
Annals of Physics 366 (2016) 22–31

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

A new entropy based on a group-theoretical
structure

Evaldo M.F. Curadoa,b,⇤, Piergiulio Tempesta c,d,
Constantino Tsallis a,b,e

a Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290–180 Rio de Janeiro – RJ, Brazil
b National Institute of Science Technology for Complex Systems, Rua Xavier Sigaud 150, 22290–180
Rio de Janeiro – RJ, Brazil
c Departamento de Física Teórica II (Métodos Matemáticos de la Física), Facultad de Físicas, Universidad
Complutense, 28040 – Madrid, Spain
d Instituto de Ciencias Matemáticas, C/ Nicolás Cabrera, No 13–15, 28049 Madrid, Spain
e Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

a r t i c l e i n f o

Article history:
Received 10 July 2015
Accepted 25 December 2015
Available online 4 January 2016

Keywords:
Generalized entropies
Group theory
Statistical mechanics

a b s t r a c t

A multi-parametric version of the nonadditive entropy Sq is intro-
duced. This new entropic form, denoted by Sa,b,r , possesses many
interesting statistical properties, and it reduces to the entropy Sq
for b = 0, a = r := 1� q (hence Boltzmann–Gibbs entropy SBG for
b = 0, a = r ! 0). The construction of the entropy Sa,b,r is based
on a general group-theoretical approach recently proposed by one
of us, Tempesta (2016). Indeed, essentially all the properties of this
new entropy are obtained as a consequence of the existence of a
rational group law, which expresses the structure of Sa,b,r with re-
spect to the composition of statistically independent subsystems.
Depending on the choice of the parameters, the entropy Sa,b,r can
be used to cover a wide range of physical situations, in which the
measure of the accessible phase space increases say exponentially
with the number of particles N of the system, or even stabilizes, by
increasing N , to a limiting value.
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This paves the way to the use of this entropy in contexts where
the size of the phase space does not increase as fast as the number
of its constituting particles (or subsystems) increases.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the last decades, the non-extensive scenario, originally proposed in [1], has been largely inves-
tigated as a new thermodynamic framework allowing to generalize the standard Boltzmann–Gibbs
approach to new physical contexts, where ergodicity hypothesis is violated [2]. At the same time, the
ubiquity of the notion of entropy in social sciences paved theway to fruitful extensions of the standard
information theory of Shannon and Khinchin [3–5] towards new classical and quantum formulations.

The search for newentropic formshas been very active in the last decades.Manydifferent entropies
have been proposed, generalizing the Boltzmann–Gibbs entropy from different perspectives (see,
e.g., [6–17]).

In particular, a group-theoretical approach to the notion of entropy has been advocated in [14].
It is based on the observation that a thermodynamically admissible entropy should satisfy not only
the first three Khinchin axioms (continuity, concavity, expansibility), but also a general composability
property. It amounts to require that, given an entropic functional S, its values on a system defined by
the union of two statistically independent subsystems A and B should depend (in addition to a possible
set of fixed indices; for instance the index q for Sq) on the entropies of the two subsystems only. This
requirement is motivated by the fact that entropy makes sense for macroscopic objects.

Composability can be imposed on full generality (and we shall talk about strict composability
or composability tout court) or at least on subsystems characterized by the uniform distribution
(composability in a weak sense). This last property applies, for instance, when considering isolated
physical systems at the equilibrium (microcanonical ensemble), or in contact with a thermostat at
very high temperature (canonical ensemble).1 In full generality, it amounts to say that there exists a
smooth function of two real variables �(x, y) such that (C1)

S(A [ B) = �(S(A), S(B); {⌘}) (1)

where {⌘} is a possible set of real continuous parameters, and A ⇢ X and B ⇢ X are two statistically
independent subsystems of a given system X , with the further properties

(C2) Symmetry:

�(x, y) = �(y, x). (2)

(C3) Associativity:

�(x, �(y, z)) = �(�(x, y), z). (3)

(C4) Null-composability:

�(x, 0) = x. (4)

Note that the associativity property is crucial for the applicability of the zeroth law of thermodynam-
ics. The Boltzmann–Gibbs, the Sq, the Rényi entropies and the non-trace form Z entropies [15] are
known to be strictly composable. Instead, the weak composability property is shared by infinitely

1 To be more precise, let us illustrate the BG case. The formula SBG = lnW (assuming W to be finite) applies to both
microcanonical and T ! 1 canonical cases, but, in the former, W refers to the total number of states within a thin slice
of phase space corresponding to a given total energy, whereas, in the latter, W refers to the total number of states within the
entire phase space.
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manymore entropies. The theory of formal groups [18,19] offers a natural language for studying gen-
eralized entropies and treating the notion of composability. A huge class of entropies (continuous,
concave, expansible, weakly composable) is provided by the universal-group entropy [14], relatedwith
the Lazard universal formal group [17]. This class possesses many remarkable properties, in particu-
lar extensivity in suitable regimes, Lesche stability (under mild hypotheses), among others.2 The two
most frequent examples of entropies of this class, i.e. possessing a group-theoretical structure, are
Boltzmann–Gibbs entropy and Sq entropy. They have associated the additive group law

S(A [ B) = S(A) + S(B) (5)
and the multiplicative one [19]

S(A [ B) = S(A) + S(B) + aS(A)S(B), (6)
respectively. In the literature, a 2 R is usually written in the form a := 1 � q.

In this paper, we explore a remarkable example of rational composition law:

S(A [ B) = S(A) + S(B) + aS(A)S(B)
1 + bS(A)S(B)

, (7)

where a, b 2 R. The corresponding rational group law is given by

�(x, y) = x + y + axy
1 + bxy

. (8)

Notice that when a = b = 0, we recover the standard additive law (5); for b = 0, we recover the
case (6).

It is interesting to notice that for b = 0 this relation can be written in an additive form, namely

ln |1 + a�(x, y)|
a

= ln |1 + ax|
a

+ ln |1 + ay|
a

, (9)

and this yields to Rényi entropy. Whenever b 6= 0, we have a genuinely new case. Notice that, for the
particular instances b = a+1 6= 0 and b = 1� a 6= 0, the following additive rules hold respectively:

ln
����

1 � �(x, y)
1 + (a + 1)�(x, y)

���� = ln
����

1 � x
1 + (a + 1)x

���� + ln
����

1 � y
1 + (a + 1)y

���� (10)

ln
����

1 + �(x, y)
1 + (a � 1)�(x, y)

���� = ln
����

1 + x
1 + (a � 1)x

���� + ln
����

1 + y
1 + (a � 1)y

���� . (11)

These two relations can be interchanged one into the other through the transformation (x, a) !
(�x, �a). It might be interesting to explore these properties in future works.

The two-parametric rational group law (8) was first considered in [20], in the study of generalized
cohomology theories. A specific one-parametric realization of it, i.e

�(x, y) = x + y + (↵ � 1)xy
1 + ↵xy

(12)

plays an important role in algebraic topology. Precisely, for ↵ = �1, 0, 1, we obtain group laws
respectively associatedwith the Euler characteristic, the Todd genus and the Hirzebruch L-genus [21].
Notice that identifying a ⌘ ↵ � 1 and b ⌘ ↵, Eq. (8) turns out to be Eq. (12). Also, these relations
between ↵, a and b are exactly the necessary conditions to get the additive property given in Eq. (10).

The aim of our work is to construct the entropy associated with the rational group law (8), or
equivalently with the composition law (7). It is easy to verify that it satisfies Eqs. (2)–(4). Also, it
admits an inverse, i.e. there exists a real function �(x) such that

�(x, �(x)) = 0. (13)

2 When dealing with composability, we will assume that the Boltzmann constant kB = 1, as in [14,16]. Its explicit presence
would produce a trivial change in the form of the composition law.
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For instance, for the case of the additive law, �(x) = �x. For the rational group law (8) we have
�(x) = �x/(1 + ax). This is the reason why we talk about the group structure associated with an
entropy [14]. Notice however that, if we restrict to values x, y 2 R+ [{0} (as mandatory for physically
reasonable entropic forms), it is not possible to define an inverse.

Certainly, in complex systems we could conceive useful generalized entropic forms that are not
even composable, mainly in social sciences for example, but this is not the subject of the present
paper.

In the following, we shall construct explicitly the entropy associated with the law (8).

2. The construction of the entropy associated with the rational group law

In this section, we solve in full generality the following inverse problem: given the group law (8),
find the associated entropy. Therefore, according to the general framework proposed in [14], assume
that there exists a function

�(x, y) = x + y + higher order terms (14)

that satisfies the group properties (2)–(4). Notice that the rational law (8) is of this form. The entropy
associated with (14) can be constructed as follows. We look for an invertible analytic function G(t),
such that

�(x, y) = G(G�1(x) + G�1(y)). (15)

This function G(t) corresponds to the formal group exponential [19]. Here G�1(s) is the compositional
inverse of G(t), i.e. G(G�1(s)) = s and G�1(G(t)) = t . The most general form of G(t) we are looking
for is the series

G(t) =
1X

k=0

Ak
tk+1

k + 1
= A0t + A1

t2

2
+ A2

t3

3
+ · · · . (16)

The entropy associated will be of the form

SU [p] :=
WX

i=1

piG
✓
ln

1
pi

◆
, (17)

i.e. will be a representative of the universal-group entropy [14]; here G(t) is supposed to guarantee the
strict concavity of the function (17). The inverse G�1(s) as a formal series can be computed by means
of the Lagrange inversion theorem. We get:

G�1(s) = s
A0

� A1

2(A0)3
s2 + . (18)

The case of the BG entropy is immediately obtained. In this case �(x, y) = x + y, and the Lazard law
gives G(t) = t . From Eq. (17) we get back the BG case.

Let us apply the previous theory to the case of interest, i.e. the rational group law (8). Nowwe have
that Ak = Ak(a, b). The expansion of the function �(x, y) is

�(x, y) = x + y + axy � b(xy2 + yx2) � abx2y2 + b2(x2y3 + x3y2) + ab2x3y3

+ higher order terms. (19)

By using the expression (15) with the form (16) for the expansion of the formal exponential, and
identifying the terms appearing in this expansion with those coming from Eq. (19), we get an infinite
set of relations for the coefficients Ak:

A0 2 R
A1 = aA2

0

A2 = 1
2

�
a2 � 2b

�
A3
0
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A3 = 1
3!

�
a3 � 8ab

�
A4
0

A4 = 1
4!

�
a4 � 22a2b + 16b2

�
A5
0

A5 = 1
5!

�
a5 � 52a3b + 136ab2

�
A6
0

A6 = 1
6!

�
a6 � 114a4b + 720a2b2 � 272b3

�
A7
0 (20)

. . . . (21)
A priori, the coefficients Ak provide the most general solution to our problem. Before proceeding
further, let us consider the particular case b = 0. Then

�(x, y) = x + y + axy. (22)
If we put b = 0 in the previous coefficients (20), and let A0 = 1, we get immediately

ak = 1
k!a

k (23)

i.e.

G(t) = eat � 1
a

, (24)

which is the correct formwe were looking for. Indeed, according to the prescription (17), and putting
a = 1 � qwe get back the Sq entropy

S =
WX

i=1

pi
pq�1
i � 1
1 � q

=
1 �

WP
i=1

pqi

q � 1
. (25)

The general case provides uswith a series solution: indeed, we reconstructG(t) and hence the entropy
(17), term by term. However, this series can be expressed in a closed form, providing the solution

G(t) = 2(ert � 1)
�a(ert � 1) ±

p
a2 + 4b(ert + 1)

(26)

where the range of the parameters a, b, r will be made precise in formulas (32)–(39). The function
G(t) in its space of parameters is monotonically increasing and non-negative, and is such that the
associated entropy (17) is strictly concave. In particular it emerges that the arbitrary coefficient is
fixed to be

A0 = ± rp
a2 + 4b

. (27)

The solution in closed form (26) can also be obtained from the group law (8) by a direct procedure.
It entails the formulation of a suitable ansatz for the solutions of (8).

The previous approach has the advantage of being systematic, i.e. it can be used in full generality
starting from any group law of the form (14), and does not demand any guess or ansatz. This method
amounts to the construction of a series solution for the functional equation (8), and is conceptually
similar to the technique for generating series solutions of differential equations.

The realization of the universal-group entropy
P

i piG
⇣
ln 1

pi

⌘
for G(t) given by Eq. (26) is easily

obtained, and is described below.

3. The new entropy and its properties

We shall present here, as a result of the previous approach, the explicit expression of the trace-
form entropy corresponding to the group law (8).Wewill discuss this entropy in two slightly different
versions, very related. The first one comes directly from the function G(t) determined in Eq. (26). The
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second one amounts to a change in the space of parameters, that for some aspects is possibly more
adequate for a comparison with Boltzmann’s entropy.

3.1. The Sa,b,r form

Definition 1. Let {pi}i=1,...,W , W � 1, with
PW

i=1 pi = 1, be a discrete probability distribution. The
S(+)
a,b,r entropy, for r > 0, is the function

S(+)
a,b,r [p] =

WX

i=1

s(+)[pi] :=
WX

i=1

piLog
(+)
a,b,r

✓
1
pi

◆
, (28)

where the generalized plus logarithm is defined as

Log(+)
a,b,r(x) := 2(xr � 1)

�a(xr � 1) +
p
a2 + 4b(xr + 1)

, x > 0. (29)

The S(�)
a,b,r entropy, for r < 0, is the function

S(�)
a,b,r [p] :=

WX

i=1

s(�)[pi] :=
WX

i=1

piLog
(�)
a,b,r

✓
1
pi

◆
, (30)

where the generalized minus logarithm is given by

Log(�)
a,b,r(x) := 2(xr � 1)

�a(xr � 1) �
p
a2 + 4b (xr + 1)

, x > 0. (31)

Here a, b are real parameters. Its range is defined by formulas (32)–(39) below.

These entropies satisfy many remarkable properties.

Proposition 2. The entropies (28) and (30) satisfy the first three Khinchin axioms.

Indeed, they are continuous functions of all their arguments. Second, the function s(+)[p], defined in
Eq. (28) for r > 0, is concave, ensuring that themaximumof the entropy is attained at equiprobability,
if the following conditions are satisfied forW � 1:

(i) 0 < r  1 ! a < 0 and b >
�a2

4
(32)

a � 0 and b > 0 (33)

(ii) r > 1 ! a  0 and b >
�a2

4
(34)

a > 0 and b >
a2(r2 � 1)

4
. (35)

Also, the function s(�)[p], defined in Eq. (30) for r < 0, is concave if the following conditions are
verified forW � 1:

(i) � 1  r < 0 ! a < 0 and b >
�a2

4
(36)

a � 0 and b > 0 (37)

(ii) r < �1 ! a  0 and b >
�a2

4
(38)

a > 0 and b >
a2(r2 � 1)

4
. (39)
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Third, it is also possible to show that pLog(±)
a,b,r (1/p) ! 0 when p ! 0, which ensures expansibility.

Also, Log(±)
a,b,r(1) = 0, yielding the value zero for the entropy when we have certainty.

Proposition 3. The generalized logarithms (29) and (31) satisfy the group law (7) and have the properties:

Log(+)
a,b,r [p] = Log(�)

a,b,�r [p], (40)

Log(±)
a,b,�r [p] = Log(±)

a,b,r [1/p], (41)

Log(+)
a,b,r [p] = �Log(�)

�a,b,r [p] (42)

implying that Log(±)
a,b,r [p] = �Log(±)

�a,b,�r [p].
These equalities can be proven by direct calculations.

Proposition 4. The entropies S(±)
a,b,r reproduce the standard SBG entropy for b = 0, a = r, in the limit

r ! 0:

lim
r!0

S(±)
r,0,r [p] = SBG[p]. (43)

Proof. Indeed, we have that

S(±)
a,0,r [p] =

WX

i=1

pi
p�|r|
i � 1

a
, (44)

valid for any value of r . Therefore, for a = r and taking the limit r ! 0, the previous expression
converts into the entropy SBG.

Constrained to the regions allowed in Proposition 2, the generalized logarithms Log(±)
a,b,r(W ) are

monotonically increasing functions ofW , see Fig. 1. The graphics for the other allowed regions, shown
in Proposition 2, have qualitatively the same behavior.

3.2. The Sa,b,c form

Definition 5. Let {pi}i=1,...,W , W � 1, with
PW

i=1 pi = 1, be a discrete probability distribution. The
S+
a,b,c entropy is the function defined, for c > 0, by

S(+)
a,b,c[p] :=

WX

i=1

piLog
(+)
a,b,c

✓
1
pi

◆
, (45)

where the generalized plus logarithm is defined as

Log(+)
a,b,c(x) := 2(xc

p
a2+4b � 1)

�a(xc
p

a2+4b � 1) +
p
a2 + 4b(xc

p
a2+4b + 1)

. (46)

The entropy S�
a,b,c is defined in a perfectly analogous way.

In Definition 5, from the space of parameters (a, b, r) we have moved to the space (a, b, c). The
main motivation is that, with this simple reparametrization, the relation with the additive group law
is more transparent. Indeed, for a, b ! 0we recover it and the Sa,b,c entropy converts into Boltzmann
entropy, for any non-zero value of c , up to a global factor. In other words

lim
a!0,b!0

S(±)(a, b, c) = cSBG,

coherently with the fact that, in this limit the group law (8) collapses into the additive group,
corresponding to Boltzmann’s entropy in the trace-form class. We remind that in many situations a
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Fig. 1. Log(+)
a,b,r in function ofW for a = 0.3, b = 2 and r = 1.3.

global factor is not important, as for example whenwe use theMaxEnt in order to get the equilibrium
probability distribution.

Similarly, for a 6= 0, and b ! 0, the group law (8) converts into the multiplicative one, and the
analysis can be repeated in agreement with formula (44).

The analysis of concavity for the entropic form Sa,b,c as well as the discussion of many other
properties,mutatis mutandis are obviously very similar to that of Sa,b,r and are left to the reader.

The properties previously established ensure the interest and the plausibility of the entropies
constructed in this Section. Indeed, they all satisfy the first three Khinchin axioms and the associated
generalized logarithms are composable in the sense of Eqs. (1)–(4) (weak composability [14]).

4. On the extensivity of the entropy Sa,b,r

One of the main reasons to consider generalized entropies is the fact that they can be useful, or
even mandatory, to describe systems with unusual behavior. If an entropy is extensive, it essentially
means that, for an occupation law W = W (N) of the phase space associated with a given system, it
is asymptotically proportional to N , the number of particles of the system. Precisely, SBG is extensive
whenever W (N) ⇠ kN , where k 2 R+ is a suitable constant. However, for substantially different
choices of W = W (N), this property is no longer true for SBG.

A natural question is to ascertain whether the new entropy we propose in this paper is extensive.
Its group structure, once again, ensures that this property holds for a suitable asymptotic occupation
law W = W (N) of phase space. A general result proven in [14] is that a sufficient condition for an
entropy of the form (17) to be extensive on the uniform distribution is that

lnW (N) ⇠ G�1(N), (47)

provided that the real function W (N) be defined for all N 2 N, with limN!1 W (N) = 1. These
requirements usually restrict the space of parameters. In our case, we observe that when pi = 1/W
for all i = 1, . . . ,W , the entropies (28), for r > 0, and (30), for r < 0 tend to the limit value

S(±)
a,b,r [1/W ] ! 2p

a2 + 4b � a
, (48)

if limN!1 W (N) = 1. In particular, for b ! 0, the entropy diverges; as a consequence of the
previous discussion, there exists a regime of extensivity, forW (N) ⇠ N� , with � = 1

a .
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If limN!1 W (N) = d 2 N, with d > 1, these entropies tend to the value

S(±)
a,b,r [1/d] ! 2 (dr � 1)

±
p
a2 + 4b (dr + 1) � a (dr � 1)

. (49)

In both cases, if b 6= 0 the limiting value is finite, independently of whetherW diverges or tends to
a constant for N ! 1. Consequently, the b 6= 0 entropies, albeit monotonically increasing functions
ofW , cannot be extensive.

If we look at the classification scheme proposed by Hanel and Thurner for the uniform distribution,
we can see that this entropy, with a, b 6= 0, has scaling exponents c = 1 and d = 0, which is the same
universality class as that of the entropy Sq, for q > 1 [8].

A natural question emerges, concerning the kind of systems such type of entropies could be useful
for.3 A possible answer is that the present formalism could be relevant whenever treating systems
highly connected, where the addition of a new degree of freedom essentially does not change the
value of the entropy, for a large number of degrees of freedom. For example, if we add a molecule
of water in a glass of liquid water, after enough time the molecule will move everywhere inside the
glass. However, if we release amolecule of water in a glass filled with ice, the additional molecule will
eventually freeze. The increase of the entropy value is substantially lower in the latter case than in the
former.

One can also consider different scenarios, borrowed from social sciences, where no thermodynam-
ical or energetical aspects are involved, and extensivity is a priori not required. Again such entropies,
that increase very little with the addition of new degrees of freedom, could play a relevant role in de-
scribing situations where the amount of information tends to stabilize, irrespectively of the increase
of new agents involved in the information exchange.

Consequently, the multiparametric entropy Sa,b,r is compatible with both scenarios: the standard
one, where an increase of the numbers of degrees of freedom converts into an increase of the entropy,
and the ‘‘anomalous’’ one, where an increase of the number of particles essentially freezes the system,
by confining it in the phase space. Excepting for Sq for q > 1 and S� for � < 0 (see [13] and references
therein), this flexibility in the limit W ! 1 is seemingly not shared by the entropies typically used
in the literature.
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