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Displacement operator for quantum systems with position-dependent mass
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A translation operator is introduced to describe the quantum dynamics of a position-dependent mass particle in
a null or constant potential. From this operator, we obtain a generalized form of the momentum operator as well
as a unique commutation relation for x̂ and p̂γ . Such a formalism naturally leads to a Schrödinger-like equation
that is reminiscent of wave equations typically used to model electrons with position-dependent (effective)
masses propagating through abrupt interfaces in semiconductor heterostructures. The distinctive features of our
approach are demonstrated through analytical solutions calculated for particles under null and constant potentials
like infinite wells in one and two dimensions and potential barriers.
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The concept of noncommutative coordinates as a way of
removing divergences in field theories through a universal
invariant length parameter was originally proposed by Heisen-
berg [1]. This idea led to space-time quantization [2], where
a noncommutative space operator is defined to allow for the
development of a theory invariant under Lorentz transforma-
tion, but not invariant under translations. Accordingly, the last
property leads to continuous space-time coordinates. Since
then, the need for a fundamental length scale became evident
in different areas of physics, such as relativity [3], string theory
[4], and quantum gravity [5]. In the particular case of quantum
mechanics, this minimum length scale yields a modification in
the position momentum commutation relationship [6–9].

Previous studies have shown that the modification of
canonical commutation relations or any modification in the
underlying space typically results in a Schrödinger equation
with a position-dependent mass [10]. This approach has been
rather effective in the description of electronic properties
of semiconductor [11] and quantum dots [12]. Under this
framework, mass is turned into an operator that does not
commute with the momentum operator. This fact immediately
raises the problem of the ordering of these operators in the
kinetic energy operator [13]. In this Rapid Communication,
we introduce the concept of nonadditive spatial displacement
in the Hilbert space. This property not only changes the
commutation relation for position and momentum, which
leads to a modified uncertainty relation, but also reveals a
Schrödinger-like differential equation that can be interpreted
in terms of a particle with position-dependent mass, leading to
a natural derivation of the kinetic operator for such problems.

Consider a well-localized state around x that can be
changed to another well-localized state around x + a + γ ax

with all the other physical properties unchanged, where the
parameter γ is the inverse of a characteristic length that deter-
mines the mixing between the displacement and the original
position state. For γ �= 0, the displacement depends explicitly
on the position of the system, while γ = 0 corresponds to
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a standard translation. This process can be mathematically
expressed in terms of the operator Tγ (a) as

Tγ (a)|x〉 = |x + a + γ ax〉. (1)

The composition of displacements through Tγ in terms of two
successive infinitesimal translations results in

Tγ (dx ′)Tγ (dx ′′) = Tγ (dx ′ + dx ′′ + γ dx ′dx ′′), (2)

which clearly shows the nonadditivity characteristic of the
operator. It is also important to note that the inverse operator
is given by

T −1
γ (dx)|x〉 =

∣∣∣∣ x − dx

1 + γ dx

〉
. (3)

Another relevant property is that Tγ becomes an identity
operator when the infinitesimal translation goes to zero,

lim
dx→0

Tγ (dx) = 11. (4)

At this point we observe that, if we consider γ = 1 − q,
the operator Tγ (x) is the infinitesimal generator of the group
represented by the so-called q-exponential function originally
defined as [14,15]

expq(x) ≡ [1 + (1 − q)x]
1

1−q , (5)

where expq(a) expq(b) = expq[a + b + (1 − q)ab] and
exp1(a) = exp(a). The definition (5) represents a crucial
ingredient in the mathematical formalism of the generalized
Tsallis thermostatistics [16] and its several applications related
with nonadditive physical systems [17–19]. Associating
Tγ (dx) with the q exponential and expanding it to first order
in dx leads to

Tγ (dx) ≡ 11 − ip̂γ dx

h̄
, (6)

where p̂γ is a generalized momentum operator and we are
using the fact that momentum is a generator of translation.
Now considering that

x̂Tγ (dx)|x〉 = (x + dx + γ xdx)|x + dx + γ xdx〉 (7)

and Tγ (dx)x̂|x〉 = x|x + dx + γ xdx〉, we obtain the commu-
tation relation

[x̂,Tγ (dx)]|x〉 � dx(1 + γ x)|x〉, (8)
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where the error is in second order in dx. Then we get

[x̂,p̂γ ] = ih̄(1 + γ x), (9)

with the following uncertainty relation:

�x�pγ � h̄

2
(1 + γ 〈x〉), (10)

which expresses the fact that the uncertainty in a measurement
depends on γ as well as on the average position of the
particle. It is worth mentioning that a similar commutation
relation is used to describe the so-called “q-deformed quantum
mechanics” [20].

Next, it is straightforward to obtain an expression for the
modified momentum operator in the x basis using the definition
(6)

p̂γ |α〉 = −ih̄(1 + γ x)
d

dx
|α〉. (11)

From (11) the modified momentum operator can be shortened
to p̂γ = −ih̄Dγ , with

Dγ ≡ (1 + γ x)
d

dx
(12)

being a deformed derivative in space. In the x representation,
the corresponding time-dependent Schrödinger equation is

ih̄
∂

∂t
〈x|α,t〉 = 〈x|H |α,t〉, (13)

and if we consider the Hamiltonian operator to be H =
p̂2

γ /2m + V (x), we arrive at the following differential equa-
tion:

ih̄
∂

∂t
ψ(x,t) = −

(
h̄2

2m

)
D2

γ ψ(x,t) + V (x)ψ(x,t). (14)

We now focus our attention on the case of a single spinless
particle system. If the wave function ψ(x,t) is normalized, it
is possible to define a probability density ρ(x,t) = |ψ(x,t)|2.
Using Eq. (14) it is straightforward to derive a modified
continuity equation,

∂ρ

∂t
+ Dγ Jγ = 0, (15)

where the probability flux is given by

Jγ = h̄(1 + γ x)

2mi

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
. (16)

For standing waves in a null potential, the wave function φ(x)
satisfying (14) obeys

− h̄2

2m
D2

γ φ(x) = Eφ(x), (17)

or

h̄2

2me

d2φ(x)

dx2
+ h̄2

2

d

dx

(
1

2me

)
dφ(x)

dx
+ Eφ(x) = 0, (18)

with me ≡ m/(1 + γ x)2 being the particle’s effective mass, in
perfect analogy with problems involving a position-dependent
mass particle in semiconductor heterostructures [11]. Here this
particular expression for the effective mass arises naturally
from the nonadditive translation operator. Equation (18) can

then be rewritten in the form of the Cauchy-Euler equation
[21],

u(x)2 d2φ(x)

du2
+ au(x)

dφ(x)

du
+ bφ(x) = 0, (19)

with u(x) = (1 + γ x), a = 1, and b = 2mE/(h̄2γ 2). The
general solution for Eq. (19) is

φ(x) = exp

[
± i

k

γ
ln (1 + γ x)

]
, (20)

where k is a continuous variable regarding the particle’s wave
vector. Although the wave function for a free particle is not
the usual plane wave, it is also not normalizable and gives a
continuous energy spectra for the particle, E = h̄2k2

2m
, that is

independent of γ . For this free particle, the probability flux Jγ

is the same as an object moving at the classical velocity h̄k/m.
If we now assume that the particle is confined to a one-

dimensional infinite well of length L, the boundary conditions
φ(0) = 0 and φ(L) = 0 lead to the wave function,

φn(x) =
{

An sin
[

kn

γ
ln (1 + γ x)

]
, 0 < x < L,

0, otherwise,
(21)

where the wave vector is now quantized,

kn = nπγ

ln(1 + γL)
, with n = 1,2,3,4, . . .. (22)

The energy for a confined particle can then be written as

En = h̄2n2π2γ 2

2m ln2(1 + γL)
, (23)

where ln (1 + γL)/γ corresponds to an effective di-
lated/contracted well that approaches L as γ → 0.

In Fig. 1 we show how the energy levels of a particle
confined to an infinite well increase with n for different
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FIG. 1. The energy for a particle confined in an infinite well. The
circles represent the energy for γ = 0, the squares γ = −0.5, and the
triangles γ = 0.5. The energies are discrete; the solid lines are just
guides for the eye. The inset shows the energy against γ for the three
lowest levels.
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FIG. 2. The average position 〈x〉 of a particle confined in an
infinite quantum well. The solid line gives the average value of x for
n = 1, the dashed line is for n = 2, the case n = 3 is the dashed-dotted
line, and the large quantum number n = 20 is represented by the
dotted line. As n increases the asymmetry of the wave function is
reduced, 〈x〉 → 0.5.

values of γ . Since the effective mass, me, in our description
decreases with γ and since the lower the mass, the bigger
is the kinetic energy of the particle, it means that the energy
En increases with γ , as depicted in the inset of Fig. 1. The
same reasoning can be applied to the size of the well; namely,
the increase (decrease) of γ above (below) zero leads to a
more pronounced contraction (dilation) of its effective length.
The asymmetry caused by the parameter γ can be adequately
quantified in terms of the average position of the particle in
the box, calculated as 〈x〉 = ∫ L

0 φ∗xφdx. From (21), we obtain
the expression

〈x〉 = L

2

[
γ 2 + 4k2

n

4
(
γ 2 + k2

n

) − 3

2

γ

L
(
γ 2 + k2

n

)]
, (24)

and the average of the modified momentum is 〈pγ 〉 = 0.
Figure 2 shows the average position of the particle against
γ . As expected, when γ = 0 the average value is always 0.5.
The ground state is the most affected by the nonadditivity
of the space. As the quantum number increases, for example
n = 20, the particle’s average position becomes independent
of γ , 〈x〉 → 0.5.

The position operator in other space directions still com-
mutes. Therefore, the theory developed here can be easily
extended for two and three dimensions. For example, when
considering a square section of an infinite well, the cor-
responding wave function can be expressed as the product

(x,y) = φ1(x)φ2(y), where φ1(x) and φ2(y) are the wave
functions in the x and y directions, respectively. The contour
plots for the probability density ρ(x,y) of a particle moving in
a two-dimensional box are shown in Fig. 3(a) for nx = ny = 1,
in Fig. 3(b) for nx = 1, ny = 2, in Fig. 3(c) for nx = ny = 2,
and in Fig. 3(d) for nx = ny = 20, where we have used γ = 1
in all panels. The ground state shows clearly that the particle

(a) (b)

(c) (d)

FIG. 3. (Color online) The contour plot of the probability density
for a particle in a two-dimensional box for γ = 1, where the quantum
numbers used are (a) nx = ny = 1, (b) nx = 1, ny = 2, (c) nx = ny =
2, and (d) nx = ny = 20. The probability increases from blue to red.

spends more time out of the box center. These results also
indicate that the correspondence principle remains valid, as
for nx = ny = 20 (large quantum numbers) the probability to
find a particle is practically the same everywhere in the square
well [see Fig. 3(d)].

From the above examples, for a null (free particle) or a con-
stant potential (infinite one-dimensional and two-dimensional
well), the effect of γ on the wave function of the particle is to
stretch or contract the space variable. In this way, we expect
the same effect for a particle subjected to a potential barrier
with height V0 > 0, and located between x = 0 and x = a.
The wave function becomes a linear combination of Eq. (20),

φ(x) =

⎧⎪⎨
⎪⎩

eika′ + re−ika′
, for x < 0,

Aeik′a′ + Be−ik′a′
, for 0 < x < a,

teika′
, for x > a,

(25)

where k =
√

2mE/h̄2, k′ =
√

2m(E − V0)/h̄2, and we used
a′ = ln (1 + γ a)/γ for short. The coefficients A,B,r,t are
found taking the continuity of the wave function and its spatial
derivative in x = 0 and x = a. The transmission and tunneling
probability is modified by γ

T −1 = |t |2 =
⎧⎨
⎩

1 + V 2
0 sin2 k′a′

4E(E−V0) , for E > V0,

1 + V 2
0 sinh2 k′a′

4E(V0−E) , for E < V0.
(26)

Figure 4 shows the transmission probability against the energy
ratio E/V0 for different values of γ . For E > V0, we can
see that the resonances (T = 1) depend on the value of γ .
Increasing γ is analogous to decreasing the length of the barrier
potential, and the transmission probability gets closer to 1.
When E < V0, the quantum tunneling probability increases
with γ (thinner barrier). The inset in Fig. 4 shows an oscillation
with increasing period for E > V0.

Let us turn our attention to the kinetic operator developed
through the nonadditive approach introduced here. According
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FIG. 4. The transmission probability T for a rectangular barrier
for three different values of γ . The solid line is for the normal
space (γ = 0). The dotted curve is for γ = 0.5, while γ = −0.5
corresponds to the dashed curve. The inset shows the transmission
probability for three different values of energy. Here we used√

2mV0/h̄
2 = 6.

to Eq. (11), we can write the modified momentum operator as
p̂γ = (1 + γ x)p̂, so that the kinetic energy operator becomes

K̂ = 1

2

1√
me

p̂
1√
me

p̂. (27)

By comparison, this expression does not constitute a particular
case of the general kinetic energy operator proposed in
Ref. [22,23] to describe a position-dependent mass in the effec-

tive mass theory of semiconductors, namely, 1
4 (mαp̂mβp̂mδ +

mδp̂mβp̂mα), with α + β + δ = −1. To the best of our
knowledge, and despite its claimed generality in terms of the
parameters α, β, and γ , this last operator has not been deduced
from first-principles calculations.

In summary, we have introduced a nonadditive translation
operator that can be identified as a q exponential [14,15].
By means of this operator, we have developed a modified
momentum operator that naturally leads to a Schrödinger-like
equation reminiscent of the wave equation typically used to
describe a particle with position-dependent mass. First, our
results indicate that a free particle in this formalism has a
continuum energy spectrum with a wave function that is a
modified plane wave. For a constant potential, like the problem
of a particle confined to an infinite well, the energy now
depends on the parameter γ , and for potential barrier, the
peaks of maximum transmission probability are γ dependent.
In this context, we can argue that the substrate, as defined here,
behaves like a graded crystal whose local properties determine
the effective mass of the confined particle. Our approach can
therefore be useful to describe the particle’s behavior within
interface regions of semiconductor heterostructures. As future
work, we intend to investigate the behavior of the nonadditive
particle system when subjected to confining potentials that
depend explicitly on position, for example, the harmonic
oscillator or the central potential cases.
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