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We propose a modification of a recently introduced generalized translation operator,
by including a q-exponential factor, which implies in the definition of a Hermitian
deformed linear momentum operator p̂q , and its canonically conjugate deformed
position operator x̂q . A canonical transformation leads the Hamiltonian of a position-
dependent mass particle to another Hamiltonian of a particle with constant mass in a
conservative force field of a deformed phase space. The equation of motion for the
classical phase space may be expressed in terms of the generalized dual q-derivative.
A position-dependent mass confined in an infinite square potential well is shown as
an instance. Uncertainty and correspondence principles are analyzed. C© 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4884299]

INTRODUCTION

Systems consisting of particles with position-dependent mass have been discussed by several
researchers since few past decades. Applications of such systems may be found in semiconductor
theory,1 4He impurity in homogeneous liquid 3He,2 nonlinear optics,3 studies of inversion potential
for NH3 in density functional theory,4 particle physics,5 and astrophysics.6

Recently, Costa Filho et al.7, 8 introduced a generalized translation operator which produces
infinitesimal displacements related to the q-algebra,9, 10 i.e.,

T̂γ (ε)|x〉 ≡ |x + ε + γ xε〉, (1)

where γ is a parameter with dimension of inverse length. This operator leads to a generator op-
erator of spatial translations corresponding to a position-dependent linear momentum given by
p̂γ = (1̂ + γ x̂) p̂, and consequently a particle with position-dependent mass. It has been used to
solve problems of particles with position-dependent mass in the quantum formalism,11, 12 and more
recently, it has also been applied to analyze systems with position-dependent effective mass in
nanostructures.13, 14 More specifically, quantum confinement in Si and Ge nanostructures were ex-
perimentally investigated, and the theoretical treatment with the deformed translation operator has
lead to a change in the effective mass and an increased confinement energy. The authors have found
a relation between the parameter γ and the nanostructure diameter. This linear momentum operator
is not Hermitian, which led Mazharimousavi15 to introduce a modification in its definition. Other
generalizations have also appeared in the literature, particularly a nonlinear version of Schrödinger,
Klein-Gordon, and Dirac equations.16–19

The paper is organized as follows: we first present a brief review of some properties of the
q-algebra. Next, we propose a modification of the translation operator, and an alternative deduction
for the generator of generalized infinitesimal translations. We also present a generalized space
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operator in which is valid the canonical commutation relation with the generalized linear momentum
operator already introduced. These operators constitute a canonical transformation which maps a
particle with constant mass into another one with position-dependent mass. We analyze the classical
analogues of these operators and compare the results of classical and quantum formalisms through
the correspondence principle. Specifically, the problem of a particle with position-dependent mass
confined in an infinite square well is considered, as well as the uncertainty principle for this problem.

DEFORMED FUNCTIONS AND DERIVATIVES

The q-exponential is a deformation of the ordinary exponential function, and it plays a central
role in nonextensive statistical mechanics, defined by

expq x ≡ [1 + (1 − q)x]1/(1−q)
+ , (2)

where the dimensionless parameter q controls the generalization of the exponential function, and
[A]+ ≡ max {A, 0}.20 The q-exponential function satisfies exp q(a)exp q(b) = exp q(a ⊕q b) and
exp q(a)/exp q(b) = exp q(a �q b), with ⊕ q representing the q-addition operator defined by a ⊕q b
≡ a + b + (1 − q)ab, and �q the q-subtraction, a �q b ≡ a−b

1+(1−q)b , with b �= 1/(q − 1) (a and
b shall be dimensionless quantities).9, 10 The q-logarithm function is the inverse of q-exponential
function, and it is given by

lnq x ≡ x1−q − 1

1 − q
(x > 0). (3)

It is possible to define a generalization of the derivative operator, based on these deformed
algebraic operators.10 Particularly,

Dq f (u) ≡ lim
u′→u

f (u′) − f (u)

u′ �q u

= lim
�u→0

f (u ⊕q �u) − f (u)

�u

= [1 + (1 − q)u]
d f (u)

du
,

(4)

of which the q-exponential is an eigenfunction. There is a dual q-derivative,

D̃q f (u) ≡ lim
u′→u

f (u′) �q f (u)

u′ − u

= 1

1 + (1 − q) f (u)

d f (u)

du
,

(5)

that satisfies D̃q lnq u = 1/u. These operators obey Dq y(x) = [D̃q x(y)]−1, ∀q. The ordinary deriva-
tive is recovered for q = 1 in both cases (ordinary derivative is self-dual), as well as dy/dx
= (dx/dy)− 1.

The deformed derivative operator Dqf(u) may be understood as the rate of variation of the
function f(u) with respect to a nonlinear variation of the independent variable u, u ⊕q �u = u +
�u + (1 − q)u�u. Similarly, the deformed derivative operator D̃q f (u) may be viewed as the rate
of a nonlinear variation of the function f(u) with respect to the ordinary variation of the independent
variable u.

Furthermore, considering a real variable u, we have

dqu ≡ lim
u′→u

u′ �q u = du

1 + (1 − q)u
= duq (6)

with

uq ≡ ln[1 + (1 − q)u]/(1 − q) = ln(expq u). (7)
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We shall call uq a deformed q-number, for brevity. This deformed number has already been defined in
Ref. 21. These relations express an interesting feature: the (dual) q-derivative of the ordinary depen-
dent variable f with respect to the ordinary independent variable u is equal to the ordinary derivative
of the ordinary (deformed) dependent variable f ( fq) with respect to the deformed (ordinary) inde-
pendent variable uq (u), i.e., Dqf(u) = df(u)/dqu = df(u)/duq (D̃q f (u) = dq f (u)/du = d fq (u)/du).
Let f(u) = u, we get the curious relation Dqu = [D̃qu]−1 = 1 + (1 − q)u.

GENERALIZED TRANSLATION, LINEAR MOMENTUM, AND SPACE OPERATORS

We introduce a non-normalized generalized phase factor in Eq. (1) as

T̂q (ε)|x〉 ≡ expq

[
ig(x)ε

�

] ∣∣∣∣x + ε + 1 − q

ξ
xε

〉
= expq

[
ig(x)ε

�

] ∣∣ξ (x̃ ⊕q ε̃
)〉, (8)

where g(x) is a continuous function with dimension of linear momentum (g(x) = 0 recovers
Eq. (1)), ε is an infinitesimal displacement, ξ is a characteristic length, and x̃ ≡ x/ξ is the di-
mensionless position. The symbol γ in Eq. (1) (as it appears in Ref. 7) has been here replaced with
γ q ≡ (1 − q)/ξ , once the q-addition shall be used with dimensionless variables. The usual case is
recovered for q → 1 (γ q → 0).

The q-exponential of an imaginary number yields generalized trigonometric functions21 that can
be written as exp q( ± ix) = ρq(x) exp 1( ± ix), with ρ2

q (x) = expq (i x) expq (−i x) = expq [(1 − q)x2]
(x ∈ R); ρq(x) is the norm of the q-exponential. q = 1 recovers the usual exponential function, and
the q-exponential factor reduces to a usual phase factor with unitary norm.

Similar to the operator defined by Eq. (1), T̂q (ε) also forms a group, i.e.,

T̂q (ξdx̃1)T̂q (ξdx̃2)|0〉 = T̂q (ξ (dx̃1 ⊕q d x̃2))|0〉. (9)

Application of the operator T̂q (ε) on state |0〉, repeated n times, leads to

T̂ n
q (ε)|0〉 = expq

[
n �q

ig(x)ε

�

]
|n �q ε〉, (10)

where n �q x is a generalized product:10

n �q x = 1

1 − q

{[
1 + (1 − q)x

]n − 1
}
. (11)

(Not to confound the generalized product n �q x with another generalization, frequently known
as q-product, a ⊗q b ≡ sign(a)sign(b)[|a|1−q + |b|1−q − 1]1/(1−q)

+ .9, 10) This expression may be an-
alytically extended for n ∈ R. Particularly, for x = 1, n �q 1 is identified with the Heine deformed
number (see Refs. 22 and also 23 for a possible connection with quantum groups).

Let |ψε〉 ≡ T̂q (ε)|ψ〉. The effect of the operator T̂q (ε) on state |ψ〉 is

|ψε〉 = T̂q (ε)
∫

|x〉〈x |ψ〉dx

=
∫

expq

[
ig(x)ε

�

]
|ξ (x̃ ⊕q ε̃)〉〈x |ψ〉dx . (12)

If ψε(x) ≡ 〈x |T̂q (ε)|ψ〉, we have

ψε(x) = expq

[
iε

�
g

(
ξ (x̃ �q ε̃)

)] ψ(ξ (x̃ �q ε̃))

1 + γqε
, (13)

where ψ(x) = 〈x|ψ〉.
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We set forward a simple application: let |ψ〉 be a normalized Gaussian state with width σ , and
centered at x = 0, in the coordinate basis {|x〉}. The effect of T̂q (ε) on |ψ〉 leads to

ψε(x) = e−(x−ε)2/2σ 2
q

σq

√
2π

expq

[
iε

�
g

(
x − ε

1 + γqε

)]
, (14)

with σ q = σ (1 + γ qε), which is normalized up to O(ε). If g(x) = 0, the effect of T̂q (ε) on a
Gaussian packet yields a shift in x and an increase in its width for 1 + γ qε > 0, or a decrease for
1 + γ qε < 0.

Let the expected value 〈x̂〉ε = ∫
ψ∗

ε (x ′)x ′ψε(x ′)dx ′, by changing the variable of integration
x = ξ (x̃ ′ �q ε̃), we have

〈x̂〉ε =
∫

dxψ∗(x)(x + ε + γq xε)ψ(x)
e(1−q)ε2g2(x)/�

2

q

1 + γqε
. (15)

The first order approximation in ε is represented by the q-addition

〈x̂〉ε = 〈x̂〉 + ε + γq〈x̂〉ε. (16)

Equation (9) naturally suggests the definition

T̂q (ε) ≡ expq

(
− iε p̂q

�

)
, (17)

p̂q is the generator of generalized infinitesimal translations. Expanding T̂q (ε), and ψε(x) (Eq. (13)),
up to the first order in ε, we get

T̂q (ε) = 1̂ − iε p̂q

�
+ . . . , (18)

ψε(x) = (1 − γqε + . . .)(1 + εA + . . . .)

×
[
ψ(x) − ε(1 + γq x)

dψ

dx
+ . . .

]
, (19)

where A is a constant taken from the expansion of exp q(ig(x)ε/�) in powers of ε, and we have

〈x | p̂q |ψ〉 = −i�
d

dx
[(1 + γq x)ψ(x)] + i�Aψ(x). (20)

Imposing p̂q as Hermitian implies A = γ q/2, thus

p̂q = p̂(1̂ + γq x̂) + 1

2
i�γq 1̂ = (1̂ + γq x̂) p̂ − 1

2
i�γq 1̂, (21)

i.e.,

p̂q = (1̂ + γq x̂) p̂

2
+ p̂(1̂ + γq x̂)

2
, (22)

with [x̂, p̂] = i�1̂.
We introduce a generalized space operator x̂q such that [x̂q , p̂q ] = i�1̂. Recalling the property

[ f (x̂), p̂] = i� f ′(x̂), with x̂q = f (x̂), we arrive at

x̂q = ln(1̂ + γq x̂)

γq
= ξ ln[expq (x̂/ξ )]. (23)

The transformation (23) has already appeared in a different context, as the real part of a transformation
of a complex number z into a kind of generalized complex number ζ q = ln expq z, which allows
expressing the q-Euler formula as expq z = exp1 ζ q.21 Even before that, the transformation (23) had
also appeared connecting Tsallis (nonadditive) entropy with Rényi (additive) entropy.24
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CLASSICAL ANALOG FOR DEFORMED OPERATORS

Equations (22) and (23), that naturally emerge from a nonlinear space, form a canonical trans-
formation that maps the Hamiltonian K̂ (x̂q , p̂q ) of a particle with constant mass into another one,
Ĥ (x̂, p̂), with a particle of position-dependent mass.

According to Ehrenfest’s theorem, the time evolution of the expectation values of the space x̂
and linear momentum p̂ operators are given, respectively, by

d〈x̂〉
dt

= 〈(1̂ + γq x̂)2 p̂〉
2m

+ 〈 p̂(1̂ + γq x̂)2〉
2m

(24a)

and

d〈 p̂〉
dt

= −γq〈(1̂ + γq x̂) p̂2〉
2m

− γq〈 p̂2(1̂ + γq x̂)〉
2m

−
〈

dV

dx̂

〉
, (24b)

where we have used the following commutation relations:

[x̂, p̂2
q ] = i�(1̂ + γq x̂)2 p̂ + i� p̂(1̂ + γq x̂)2 (25)

and

[ p̂, p̂2
q ] = −i�γq (1̂ + γq x̂) p̂2 − i�γq p̂2(1̂ + γq x̂). (26)

The operators x̂q and p̂q present the following classical analogs:

pq = (1 + γq x)p (27a)

and

xq = ln(1 + γq x)

γq
= ξ ln

[
expq (x/ξ )

]
, (27b)

with {xq, pq}(x, p) = 1. The generating function of the canonical transformations given by Eqs. (27)
is �(xq , p) = −p(eγq xq − 1)/γq .

As an application, let us address a constant mass particle and linear momentum pq under the
influence of a conservative force with potential V (xq ), whose Hamiltonian is

K (xq , pq ) = p2
q

2m
+ V (xq ). (28)

The canonical transformations (27) lead to the new Hamiltonian (see, for instance, Ref. 25),

H (x, p) = p2

2m(x)
+ V (x), (29)

where the particle mass depends on the position x as

m(x) = m

(1 + γq x)2
. (30)

The equation of motion is

ṗ = −γq (1 + γq x)p2

m
− dV (x)

dx
, (31)

with p = m(x)ẋ , thus

m

[
ẍ

(1 + γq x)2
− γq ẋ2

(1 + γq x)3

]
= −dV (x)

dx
. (32)

This equation may be conveniently rewritten as

m D̃2
γq ,t x(t) = F(x), (33)
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i.e., a deformed Newton’s law for a space with nonlinear displacements, where D̃q,u f (u) is the dual
q-derivative defined by Eq. (5). The second q-derivative must be taken as

D̃2
q,u f (u) = 1

1 + (1 − q) f (u)

d

du

[
1

1 + (1 − q) f (u)

d f

du

]
, (34)

similar to what was done in the (different) generalized derivative introduced by Ref. 16. (That
generalized derivative is defined as Dq f (u) = [ f (u)]1−qd f (u)/du, and, for the particular case
f(u) = expq (u), it coincides with Eq. (4).)

The generalized displacement of a position-dependent mass in a usual space (dqx) is mapped

into a constant mass in a deformed space with usual displacement (dxq): dq x ≡ ξ
[(

x+dx
ξ

)
�q

(
x
ξ

)]
= dx

1+γq x ≡ dxq . The temporal evolution is governed by the generalized dual derivative, D̃γq ,t x

= 1
1+γq x

dx
dt .

The probability Pclassicdx ∝ dx/v to find a classical particle with position-dependent mass given
by Eq. (30), between x and x + dx, constrained to 0 ≤ x ≤ L, and free of forces, is

Pclassicdx = γq

(1 + γq x) ln(1 + γq L)
dx . (35)

Note that the probability density Pclassic is independent of the initial condition, and the uniform
distribution Pclassic → 1/L is recovered in the limit γ q → 0.

The first and second moments of both position and momentum of the classical distribution are

x = γq L − ln(1 + γq L)

γq ln(1 + γq L)
, (36a)

x2 = γ 2
q L2 − 2γq L + 2 ln(1 + γq L)

2γ 2
q ln(1 + γq L)

, (36b)

and

p = 0, (36c)

p2 = 2m E
[(1 + γq L)2 − 1]

2(1 + γq L)2 ln(1 + γq L)
, (36d)

where limγq→0 x = L/2, limγq→0 x2 = L2/3, limγq→0 p2 = 2m E , and E is the energy of the particle.

PARTICLE CONFINED IN AN INFINITE SQUARE WELL

Consider a system described by the Hamiltonian operator K̂ in the coordinate basis {|x̂q〉}. The
time independent Schrödinger equation for the free particle in the basis {|x̂q〉} is

1

2m
p̂2

q |ψ〉 = E |ψ〉. (37)

Using Eq. (22), we have

− �
2(1 + γq x)2

2m

d2ψ

dx2
− �

2γq (1 + γq x)

m

dψ

dx

−�
2γ 2

q

8m
ψ(x) = Eψ(x), (38)

which can be rewritten in the form

u2 d2ψ(u)

du2
+ au

dψ(u)

du
+ bψ(u) = 0, (39)

with u(x) = 1 + γ qx, a = 2, and b = 2m
�2

(
E + �

2γ 2
q

8m

)
.
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FIG. 1. Wave functions ψn(x) (left column) and probability densities |ψn(x)|2 (right column), conveniently scaled, for a
particle confined in an infinite square well within a generalized space for different values of γ qL (indicated, usual case γ qL
= 0 is shown, for comparison). (a) and (b): n = 1 (ground state), (c) and (d): n = 2 (first exited state), (d) and (f): n = 3
(second exited state).

Similar to what was done in Refs. 7 and 15, Eq. (38) corresponds to a position-dependent mass
particle according to Eq. (30). The solution of Eq. (38) is given by

ψ(x) = ψ0√
1 + γq x

exp

[
± ik

γq
ln(1 + γq x)

]
= ψ0√

1 + (1 − q)x/ξ

[
expq (x/ξ )

]±ikξ
(40)

and presents a singularity at x = − 1/γ q.
For a particle inside, an infinite square potential well between x = 0 and x = L, the eigenfunctions

and energies of the particle are, respectively, given by

ψn(x) = Aq,n√
1 + γq x

sin

[
kq,n

γq
ln(1 + γq x)

]
(41)

for 0 ≤ x ≤ L, and ψn(x) = 0 otherwise, and

En = �
2π2γ 2

q n2

2m ln2(1 + γq L)
, (42)
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FIG. 2. Probability density contour P(x, y) = |ψn1 (x)ψn2 (y)|2 for a particle confined in a bidimensional box within a
generalized space with γ qL = 2, and (a) (n1, n2) = (1, 1), (b) (n1, n2) = (1, 2), (c) (n1, n2) = (2, 2), (d) (n1, n2) = (3, 3).
Color scale ranges from blue (low probabilities) to red (high probabilities).

with A2
q,n = 2γq/ ln(1 + γq L), kq, n = nπγ q/ln (1 + γ qL) (n is a integer number). The wave function

differs from those found in Refs. 7 and 15, though it is similar to that obtained in Ref. 26. Nevertheless,
the energy levels are the same as those of Ref. 7.

Figure 1 shows the wave functions and their respective probability densities for the three
states of lowest energy, and Figure 2 illustrates four instances of the probability density P(x, y)
= |ψn1 (x)ψn2 (y)|2 of a particle with position-dependent mass in a bidimensional box. It can be
seen the asymmetry introduced by the position-dependent mass—the probability to find the particle
around x = 0 increases as γ qL increases.

These results reduce to the usual problem of a particle confined in an infinite square well in the
limit γ q → 0. We can see from Figure 3 that the average value of the quantum probability density
approaches the classical one for large quantum numbers (here exemplified with n = 10), consistent
with the correspondence principle.

FIG. 3. Probability density of a particle confined in an infinite square well of a generalized space with γ qL = 10 at state
n = 10. The upper bound (dotted curve) is given by 2γ qL/[(1 + γ qx)ln (1 + γ qL)]. The dashed curve is the classical case,
Eq. (35).
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FIG. 4. [〈(�x̂)2〉〈(� p̂)2〉]1/2/� for different states of a confined particle, as a function of γ qL, for states n = 1, 2, 3.

The expectation values of 〈x̂〉, 〈x̂2〉, 〈 p̂〉, and 〈 p̂2〉 for the particle in a one-dimensional infinite
square well are given by

〈x̂〉 = γq L − ln(1 + γq L)

γq ln(1 + γq L)
− L ln(1 + γq L)

ln2(1 + γq L) + (2πn)2
, (43a)

〈x̂2〉 = γ 2
q L2 − 2γq L + 2 ln(1 + γq L)

2γ 2
q ln(1 + γq L)

+1 − (1 + γq L)2 ln(1 + γq L)

2γ 2
q [ln2(1 + γq L) + n2π2]

+ 2γq L ln(1 + γq L)

γ 2
q [ln2(1 + γq L) + 4n2π2]

, (43b)

〈 p̂〉 = 0, (43c)

〈 p̂2〉 = �
2k2

q,n[(1 + γq L)2 − 1]

2(1 + γq L)2 ln(1 + γq L)

[
1 + γ 2

q

4(k2
q,n + γ 2

q )

]
. (43d)

Clearly, we can see that in the limit n → ∞, Eqs. (43) coincide with Eqs. (36), obtained by
the analogous problem described in the classical formalism. Moreover, one can easily show that
the limit γ q → 0 recovers the usual results 〈x̂〉 → L

2 , 〈x̂2〉 → L2

3 − L2

2n2π2 , and 〈 p̂2〉 → �
2k2

n with
En = �

2k2
n/2m (kn ≡ k1, n = 2πn/L).

Since the operators x̂ and p̂ are Hermitian and canonically conjugated, the uncertainty relation
is satisfied for different values of γ q, i.e., 〈(�x̂)2〉〈(� p̂)2〉 ≥ �

2/4 (see Figure 4). Note that the
product 〈(�x̂)2〉〈(� p̂)2〉 is minimum for γ q = 0.

CONCLUSIONS

The modified generalized translation operator T̂q (ε) (Eq. (8)) preserves the properties of that
introduced by Ref. 7, Eq. (1). The corresponding generalized linear momentum operator p̂q , which
is the generator of these translations, is Hermitian, as suggested by Ref. 15. Hermiticity permits
the existence of classical analogs of the operators. The canonical transformation (x̂, p̂) → (x̂q , p̂q )
leads the Hamiltonian of a system with position-dependent mass given by m(x) = m/(1 + γ qx)2

to another one of a particle with constant mass. Particularly, the classical equation of motion in the
phase space may be compactly rewritten with the second dual q-derivative. We have revisited the
problem of a particle confined within an infinite square well, as discussed by Refs. 7,15, and 26. The
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results are consistent with the uncertainty and correspondence principles, as expected, once these
dynamical variables are canonical and Hermitian.
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9 L. Nivanen, A. Le Méhauté, and Q. A. Wang, Rep. Math. Phys. 52, 437 (2003).

10 E. P. Borges, Physica A 340, 95 (2004).
11 M. A. Rego-Monteiro and F. D. Nobre, Phys. Rev. A 88, 032105 (2013).
12 M. Vubangsi, M. Tchoffo, and L. C. Fai, Phys. Scr. 89, 025101 (2014).
13 E. G. Barbagiovanni, D. J. Lockwood, N. L. Rowell, R. N. Costa Filho, I. Berbezier, G. Amiard, L. Favre, A. Ronda, M.

Faustini, and D. Grosso, J. Appl. Phys. 115, 044311 (2014).
14 E. G. Barbagiovanni and R. N. C. Filho, Physica E 63, 14 (2014).
15 S. H. Mazharimousavi, Phys. Rev. A 85, 034102 (2012); Phys. Rev. A 89, 049904(E) (2014) (erratum).
16 F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, Phys. Rev. Lett. 106, 140601 (2011).
17 F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, Europhys. Lett. 97, 41001 (2012).
18 A. R. Plastino and C. Tsallis, J. Math. Phys. 54(4), 041505 (2013).
19 M. A. Rego-Monteiro and F. D. Nobre, J. Math. Phys. 54, 103302 (2013).
20 C. Tsallis, Quimica Nova 17, 468 (1994).
21 E. P. Borges, J. Phys. A: Math. Gen. 31, 5281 (1998).
22 T. C. P. Lobao, P. G. S. Cardoso, S. T. R. Pinho, and E. P. Borges, Braz. J. Phys. 39, 402 (2009).
23 C. Tsallis, Phys. Lett. A 195, 329 (1994).
24 C. Tsallis, J. Stat. Phys. 52, 479 (1988).
25 S. Cruz y Cruz and O. Rosas-Ortiz, SIGMA 9, 004 (2013).
26 A. G. M. Schmidt, Phys. Lett. A 353, 459 (2006).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

191.200.34.42 On: Wed, 25 Jun 2014 02:04:17

http://dx.doi.org/10.1103/PhysRevB.27.7547
http://dx.doi.org/10.1103/PhysRevB.50.4248
http://dx.doi.org/10.1007/s12648-012-0100-8
http://dx.doi.org/10.1016/S0009-2614(98)01017-3
http://dx.doi.org/10.1103/PhysRevLett.56.1305
http://dx.doi.org/10.1086/159752
http://dx.doi.org/10.1103/PhysRevA.84.050102
http://dx.doi.org/10.1209/0295-5075/101/10009
http://dx.doi.org/10.1016/S0034-4877(03)80040-X
http://dx.doi.org/10.1016/j.physa.2004.03.082
http://dx.doi.org/10.1103/PhysRevA.88.032105
http://dx.doi.org/10.1088/0031-8949/89/02/025101
http://dx.doi.org/10.1063/1.4863397
http://dx.doi.org/10.1016/j.physe.2014.05.005
http://dx.doi.org/10.1103/PhysRevA.85.034102
http://dx.doi.org/10.1103/PhysRevA.89.049904
http://dx.doi.org/10.1103/PhysRevLett.106.140601
http://dx.doi.org/10.1209/0295-5075/97/41001
http://dx.doi.org/10.1063/1.4798999
http://dx.doi.org/10.1063/1.4824129
http://dx.doi.org/10.1088/0305-4470/31/23/011
http://dx.doi.org/10.1590/S0103-97332009000400009
http://dx.doi.org/10.1016/0375-9601(94)90037-X
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.3842/SIGMA.2013.004
http://dx.doi.org/10.1016/j.physleta.2006.01.010

