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1. INTRODUCTION

Study of the generation of zonal flows by turbulence
is one of the main lines of research in the present-day
nonlinear theory of magnetized plasma, because zonal
flows can reduce turbulence-driven anomalous trans-
port [1]. In this context, it would be of interest to inves-
tigate the possibility of zonal flow generation by vari-
ous types of fundamental turbulent modes. The best
studied case is the generation of zonal flows by electro-
static electron drift modes [2] and some other electro-
static modes (see [1] and the literature cited therein, as
well as more recent papers [3, 4]).

According to [5], drift-Alfvén (DA) modes [6] are
among the fundamental modes in an inhomogeneous
magnetized plasma. They are described by the disper-
sion relation
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tion of the wave vector 

 

k

 

 onto the direction of the equi-
librium magnetic field pointing along the 

 

z

 

 axis of a
Cartesian coordinate system (

 

x

 

, 

 

y

 

, 

 

z

 

), where 

 

x

 

 is the

ω ω ω*i–( ) kz
2
v A

2
– 0.=

 

direction in which the plasma density varies (the radial
coordinate) and 

 

y

 

 is the ion diamagnetic drift direction
(the poloidal coordinate). In accordance with [5, 6],
perturbations described by dispersion relation (1.1) are
long-wavelength ones in the sense that 
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, where

 

k

 

⊥

 

 is the transverse wavenumber and 

 

ρ

 

i

 

 is the ion Lar-
mor radius.

Dispersion relation (1.1) does not take into account
radial dispersion effects. This is why the modes
described by this relation can be called pure or nondis-
persive DA modes. The question then naturally arises
of whether pure DA modes can generate zonal flows.
We investigate this question and show that, in the
steady-state approximation (see below for details), such
generation is impossible. Hence, in order to describe
the generation of zonal flows by DA modes, it is neces-
sary to account for the radial mode dispersion. From
[7], we can see that DA modes are subject to the so-
called curvature dispersion (see also [5]) caused by the
magnetic well/hill effects. According to [8, 9], magnetic
curvature effects can be described by a model gravity
force 

 

g

 

, with which dispersion relation (1.1) becomes
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—The generation of zonal flows by drift-Alfvén waves is studied with allowance for magnetic curva-
ture effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and per-
turbed plasma density are the vorticity equation, longitudinal Ohm’s law, and continuity equation. The basic
equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation
of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary
modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric
approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous
to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal com-
ponents of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be
generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities
of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are
analogous to two-stream instabilities.

PACS numbers: 52.35.Mw

 

DOI: 

 

10.1134/S1063780X07050066



 

408

 

PLASMA PHYSICS REPORTS

 

      

 

Vol. 33

 

      

 

No. 5

 

      

 

2007

 

MIKHAILOVSKII et

 

 

 

al.

 

where 

 

κ

 

n

 

 is the reciprocal of the plasma density scale
length (see below for details). Our main purpose here is
to study whether zonal flows can be generated by the
modes satisfying dispersion relation (1.2). We restrict
ourselves to considering the modes such that 
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where 
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 and 

 

k
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 are the 

 

x

 

 and 

 

y

 

 components of the wave
vector. This restriction is motivated by the fact that
these modes are the most dangerous in a plasma in a
sheared magnetic field [5, 7].

An important particular case of the modes described
by dispersion relation (1.2) is represented by the modes
with 

 

k

 

z

 

 = 0, i.e., those that obey the dispersion relation

 

(1.3)

 

For 

 

g

 

κ

 

n

 

 < 0 (the case of a magnetic hill) [7] and for
moderate ion drift frequencies 

 

ω∗

 

i

 

, these are the modes
of a flute (or in other words, interchange) instability
that is stabilized by finite ion Larmor radius effects,
which come into play as the frequency 

 

ω∗

 

i

 

 increases
[9]. The generation of zonal flows by such modes stabi-
lized by finite ion Larmor radius effects was studied in
[10–14].

In Section 2, we present the basic equations for our
problem. In this section, we use the nonlinear equations
of paper [5], devoted to electrostatic modes, and of
paper [15], devoted to DA vortices. We explain how the
basic equations have been derived, perform their pre-
liminary transformations, and introduce the perturbed
quantities characterizing the primary modes, secondary
small-scale modes (sidebands), and zonal flows. We
also formulate the basic equations for zonal flows con-
taining the amplitudes of the secondary modes and
derive the basic equations for these amplitudes. In Sec-
tion 3, we obtain expressions for the sideband ampli-
tudes and give their transformations. In Section 4, we
derive the dispersion relation for zonal flows, and, in
Section 5, we analyze it. Section 6 is a discussion of the
results of our work.

The approach of Sections 2–4 is often called para-
metric. It takes into account the methodological results
of paper [16], which is devoted to the generation of
zonal flows by the so-called small-scale DA waves
(whose transverse wavelength is less than the ion Lar-
mor radius, 
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), and of paper [17], which studies
the generation of zonal flows by kinetic Alfvén waves.
The parametric approach has its origin in the approach
used in the theory of the generation of convective cells
[18, 19] and deals with primary modes having an arbi-
trary spectrum rather than with a monochromatic
packet of primary modes. As a result, the dispersion
relation obtained here for zonal flows makes it possible
to investigate their generation by a continuous spec-
trum of primary modes—the main issue in the tradi-
tional theory of the generation of zonal flows, which is
based on the wave kinetic equation [20] and was sum-
marized in [1] (see also [10]).
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To avoid confusion, note that we are working here
under the assumption 
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 (see above), in contrast
to [16], where it was assumed that 
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. Waves with
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 have distinctly different proper-
ties. From the analysis to follow it will be clear that they
are described by essentially different nonlinear equa-
tions. Accordingly, the regular features of the genera-
tion of zonal flows in the limiting cases 
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 are radically different.
Since we are going to derive a dispersion relation for

zonal flows generated by primary modes having an
arbitrary spectrum, the question arises of whether or
not there is an additional restriction on this spectrum.
The question is reasonable in light of the results of [21],
where it was asserted that such a restriction does indeed
exist, and will be discussed in the Appendix.

2. BASIC PLASMADYNAMIC EQUATIONS 
AND THEIR PRELIMINARY 

TRANSFORMATIONS

 

2.1. Basic Plasmadynamic Equations

 

We represent the electric and magnetic fields of the
perturbations, E and B, in terms of the electrostatic
potential φ and the z component of the vector potential
A through the formulas

(2.1)

(2.2)

where ez is a unit vector along the equilibrium magnetic
field B0 and c is the speed of light. The relationship
between the functions A and φ follows from the perfect
longitudinal plasma conductivity condition

(2.3)

Substituting formulas (2.1) and (2.2) into this condition
yields the equation

(2.4)

which is the simplest nonlinear version of the so-called
longitudinal Ohm’s law or, in other terms, of the equa-
tion of longitudinal electron motion. More general ver-
sions of the longitudinal Ohm’s law can be found in
[16, 17].

We also introduce the perturbed electron density n
through the electron continuity equation

(2.5)

Here, the differential operators have the form

(2.6)
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c
B0
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(2.7)

VEx is the x component of the drift velocity in crossed
electric and magnetic fields, defined by the relationship

(2.8)

and e is the charge of an ion. In deriving Eq. (2.5), we
took into account the longitudinal Ampére’s law, which
in our terms reads

(2.9)

where jz is the longitudinal current density. Since we
ignore longitudinal ion motion, we can express the lon-
gitudinal electron velocity in the continuity equation
through jz, vze = –jz/(en0), just as was done in deriving
Eq. (2.5).

Since longitudinal ion motion is ignored, the ion
continuity equation has the form

(2.10)

where V⊥i is the transverse ion velocity. This velocity,
V⊥i, can be found from the equation of transverse ion
motion:

(2.11)

Here,  is the so-called magnetic (oblique) viscosity
tensor or equivalently the gyroviscosity tensor [5], the
total time derivative has the form

(2.12)

pi is the ion pressure, and Mi is the mass of an ion. Tak-
ing the vector product of formula (2.12) with B0, we
obtain

(2.13)

where ωBi = eB0/(Mic) is the ion cyclotron frequency.
Substituting relationship (2.13) into ion continuity
equation (2.10) yields

(2.14)
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z
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Subtracting Eq. (2.14) from Eq. (2.5), we arrive at
the vorticity equation (or the current closure equation)

(2.15)

where vA = B0/(4πMin0)1/2 is the Alfvén velocity. The
total time derivative of the velocity in Eq. (2.15) can be
calculated by using formula (2.12) under the assump-
tion that the velocity V⊥i in it is determined by the main
terms on right-hand side of relationship (2.13), V⊥i =

, i.e., by the terms that do not vanish in the limit
ωBi  ∞. In this case, the contribution of the terms on
the order of n/n0 is negligibly small, so we have

(2.16)

where VL is the so-called ion Larmor (diamagnetic)
drift velocity, defined by the relationship

(2.17)

According to [5], in the approximation in which the
transverse ion velocity is given by expression (2.16),
we have

(2.18)

Physically, this indicates that the Larmor transport
effect, (VL · ∇)V⊥i, is canceled by the magnetic
(oblique) viscosity effect. Inserting relationship (2.18)
into Eq. (2.15) gives

(2.19)

As was done in dispersion relation (1.2), we now
take the limit ∂/∂x � ∂/∂y in Eq. (2.19). For simplicity,
we assume that the equilibrium ion temperature T0i is
constant and ignore the ion temperature perturbation. In
expression (2.17) for VL, we can then set pi = nT0i. As a
result, Eq. (2.19) is reduced to

(2.20)
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This equation can also be obtained by using formula
(4.44) from [5] and formula (19) from [15].

Note that, when the correction terms are ignored,
electron and ion continuity equations (2.5) and (2.14)
are reduced to the equation

(2.21)

which can be used to express the perturbed electron
density n in terms of φ.

2.2. Separation of Variables

We represent each of the perturbed quantities X = (φ,
A, n) as

(2.22)

where , , and  describe, respectively, the primary
modes, the secondary small-scale modes (sidebands),
and the secondary large-scale modes (zonal flows).

The large-scale perturbations (zonal flows) are
expressed as

(2.23)

Here, Ω and qx are the frequency and radial wavenum-

ber of the zonal flow;  ≡ ( , , ) are the ampli-
tudes of the electrostatic and vector potentials of the
flow and the plasma density, respectively; and the sym-
bol c.c. stands for the complex conjugate.

In analogy with [16, 17], the primary modes are

characterized by the functions  = ( , , ) repre-
sented as

(2.24)

Here, k = (kx, ky, kz) and ω are the wave vector and fre-

quency of the primary modes and  are their ampli-

tudes, satisfying the condition  = , where the
asterisk denotes the complex conjugate. From
Eqs. (2.20), (2.4), and (2.21), we see that the quantities

, , and  are related by the formulas

(2.25)

(2.26)

(2.27)

∂n
∂t
------ VEx

∂n0

∂x
-------- c

B0
----- —φ —n×( )z+ + 0,=

X X̃ X̂ X ,+ +=

X̃ X̂ X

X X0 –iΩt iqxx+( )exp c.c.+=

X0 φ0 A0 n0

X̃ φ̃ Ã ñ
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k

∑=
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X̃±
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φ̃+ Ã+ ñ+

ω φ̃+
T0i

en0
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⎛ ⎞ v A
2

c
-------kz Ã+–

B0

c
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gky

kx
2

--------
ñ+

n0
-----+ 0,=

Ã+
ckz

ω
-------φ̃+,=

ñ+

ckyn0κn

B0ω
-------------------φ̃+,–=

where κn ≡ ∂lnn0/∂x. From these formulas we obtain
the following dispersion relation for the primary modes
(cf. dispersion relation (1.2)):

(2.28)

where ω∗i = ckyκnT0i/(eB0) is the ion diamagnetic drift
frequency.

According to representations (2.23) and (2.24), the
variables describing the secondary small-scale modes
are represented as a superposition of the sidebands,

(2.29)

where ω± = Ω ± ω and k± = (qx ± kx, ±ky, ±kz). The anal-
ysis to follow will be carried out in the standard approx-
imation such that qx/kx � 1 and Ω/ω � 1.

2.3. Basic Equations for Zonal Flows

2.3.1. Vorticity equation. Averaging Eq. (2.20)
over small-scale oscillations, we obtain

(2.30)

where

(2.31)

Note that Eq. (2.30) has been derived by dividing the

averaged equation (2.20) by , i.e., by ignoring the
second derivative ∂2/∂x2. This is why the functions φ, A,
and n, which characterize only the primary modes, can-
not be substituted into right-hand side of Eq. (2.30) (cf.
the discussion in the Appendix).

We express the right-hand side of expression (2.31)

in terms of  and . Using formulas (2.26) and

(2.27) for  and  and the analogous formulas for

 and , we then express the functions  and 

in terms of . As a result, we obtain the expression

(2.32)

where
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(2.34)

2.3.2. Longitudinal Ohm’s law. From Eq. (2.4) we
find

(2.35)

where R|| is the Reynolds stress force, which enters the
longitudinal Ohm’s law and is defined by the equality

(2.36)

In analogy with expression (2.32), relationship (2.36)
leads to

(2.37)

2.3.3. Continuity equation. Equation (2.21) yields

(2.38)

where Rn is the Reynolds stress force, which governs
the generation of the zonal component of the plasma
density and is equal to (cf. equality (2.36))

(2.39)

This equality leads to the expression (cf. formula
(2.37))

(2.40)

2.4. Basic Equations for the Sidebands

Using Eqs. (2.20), (2.4), and (2.21), we arrive at the
following set of equations for the sideband amplitudes:

(2.41)

(2.42)

(2.43)
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n
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where

(2.44)

(2.45)

(2.46)

The functions , , and  can be called the side-
band oscillating forces.

3. DERIVATION AND TRANSFORMATION
OF EXPRESSIONS FOR THE SIDEBAND 

AMPLITUDES
3.1. Solutions to the Equations for the Sideband 

Amplitudes

Equations (2.41)–(2.43) have the solutions

(3.1)

(3.2)

(3.3)

Here

(3.4)

where the function D(ω, k) is given by the first of
expressions (2.28).

3.2. Expressions for  in Terms of the Sideband 
Oscillating Forces

Substituting Eqs. (3.1)–(3.3) into expression (2.33),
we find
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where

(3.6)

(3.7)

(3.8)

3.3. Expressions for  in Terms of the Sideband 
Oscillating Forces

Using Eqs. (3.1)–(3.3), we transform expression (2.34)
to

(3.9)

where

(3.10)

(3.11)

(3.12)

4. DERIVATION OF A DISPERSION RELATION 
FOR ZONAL FLOWS

4.1. Zero Zonal Components of the Magnetic Field
and Plasma Density

We use Eqs. (3.1)–(3.3) to calculate the right-hand
sides of relationships (2.37) and (2.40) for R|| and Rn by
accounting for the terms that are formally as small as

 and by ignoring higher order terms. As a result,
we obtain

(4.1)

(4.2)
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Substituting expressions (4.1) and (4.2) into Eqs. (2.35)
and (2.38), we arrive at the equalities

(4.3)

(4.4)

which show that, in the approximation at hand, the
zonal components of the magnetic field and plasma
density are not generated.

4.2. Simplification of the Expressions for the Sideband 
Oscillating Forces and Calculation 

of the Contributions of the Sideband Amplitudes
to the Averaged Vorticity Equation

With equalities (4.3) and (4.4), relationships (2.44)–
(2.46) are reduced to

(4.5)

(4.6)

(4.7)

4.2.1. Calculation of . In order to calculate the

quantity , it is sufficient to take into account only the
leading-order terms in D±, i.e., to set

(4.8)

where

(4.9)

Using expressions (3.6)–(3.8) and (4.5)–(4.7), we then
reduce expression (3.5) to

(4.10)

4.2.2. Calculation of . We seek the quantity  in
the form of a power series in qx and Ω by representing
it as
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From expressions (3.9) and (4.5)–(4.7) we see that the
leading-order term of the series is given by the equality

(4.12)

Expressions (3.10)–(3.12) give

(4.13)

(4.14)

(4.15)

With expressions (4.13)–(4.15), equality (4.12) trans-
forms to

(4.16)

In accordance with relationships (3.4) and (2.23),

we calculated the quantity  by using, instead of
formula (4.8), the expression

(4.17)

where

(4.18)

Equality (3.5) then becomes
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where

(4.20)

Relationships (3.10)–(3.12) give

(4.21)
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(4.22)

(4.23)

From relationships (4.21)–(4.23) and (4.13) we
obtain

(4.24)

4.3. Dispersion Relation for Zonal Flows

With formulas (4.10), (4.11), (4.16), (4.19), and
(4.24), expression (2.32) is reduced to

(4.25)

Here, Vg = Vg(k) is the zonal radial group velocity,
defined by the equality

(4.26)

and the function F(k) has the form

(4.27)

where

(4.28)

Substituting expression (4.25) into Eq. (2.30) and tak-
ing into account equalities (4.4) and (4.9), we switch
from summation over k to integration over this variable
to obtain the sought-for dispersion relation for zonal
flows:

(4.29)

Dispersion relation (4.29) differs substantially from
dispersion relation (58) for zonal flows from [16]. The
difference stems from the fact that, in our problem, we
assume that k⊥ρi � 1 (see the Introduction), whereas in
[16], it was assumed that k⊥ρi � 1.
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5. ANALYSIS OF THE DISPERSION RELATION 
FOR ZONAL FLOWS

5.1. General Considerations

5.1.1. Impossibility of generating zonal flows by
nondispersive DA modes. Setting

g = 0 (5.1)

in expression (4.27), we find

(5.2)

In this case, dispersion relation (4.29) cannot be satis-
fied. This indicates that nondispersive (pure) DA modes
do not generate zonal flows. Let us discuss the essence
of this remarkable effect.

A particular case of DA modes is represented by
Alfvén modes in a homogeneous plasma that are
described by the dispersion relation

(5.3)

In [22] (see also [23]), it was noted that nondispersive
Alfvén modes cannot generate zonal flows. The physi-
cal reason for this was explained in [22]: in contrast to
the electrostatic electron drift modes, the nonlinear
dynamics of Alfvén modes is affected not only by the
Reynolds stress but also by the Maxwell stress, which
completely counterbalances the Reynolds stress. This
counterbalancing effect was discussed in quite a num-
ber of papers (see [17] and the literature cited therein).
Switching from dispersion relation (5.3) to dispersion
relation (1.1), we can see that the ion drift effect shifts
the eigenfrequency of Alfvén modes. It might then be
expected that, due to this shift, the balance between the
Reynolds and Maxwell stresses would be incomplete.
However, from Eq. (2.20) we can see that, along with
the Reynolds and Maxwell stresses (described by the
nonlinear terms with φ and A, respectively), there is
also the ion drift stress, described by the nonlinear
terms with n. Because of the interplay between these
three stresses, the resulting nonlinear force generating
the zonal flows vanishes.

Let us also say a few words about nondispersive ion
drift modes described by the dispersion relation (see
Eq. (1.1) with kz = 0 or Eq. (1.3) with g = 0)

(5.4)

From Eq. (2.20) we can find that, in this case, the
Reynolds stress is counteracted by the ion drift stress in
such a way that the resulting stress is zero.

5.1.2. Effect of the magnetic curvature on the lin-
ear instabilities and on the generation of zonal flows.
Two classes of instabilities of zonal flows. From the
standpoint of the linear theory of instabilities, the term
with g in dispersion relation (1.2) is important not
because it is dispersive in character but because it
describes the MHD stability of the plasma in the corre-
sponding confinement system (see [5], Section 11, and
book [24] for details). The reason is that, when gκn > 0,

F k( ) 0.=

ω2
kz

2
v A

2
.=

ω ω*i.=

the roots of Eq. (1.2) are real for arbitrary values of ω∗i

and kz, so the plasma in the system is MHD stable. This
is the case of a magnetic well. On the other hand, when
gκn < 0, the roots are complex for sufficiently small val-
ues of ω∗i and kz. This corresponds to MHD instabil-
ity—the case of a magnetic hill. In this context, the
question naturally arises of how the pattern of the gen-
eration of zonal flows by the modes described by dis-
persion relation (1.2) in the case of a magnetic well dif-
fers from that in the case of a magnetic hill.

From definition (4.27), we can see that the sign of
the quantity gκn exactly corresponds to the sign of the
function F(k). For a magnetic hill,

(5.5)

this function is positive definite,

(5.6)

In [17], it was noted that, in this case, dispersion rela-
tion (4.29) for zonal flows is analogous to the disper-
sion relation describing linear negative-mass instabili-
ties that were considered in Section 4.1 of [25]. In the
theory of the generation of zonal flows by electrostatic
electron drift waves (cf. [26]), the dispersion relations
have the same structure. A remarkable property of this
class of the instabilities of zonal flows is that the flows
can be generated by an individual monochromatic wave
packet. For this case, the function F(k) can be repre-
sented as

(5.7)

where  is a positive constant. Dispersion relation
(4.29) then implies that zonal flows are unstable with
the growth rate

(5.8)

For a magnetic well, i.e., when

(5.9)

the function F(k) defined by expression (4.27) is nega-
tive,

(5.10)

If we consider an individual monochromatic packet of
DA waves, then, instead of representation (5.7), we
must write

(5.11)

In this case, dispersion relation (4.29) for zonal flows is
reduced to

(5.12)

where Vg0 = Vg(k0). From Sections 1–3 of book [27],
devoted to the linear theory of two-stream instabilities,
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we can see that dispersion relation (5.12) is analogous
to that for an individual cold beam. Such a dispersion
relation has no roots with ImΩ > 0, which corresponds
to instability. Nevertheless, for two monochromatic
packets of DA waves, in place of representation (5.11),
we have

(5.13)

where  and  are positive. Instead of dispersion
relation (5.12), we then arrive at the following disper-
sion relation for zonal flows:

(5.14)

This dispersion relation is similar to that for two cold
beams. It is well known that the latter dispersion rela-
tion describes two-stream hydrodynamic instability.
This analogy suggests the existence a class of instabili-
ties of zonal flows that are similar to two-stream insta-
bilities and are triggered by DA modes in the case of a
magnetic well. Two-stream-like instabilities driven by
kinetic Alfvén waves were thoroughly analyzed in [17].
It is also possible to reveal a fairly broad class of two-
stream-like instabilities driven by DA modes (see [17,
27]). The simplest example of such instabilities will be
considered below.

5.1.3. Criterion for the class of instabilities of
zonal flows in terms of the sign of the quantity

w−1∂2w/ . In [17], it was noted that the criterion for
negative-mass instabilities or two-stream instabilities is
formulated in terms of the sign of the quantity

ω−1∂2ω/  (the Lighthill stability criterion; see [28]
for details). According to [17], the reason for this is that
the condition

(5.15)

implies the onset of negative-mass instabilities of zonal
flows, whereas the condition

(5.16)

corresponds to two-stream instabilities. Let us find out
whether such a rule is applicable to the instabilities of
zonal flows that are triggered by DA modes modified by
the magnetic curvature effects.

From equality (4.26) we have (cf. definition (4.27))
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We can see that, for the modes under consideration, the
difference 2 – ω∗i/ω is positive. We can then write

(5.18)

In the context of the above discussion of the criterion
for the class of instabilities of zonal flows in terms of

, we can conclude that the Lighthill criterion
is applicable to the modes in question.

5.2. Explicit Form of the Dispersion Relation for Zonal 
Flows in the Case of a Magnetic Hill 

and of an Individual Monochromatic Wave Packet

In the case of a magnetic hill, we can introduce the
hill-related instability growth rate γMH through the rela-
tionship

(5.19)

In terms of this growth rate, dispersion relation (1.2) for
the primary modes is represented as

(5.20)

In our analysis, we assume that the frequency of
the primary modes is real, Imω = 0. Dispersion rela-
tion (5.20) implies that primary modes occur when

(5.21)

This is the MHD stability condition. Having introduced

the growth rate squared, , we can rewrite disper-
sion relation (4.29) for zonal flows excited by an indi-
vidual monochromatic wave packet as

(5.22)

where
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Let us examine the consequences of dispersion rela-
tion (5.22).

5.3. Quasi-Pure DA Modes in the Case
of a Weak Magnetic Hill

According to dispersion relation (5.22), the mag-
netic curvature effects play a decisive role in the nonlin-
ear dynamics of DA modes. On the other hand, in
describing the linear dynamics of the modes, these
effects can be ignored, provided that the magnetic hill
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is sufficiently weak,  � . Consequently, in
addition to pure DA modes, we can consider quasi-pure
DA modes—those whose properties can be studied
based on dispersion relation (1.1) in which the gravity
force is ignored. In this case, the curvature effects man-
ifest themselves only in the terms describing the cou-
pling between the zonal flows and the primary modes

(see the factor  on the right-hand side of dispersion
relation (5.22)) and the term describing the radial prop-

agation of zonal flows (see the term with  on the
left-hand side of dispersion relation (5.22)).

5.3.1. Quasi-pure Alfvén modes. Using dispersion
relation (5.3), we can reduce dispersion relation (5.22)
for quasi-pure Alfvén modes to

(5.24)

As a result, we have

(5.25)

(5.26)

In Section 6, it will be explained that Γ0 is the
growth rate of the zonal flow generated by a monochro-
matic packet of electrostatic electron drift waves.
Expression (5.25) for the growth rate of the zonal flow
generated by quasi-pure Alfvén modes is seen to con-
tain an additional small parameter on the order of
γMH/|kz |vA.

5.3.2. Quasi-pure ion drift modes. For kz = 0,
quasi-pure ion drift modes are described by dispersion
relation (5.4). In this case, dispersion relation (5.22) is
reduced to

(5.27)

and, instead of expressions (5.25) and (5.26), we have

(5.28)

(5.29)

By analogy with expression (5.25), growth rate (5.28)
is as small compared with Γ0 as the ratio of γMH to the
frequency of the pure ion drift modes.

5.3.3. Quasi-pure slow DA modes at kzvA � w*i .
For kzvA � ω∗i, dispersion relation (1.1) describes not
only quasi-pure ion drift modes (see dispersion relation

γ MH
2 γ MH crit,

2

γ MH
2

γ MH
2

Ω
qx

kxω
---------γ MH

2
–⎝ ⎠

⎛ ⎞
2

3Γ0
2 γ MH

2

kz
2
v A

2
------------.–=

Im Ω 3
1/2Γ0

γ MH

kz v A

--------------,=

Re Ω
qx

kxω
---------γ MH

2
.=

Ω
2qx

kxω*i

-------------γ MH
2

–⎝ ⎠
⎛ ⎞

2

3Γ0
2γ MH

2

ω*i
2

---------–=

Im Ω 3
1/2Γ0

γ MH

ω*i

-----------,=

Re Ω
2qx

kxω*i

-------------γ MH
2

.=

(5.4)) but also the branch of slow DA modes with the
dispersion

(5.30)

In this case, dispersion relation (5.22) transforms to

(5.31)

This dispersion relation for zonal flows leads to the
growth rate

(5.32)

whereas the real part of the frequency is given by for-
mula (5.29). From dispersion relation (5.30), we can
see that growth rate (5.32) is as small as the ratio of γMH

to the frequency of the primary modes.

5.4. Simplest Example of the Generation 
of Zonal Flows in the Case of a Magnetic Well

Turning to expression (4.27), we find that the quan-

tity  in expression (5.13) is equal to

(5.33)

Here, the quantity  is defined by formula (5.23) with

the replacement   , and
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Let us consider standing primary modes, i.e., a com-
bination of two modes having the same amplitude and
the same absolute value of the wave vector, |k |, and
propagating in opposite directions. In this case, disper-
sion relation (5.14) is reduced to

(5.35)

Formally, dispersion relation (5.35) coincides with the
dispersion relation for two cold beams of equal density
[27]. Using the results of Section 1.5.1 of [27], where
this dispersion relation was investigated, we can see
that it describes the instability of a zonal flow with the
maximum growth rate
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which is achieved at

(5.37)

For qx < qx  opt, we are dealing with an analogous insta-
bility but with a slower growth rate.

6. DISCUSSION OF THE RESULTS

We have investigated the generation of zonal flows
by DA waves modified by magnetic curvature effects,
which are modeled by a gravity force. Our study is
based on the vorticity equation; longitudinal Ohm’s
law; the continuity equation; and Eqs. (2.20), (2.4), and
(2.21), which relate the electrostatic potential, vector
potential, and perturbed plasma density. These equa-
tions have been analyzed by applying a parametric for-
malism similar to that used in the theory of the genera-
tion of convective cells [18, 19] (see also [16]). In con-
trast to most of the previous investigations on the
subject (except for [17]), we have considered primary
modes with an arbitrary spectrum rather than a mono-
chromatic wave packet. The parametric approach so
modified makes it possible to reveal a new class of
instabilities of zonal flows—those that are analogous to
two-stream instabilities in linear theory [27].

As was explained in Section 2.1, vorticity equa-
tion (2.20), used in our analysis, is quite nontrivial: in
the hydrodynamic approximation, it should be derived
by taking into account magnetic viscosity in the equa-
tion of motion. Hydrodynamic equations containing
magnetic viscosity were originally obtained by Bragin-
skii [29]. That the ion drift effect should be described
with allowance for magnetic viscosity was first pointed
out in [30, 31]. It is only when the magnetic viscosity is
taken into account that the ion drift effect is described
in the same manner as in Eq. (2.20) (see the term with
T0i n in this equation). Note also that vorticity equa-
tion (2.20) with ∇|| = 0 and g = 0 was obtained later by
an alternative kinetic method described in [5]. Although
the magnetic viscosity is not explicitly introduced into
the formalism of [5], it plays an important role in the
hydrodynamic interpretation of the results [5].

As in most of the previous papers on the theory of
the generation of zonal flows (see, e.g., [1, 3, 4, 10–14,
16–19, 21, 26]), we assume that the primary modes
under consideration have real frequencies. However, it
is then natural to ask whether the amplitude of the pri-
mary modes is assumed to remain at the fluctuation
level or to grow far above this level due to some physi-
cal mechanisms. Following numerous earlier studies on
the subject, we consider that such mechanisms do exist,
but they are beyond the applicability limits of our
“ideal” equations in the linear approximation. A linear
mechanism whereby the primary DA modes grow can
be exemplified by their dissipative growth caused by
thermal conductivity and viscosity effects—a mecha-
nism that was considered in [32] without allowance for
the curvature of the equilibrium magnetic field. It is

qx qx opt 3
1/2Γ1C1/ 4Vg1( ).≡=

obvious that primary waves also may well be excited by
nonlinear effects, e.g., those occurring during the decay
of other waves. An example of such decay instabilities
of Alfvén waves was considered in [33], where the ion
drift effects, as well as the magnetic curvature effects,
were ignored. In accordance with the general principles
of nonlinear plasma theory (see, e.g., [34]), we assume
that, because of the interplay between the linear and
nonlinear effects, primary waves evolve to a certain
steady state. On the whole, such effects can be called
“traditional.” By assumption, we consider the genera-
tion of zonal flows after the primary waves have relaxed
to the corresponding steady state. The problem in ques-
tion can also be studied in a more general formulation
in which zonal flows are generated on a characteristic
time scale comparable to that of the traditional effects,
but this issue goes beyond the scope of the present
paper.

In the case of a magnetic hill, κng < 0, dispersion
relation (1.2) describes both stable and unstable linear
modes. The modes are expected to be unstable for suf-
ficiently small values of ω∗i and kzvA. Investigation of
the generation of zonal flows by unstable waves is
beyond the scope of our work because the characteristic
growth rates of the instabilities of zonal flows are slow
in comparison with the linear growth rates of the pri-
mary waves. In order to analyze their generation, it is
necessary to develop a nonlinear theory of unstable pri-
mary modes with allowance for the processes whereby
the modes evolve to a steady state. According to [34], it
may be supposed that the corresponding traditional
nonlinear effects responsible for the evolution to the
steady state will also modify the linear dispersion rela-
tion for primary modes. If this is the case, it is necessary
to use a dispersion relation other than relation (1.2).
The development of this theory may be the subject of
future research.

We restricted ourselves to analyzing primary modes
with ky � kx (see the discussion in the Introduction) and
used the standard approximation such that Ω � ω and
qx � kx. We have shown that, when only the effects pro-

portional to  are taken into account, the zonal
components of the vector potential and perturbed
plasma density are not generated,  = 0 and  = 0
(see equalities (4.3) and (4.4)).

One of the main results of our work is that we have
derived a dispersion relation for zonal flows, namely,
relation (4.29), where the function F(k) is defined by
expression (4.27). We have examined the main proper-
ties of this dispersion relation and have considered its
physical consequences in some simplest limiting cases.
A more detailed analysis of this dispersion relation can
be postponed to a future study.

We have shown that zonal flows can be generated
both in the case of a magnetic hill and in the case of a
magnetic well. In the first case, the instabilities of zonal

qx
2
/kx

2

A0 n0
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flows are analogous to negative-mass instabilities in
linear theory, and, in the second case, they are analo-
gous to two-stream instabilities.

It seems reasonable to compare the results of our
analysis with those on the generation of zonal flows by
the simplest types of electrostatic drift modes described
by the dispersion relation

(6.1)

where ω∗e is the electron drift frequency.

Dispersion relation (6.1) does not contain the radial
dispersion effects. In this context, the modes described
by dispersion relation (6.1) may be called pure electron
drift modes. The physical mechanism whereby pure
electron drift modes generate zonal flows is the Rey-
nolds stress, which takes part in the nonlinear dynamics
of the modes. The generation of zonal flows by these
modes is most pronounced in the case of an individual
monochromatic wave packet, when the growth rate is
equal to (see [26])

(6.2)

where Γ0 is defined by formula (5.23).
Our analysis shows that, because of a complete

mutual balance between the averaged stresses, pure DA
waves do not generate zonal flows. In a curved mag-
netic field, the generation is possible, however. If the
magnetic curvature effects are weak enough so that the
notion of quasi-pure DA modes can be introduced, then
the growth rates of unstable zonal flows generated by
these modes are as slow compared with growth rate
(6.2) as the ratio of the characteristic magnetic-curva-
ture-related frequencies (i.e., the quantity |gκn |1/2ky/kx)
to the frequencies of the quasi-pure modes (cf. expressions
(5.25), (5.28), and (5.32), and also cf. expression (6.2) ver-
sus expression (5.36)). On the other hand, as this ratio
increases, the growth rates of unstable zonal flows can
become as fast as that given by expression (6.2).

We have shown that, in order to reveal the instability
of zonal flows in the case of a magnetic well, it is nec-
essary to consider primary modes with double-peaked
spectra. The simplest of such spectra is represented by
a superposition of two pump waves. We have also
explained that, in contrast to the assertion of [21], there
is no restriction on the steady-state spectrum of the pri-
mary modes.
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APPENDIX

Is There a Restriction on the Spectra of Primary Modes 
in the Problem of the Generation of Zonal Flows?

In [21], the generation of zonal flows by electro-
static electron drift waves was studied by using the vor-
ticity equation

(A.1)

Here, φ> ≡  + , V0 = (c/B0) /∂x is the zonal com-
ponent of the drift velocity in crossed fields, V∗e is the

electron drift velocity,  is the square of the ion-sound
Larmor radius (i.e., the ion Larmor radius calculated in

terms of the electron temperature), and  ≡ ∂2/∂x2 +
∂2/∂y2.

Averaging Eq. (A.1) over small-scale oscillations,
we obtain

(A.2)

where

(A.3)

In expression (A.3), we ignore the sidebands—the

function —by setting φ> = , where  is given by
representation (2.24). Equation (A.3) then becomes

(A.4)

where Ik is described by formula (4.28). From Eq. (A.4)
we can see that the quantity Λ is independent of x and
therefore does not contribute to Eq. (A.2). Hence, for
arbitrary values of Ik, we have

(A.5)

At the same time, in Eq. (A.2) from [21], the derivatives
∂2/∂x2 were omitted with the result that (see [21],
Eq. (2))

(A.6)
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From the requirement that the primary modes be
steady-state, the following restriction on their spectra
was obtained (see [21], relationship (6)):

(A.7)

However, this procedure for reducing Eq. (A.2) to
Eq. (A.6) is justified only when Λ depends on x and
cannot be used for Λ determined by Eq. (A.4). Accord-
ingly, restriction (A.7) obtained in [21] turns out to be
incorrect.

It is Eq. (2.30) that is equivalent to Eq. (A.6).
According to the explanations given in Section 2, we
derived Eq. (2.30) from the equation analogous to
Eq. (A.2) by ignoring the second derivative ∂2/∂x2 in it.
Consequently, by analogy with the case of electrostatic
electron drift waves, there is no restriction on the spec-
trum of primary modes in our problem.
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