice, and define the Hamiltonian to be
H = −J

∑
nn SiSj , where the sum is over all nearest-neighbor

pairs. For a particular realization R of bonds, let the partition
function be ZR(M,N ). We average the partition function
over all possible configurations of bonds. We are averaging
the partition function, and not the logarithm of the partition
function, this is similar to the annealed average over different
bond configurations. Thus

Zav(M,N ) = 1

NR

∑
R

ZR(M,N ), (11)

where NR is the number of different bond configurations on
the lattice.

To take the thermodynamic limit, we let M and N tend to
infinity. The mean free energy per site f is defined as the limit

f = −kT lim
M,N→∞

1

MN
lnZav(M,N ). (12)
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We note that each site, say in layer m, has exactly one X
and one Y bonds connecting it to sites in the layer m + 1. It
can happen that these bonds fall on the same site. However,
the fractional number of such cases is only 1/N , and thus the
expected number of loops of size two on this lattice is M. For
even M , the graph is bipartite, and there are no loops of odd
perimeter. It is easy to verify that the expected number of loops
of perimeter four on this lattice is 5M . In general, the number
of loops of perimeter � per site of the lattice varies as λ�/N ,
for � � 1, where λ is the self-avoiding walk growth constant
on this lattice [34].

We thus see that for large N , there are very few short loops
in the lattice. For a randomly picked site, the size of the shortest
loop going through that site is of order ln N , and this goes to
infinity, as N goes to infinity. Since there are very few short
loops, the structure of the lattice locally is that of a regular
branching tree, and it locally looks like the Bethe lattice.

The correlation functions can be defined as usual. Consider
the example of the Ising model defined above. We consider two
sites i and j , and consider the two-point correlation function
〈SiSj 〉. Since this correlation function has to be averaged over
all assignments of bonds, it can depend only on the difference
in layer numbers of the sites. In particular, it has the same
value for all sites i and j in the same layer. Thus the expected
factorization property of the correlation functions, which is the
essence of the Bethe approximation, is built into the definition
of the lattice.

IV. k-MERS ON THE RLTL LATTICE WITH q = 4

We consider a k-mer model on the RLTL lattice. A k-mer
occupies (k − 1) consecutive bonds of the same type. As
earlier, we associate an activity z1 with an X-mer and an
activity z2 with a Y-mer.

Let xm be the number of X-mers with topmost (1st) site in
the mth layer, and ym is the number of Y-mers with topmost
site in the mth layer. We will denote by Xm and Ym, the number
of sites in the mth layer occupied by X type and Y type bonds,
respectively, but where the site is not the topmost site of the
k-mer. Clearly, we have

Xm =
k−1∑
j=1

xm−j , Ym =
k−1∑
j=1

ym−j . (13)

We can adopt the convention that xm = ym = 0, for m � 0.
Then the above equation holds for all m,1 � m � M . Note that
if we want the k-mers to be fully contained in the lattice (with
open boundary conditions), we must also have xm = ym = 0,
for m � M − k + 2.

To calculate the partition function, consider the operation
of adding an additional layer. We thus specify the full set of
2M values {xm,ym} for all m. The total statistical weight of
configurations that contribute to a particular set {xm,ym} will
be denoted by C({xm,ym}).

We calculate C({xm,ym}) recursively. Let us imagine that
we have constructed the configuration of the lattice to layer
m − 1, and now we add the layer m. We sum over the
configurations of bonds, and that of X-mers and Y-mers on
these bonds at the same time.

(i) We note that in the (m − 1)th layer, there are Xm sites
that are occupied by X-mers, which protrude to layer m. The
first of these sites is connected to a randomly picked site in
the lower layer in N ways using an X bond. Then this site
in the lower layer is occupied by the extension of that X-mer.
The next can be connected to one of the unoccupied sites in
the lower layers in only (N − 1) ways. Similarly the third, and
so on. The number of ways to do this is

N !

(N − Xm)!
.

(ii) Now we take the Ym Y-mers in the (m − 1)th layer that
are extending down to the lower layer. The number of ways
of extending these to the (N − Xm) unoccupied sites below is
clearly

(N − Xm)!

(N − Xm − Ym)!
.

(iii) Connect the remaining (N − Xm) X bonds between layers
m − 1 and m to sites in layer m not yet connected by X bonds.
The number of ways to do this is

(N − Xm)!.

(iv) Repeat the last procedure with the N − Ym remaining Y
bonds between the layers m and m + 1. The number of ways
to do this is

(N − Ym)!.

(v) Finally, the (N − Xm − Ym) sites in layer m, which are
unoccupied so far, are divided into three groups: xm topmost
sites of new X-mers, ym topmost sites of new Y-mers, and the
unoccupied sites. Clearly the number of ways to do this is

(N − Xm − Ym)!

xm!ym!(N − Xm − Ym − xm − ym)!
.

The product of these factors gives the total number of ways of
adding the mth layer as

N !(N − Xm)!(N − Ym)!

xm!ym!(N − Xm − Ym − xm − ym)!
. (14)

Finally, multiplying these factors for different m, we find
the total number of configurations C({xm,ym}), with specified
{xm,ym}, is given by

C({xm,ym}) =
M∏

m=1

N !(N − Xm)!(N − Ym)!

xm!ym!(N −Xm −Ym − xm − ym)!
. (15)

Putting in the corresponding activity factors, the grand parti-
tion function for the whole lattice with M layers is

Zav = 1

(N !)2M−2

∑
{xm,ym}

C({xm,ym})z
∑

xm

1 z
∑

ym

2 , (16)

where the sum is over all possible values of {xm,ym}, and
we have divided the multiplicity factor by the number of
configurations of the random lattice (N !)2M−2 to get the
average partition function. Note that Zav = 1 for z1 = z2 = 0,
as expected.

The summation over {xm,ym} yields at most a factor of
order N2M . Since the summand is of order exp(NM), for large
N , we can ignore the summation over {xm,ym}, and replace
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the summation with the largest term with negligible error. For
the summand to be maximum with respect to xj , we set

C({xm + δm,j ,ym})z1

C({xm,ym}) ≈ 1. (17)

This gives

z1

k−1∏
s=0

(N − Xj+s − xj+s − Yj+s − yj+s)

(N − Xj+s)
= xj + 1

(N − Xj )
,

(18)

and similarly

z2

k−1∏
s=0

(N − Xj+s − xj+s − Yj+s − yj+s)

(N − Yj+s)
= (yj + 1)

(N − Yj )
.

(19)

Writing the maximizing values as f ∗
j = xj/N and g∗

j =
yj/N , the equations satisfied by f ∗

j and g∗
j in the limit N

tends to infinity are

z1

k−1∏
s=0

1 − ρx(j + s) − ρy(j + s)

1 − ρx(j + s) + f ∗
j+s

= f ∗
j

1 − ρx(j ) + f ∗
j

,

(20)

z2

k−1∏
s=0

1 − ρx(j + s) − ρy(j + s)

1 − ρy(j + s) + g∗
j+s

= g∗
j

1 − ρy(j ) + g∗
j

,

(21)

where ρx(m) and ρy(m) are the fractions of sites in layer m

covered by X-mers and Y-mers, respectively. Clearly,

ρx(j ) =
k−1∑
s=0

f ∗
j−s , ρy(j ) =

k−1∑
s=0

g∗
j−s . (22)

These equations connect f ∗
j and g∗

j to their value of f ∗
j+s

and g∗
j+s , with s = 1 to k − 1. These may be considered as

recursion equations for f ∗
j ,g∗

j . These recursions work in the
direction of decreasing j .

These equations have a simple interpretation. In the
equilibrium state, z1 is the ratio of the probability that a
randomly chosen site will be the head of a X-mer to the
probability that an X-mer can be placed with this site as
the head. The probability that the chosen site is empty is
[1 − ρx(j ) − ρy(j )]. Given that a given site is empty in layer
(j ′ − 1), the conditional probability that the site connected to
it in the layer j ′ by an X bond is also empty is 1−ρx (j ′)−ρy (j ′)

1−ρx (j ′)+f ∗
j ′

.

Multiplying these probabilities for (k − 1) consecutive layers,
we get the probability that a given site in layer j can be the
head of an X-mer to be∏k−1

s=0[1 − ρx(j + s) − ρy(j + s)]∏k−1
s=1[1 − ρx(j + s) + f ∗

j+s)]
.

The probability that the chosen site in the j th layer is the head
of an X-mer is f ∗

j . The ratio of these is 1/z1, which gives
Eq. (18).

The simplest solution of this is a fixed point solution
with f ∗

j = f ∗ and g∗
j = g∗, independent of j (away from the

boundaries). Then f ∗ and g∗ satisfy the equations

z1(1 − kf ∗ − kg∗)k = f ∗[1 − (k − 1)f ∗]k−1, (23a)

z2(1 − kf ∗ − kg∗)k = g∗[1 − (k − 1)g∗]k−1. (23b)

These equations are the same as Eq. (10), obtained by
assuming the existence of an attractive fixed point of the
recursion Eqs. (3). This is not so obvious, specially in the
limit z → ∞. However, for the RLTL lattice, the limit of fully
packed lattice is well defined, and causes no difficulties.

From Eq. (15), the entropy per site (divided by kB) is easily
seen to be

s(ρx,ρy) =
(

1 − k − 1

k
ρx

)
ln

(
1 − k − 1

k
ρx

)

+
(

1 − k − 1

k
ρy

)
ln

(
1 − k − 1

k
ρy

)

− (1−ρ) ln(1−ρ) − ρx

k
ln

ρx

k
− ρy

k
ln

ρy

k
, (24)

where ρ = ρx + ρy is the total density. The same expression
for entropy was obtained by DiMarzio [19,26] who used an
approximate counting technique for counting configurations
on cubic lattices in any dimension. Also, Eq. (24) coincides
with the expression for entropy that one obtains by using
Gujrati’s prescription for calculating free energies on the Bethe
lattice [32].

It is easy to see that this expression for the entropy is not
everywhere convex. When the value of s(ρx,ρy), calculated
as above, turns out to be in the nonconvex region, it is easily
seen that a much larger contribution to the partition function
comes from {xm,ym} that are not nearly uniform, and in a
canonical ensemble at fixed ρx and ρy , the lattice will show
phase separation, with one region having higher density than
the other. The net effect of this is to replace nonconvex parts of
the entropy function by a convex envelope construction. Thus
we write the true entropy s̃(ρx,ρy) as

s̃(ρx,ρy) = CE[s(ρx,ρy)], (25)

where CE denotes convex envelope.

V. ISOTROPIC-NEMATIC TRANSITION

In this section, we analyze the isotropic-nematic transition
when the coordination number is four. From Eq. (24), the
expression for entropy, it is straightforward to determine the
ordering that has maximum entropy.

Consider the system at a fixed density ρ = ρx + ρy . We
define the order parameter ψ by

ψ = ρx − ρy

ρ
. (26)

Then, it is easy to study the variation of s(ρx,ρy) as a function
of ψ , for fixed ρ. We find that for small ρ, the entropy has
a single maximum at ψ = 0, but for large enough ρ > ρc, it
develops two symmetrically placed maxima (see Fig. 5). For
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FIG. 5. Entropy as a function of the order parameter ψ for
different densities. The data are for q = 4 and k = 4 when the
transition is continuous. Entropy has one peak for small densities
and two symmetric peaks for large densities. The dotted lines denote
the convex envelope.

small ψ , we can expand the entropy in a power series around
ψ = 0 as in the standard Landau treatment

s(ρx,ρy) = A(ρ) − ψ2B(ρ) − ψ4C(ρ) + . . . , (27)

where the coefficient C(ρ) > 0.
The coefficient of the quadratic term B(ρ) changes sign at

ρ = ρc, and is negative for larger ρ. Thus for ρ > ρc, we have
a nematic phase with nonzero value of ψ . The critical exponent
for β for the order parameter takes the classical Landau theory
value 1/2.

The value of ρc can be determined easily from Eq. (23). For
z1 = z2 = z, we note that both f ∗ and g∗ are solutions to an
equation of the form

x

(
1 − k − 1

k
x

)k−1

= constant. (28)

The left-hand side of the equation is a function of x that starts at
zero for x = 0, increases to a maximum value, then decreases
monotonically, and reaches a positive finite value (1/k)k−1, for
x = 1. When the right-hand constant is small enough, there is
only one real-valued solution of this equation, and f ∗ = g∗.
For a range of values of the constant, there are exactly two
distinct solutions. At the critical point, the two solutions are
degenerate. This occurs where the function is maximum, i.e.,
at

x∗ = 1

k − 1
. (29)

Then at this point f ∗ = g∗ = x∗/k and ρx = ρy = 1/(k − 1).
Correspondingly, we have ρc = 2/(k − 1). The corresponding
value of critical activity, from Eq. (23), is

zc = (k − 1)2k−2

[k(k − 3)]k
, q = 4. (30)

We note that the value of zc is finite only for k � 4. In Fig. 6,
we show the variation of the modulus of the order parameter
|ψ | with density ρ for different rod lengths k. The parameter
|ψ | is nonzero for densities larger than the critical density.

 0
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 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

| ψ
 |

ρ

k=6 k=5 k=4

FIG. 6. The modulus of nematic order parameter ψ as a function
of the density ρ for different rod lengths k. The data are for q = 4.

VI. LATTICES WITH COORDINATION NUMBER q � 6

The analysis of q � 6 is very similar. It is easy to check
that for general even q, the fixed point solution, which is
independent of the layer index j , satisfies the self-consistent
equations

kz(1 − ρ)k = ρi

[
1 − k − 1

k
ρi

]k−1

, i = 1, . . . ,
q

2
, (31)

where i labels the q/2 different bond types and ρ = ∑
i ρi is

the total density of sites that are part of k-mers. The entropy
per site generalizes to

s =
q/2∑
i=1

(
1 − k − 1

k
ρi

)
ln

(
1 − k − 1

k
ρi

)

− (1 − ρ) ln(1 − ρ) −
q/2∑
i=1

ρi

k
ln

ρi

k
. (32)

The low density phase is isotropic, with ρi same for different
i. We define the order parameter to be ψ = (ρ1 − ρ2)/ρ,
with ρ2 = · · · = ρq/2. But now the entropy function has no
symmetry under ψ → −ψ . Then, the expansion of s(ρi) in
powers of ψ contains cubic terms. Figure 7 shows the behavior
of entropy as a function of ψ for different densities ρ when
q = 6. For small ρ, there is a single maximum at ψ equal to
zero. For larger ρ, a second local maximum at a nonzero ψ

appears, and at some value of ρ, this becomes of equal height.
Then the order parameter jumps discontinuously, as the density
is increased.

In Fig. 8, we show the variation of the order parameter ψ

with density ρ for q = 6 and different values of k, and for
k = 5 and different values of q. The first-order transition is
clearly seen, with the critical activity increasing with q and
decreasing with k.

For coordination number greater than four, it is not possible
to determine the critical density analytically. The critical
densities obtained by numerically comparing the entropy of
the isotropic and nematic phases are summarized in Fig. 9. For
a fixed value of q, ρc ∼ ln(q)/k for large k.
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FIG. 7. Entropy as a function of the order parameter ψ for
different densities. The data are for q = 6 and k = 8, when the
isotropic-nematic transition is first order. The different curves corre-
spond to (a) ρ = 0.3890, (b) ρ = 0.3910 ≈ ρc, and (c) ρ = 0.3930.
The dotted line shows the convex envelope.

As expected in discontinuous transitions, in a range of
values for the densities around the critical density ρc, entropy
has a local maximum for both the isotropic (ψ = 0) and
nematic phases. In Fig. 10, the values of densities at which
these local maxima appear and disappear, along with the
critical density, are shown for k = 5 and k = 8 for different
values of q. Only for q = 4, where the transitions are
continuous, all the densities coincide.

It is possible to determine the spinodal density ρs , the
density at which the entropy s(ψ) no longer has a maximum
at ψ = 0. As in the analysis of q = 4, the spinodal is still
given by the condition x∗ = 1/(k − 1). But now that there
are q/2 distinct directions, the density at the spinodal point
is q/[2(k − 1)]. If q < 2(k − 1), the spinodal density is less
than one, and entropy will have a maximum at the nematic
fixed point. Thus there is always a phase transition for
q < 2(k − 1).
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FIG. 8. The order parameter as a function of density ρ for q = 6
and varying k. There is a first-order transition at a critical value ρc,
which decreases with k. Inset: the order parameter ψ as a function of
ρ for k = 5 and varying q. The value of ρc increases with q.
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FIG. 9. The critical density ρc of the isotropic-nematic phase
transition as a function of k for different values of the coordination
number q. For q = 4 the transition is continuous.

We now address the question of whether for coordination
number q, there is a minimum rod length kmin below which
the isotropic-nematic transition is absent. From the analysis of
the spinodal,

kmin � q + 4

2
. (33)

The precise value of kmin is computed numerically and the
results are shown in Table I. We find that kmin ∼ ln(q), for
q � 1.

The order parameter at full coverage ψmax is easy to
determine for k = 4, when

ψmax =

⎧⎪⎪⎨
⎪⎪⎩

5
√

3
9 ≈ 0.96225, k = 4,q = 4,

3(
√

6−4)
5 ≈ 0.93031, k = 4,q = 6,

13
15 ≈ 0.86667, k = 4,q = 8.

(34)
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FIG. 10. Coexistence and limits of stability values of density of
the isotropic and nematic phases as functions of q for two different
rod lengths. For given values of q and k, the lowest point is the density
at which s(ψ) develops a second local maximum, the intermediate
point is the critical density ρc, and the highest point is the density at
which s(ψ) is no longer a local maximum at ψ = 0. The lines are
guides to the eye.
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TABLE I. The minimum rod length kmin required for an isotropic-
nematic transition as a function of coordination number q.

q kmin q kmin

q ∈ [4,6] 4 q ∈ [656,1612] 10
q ∈ [8,18] 5 q ∈ [1614,3994] 11
q ∈ [20,44] 6 q ∈ [3996,9968] 12
q ∈ [46,110] 7 q ∈ [9970,25028] 13
q ∈ [112,266] 8 q ∈ [25030,63188] 14
q ∈ [268,654] 9

The value of ψmax grows monotonically with k, being equal to
1 in the limit k → ∞. It is easy to see that it has the asymptotic
behavior

1 − ψmax ≈ q

2kk−1
, k → ∞. (35)

We can also look for a periodic solution of period k,
where xm+k = xm and ym+k = ym. In this case, the 2k inde-
pendent parameters f ∗

s and g∗
s , with s = 0 to k − 1, satisfy the

equations

f ∗
j (1 − ρ1 + f ∗

j ) = z1(1 − ρ1 − ρ2)k/A,
(36)

g∗
j (1 − ρ2 + g∗

j ) = z2(1 − ρ1 − ρ2)k/B,

where

ρ1 =
k−1∑
s=0

f ∗
s and ρ2 =

k−1∑
s=0

g∗
s , (37)

and

A =
k−1∏
s=0

[1 − ρ1 + f ∗
s ] and B =

k−1∏
s=0

[1 − ρy + g∗
s ].

(38)

In Eq. (37), the left-hand side is a function of the
form (x + cx2), with c positive, and the right-hand side is
independent of j . Hence, the only positive real solution of this
equation is of the form f ∗

j independent of j , and we do not
get a nontrivial periodic solution. Note that a periodic solution
would correspond to smectic-like layered ordering, and our
solution rules it out.

VII. DISCUSSION

In this paper, we studied the problem of long rods inter-
acting via excluded volume interaction on a Bethe-like lattice.
We showed that due to the presence of the local symmetry
of interchange of edge labels in a branch a uniform nematic
order is not possible on the Bethe lattice. This makes the
Bethe approximation not exact on this lattice. We, therefore,

constructed the random locally treelike layered lattice, and
showed that the Bethe’s self-consistency equations for the
correlation functions are exact on this lattice and used them to
determine the properties of the hard-rod system. It also turns
out that the self-consistent equations for the mean densities are
the same for both the RLTL and the Bethe lattice. However,
if one was to study correlation functions, then they would
differ on the RLTL and Bethe lattices. We also note that
the difficulty with the Bethe lattice arises only for problems
where the interaction is orientation dependent. For q = 4 we
find a continuous transition on the RLTL lattice, whereas for
larger values of q, one gets a first-order phase transition. This
is in qualitative agreement with simulation findings on the
two-dimensional square lattice (Ising universality class) and
two-dimensional triangular lattices (q = 3 Potts universality
class).

We are not able to address the nature of the second transition
in this study, as on the RLTL lattice, there is none. However, on
this lattice, the limit of fully packed lattice is quite interesting.
We find that in this limit, the system has long-range nematic
order, but the ordering is not complete, and there are small is-
lands of “wrongly” oriented k-mers in a sea of aligned k-mers.
The small concentration of these wrongly oriented rods is
entropically stabilized.

In recent years, there has been a lot of interest in the study
of statistical physics models on different types of random
graphs. The fact that one can write exact self-consistent
equations on the RLTL lattice, makes it interesting testing
ground for such studies. We can easily extend our treatment to
semiflexible rods, where all the rods are aligned in the direction
of increasing layer number, but a k-mer lying on an X bond
between layers j and (j + 1) can bend and lie on a Y bond
between layers (j + 1) and (j + 2) with some energy cost.
Earlier studies of flexible and semiflexible polymers on Bethe
and Husimi lattices can be found in Refs. [39,40].

There are other models, like the axial next-nearest-neighbor
Ising model (ANNNI model) [41], where exact solution
in dimensions greater than one is not possible, and the
equilibrium state shows spatial structure. These are usually
discussed in the spatially varying mean-field approximation.
The RLTL lattice may be useful in the study of such models
as it can take into account the short-range correlations in these
systems better.
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