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Abstract – We show that a direct connection can be drawn, based on fundamental quantum
principles, between the Morse potential, extensively used as an empirical description for the atomic
interaction in diatomic molecules, and the harmonic potential. This is conceptually achieved here
through a non-additive translation operator, whose action leads to a perfect equivalence between
the quantum harmonic oscillator in deformed space and the quantum Morse oscillator in regular
space. In this way, our theoretical approach provides a distinctive first-principle rationale for
anharmonicity, therefore revealing a possible quantum origin for several related properties as, for
example, the dissociation energy of diatomic molecules and the deformation of cubic metals.

Copyright c© EPLA, 2013

The quantum harmonic oscillator (QHO) is certainly
one of the most celebrated paradigms in quantum mechan-
ics. Among its several important attributes, the QHO
can be solved exactly and has been consistently used to
approximate any potential function when Taylor expanded
around their minima till second order. Moreover, the
fact that bosons can be conceptually modeled in terms
of a QHO readily explains its broad application, rang-
ing from fundamental physics, in the description of a
quantized electromagnetic field, to condensed matter, for
vibrational properties of molecules as well as phonons
in solids. However, anharmonic potentials are very often
required to mathematically represent physical phenom-
ena. For instance, an adequate description of the vibra-
tional modes in diatomic molecules must necessarily allow
for dissociation (i.e., bond breaking) of its two bounded
atomic nuclei. This essential feature is not compatible with
the QHO model.
As originally proposed by Phillip M. Morse in 1929 [1],

the so-called Morse potential provides a much better

(a)E-mail: rai@fisica.ufc.br
(b)E-mail: geova@fisica.ufc.br
(c)E-mail: bo-sture.skagerstam@ntnu.no
(d)E-mail: soares@fisica.ufc.br

description for the potential energy of a diatomic molecule
than the QHO, being usually written as,

VM(r) =D(1− e
−αr)2, (1)

where r is the distance between atoms, D is the well depth
related to the molecule dissociation energy, and α is an
inverse length parameter related to the curvature of the
potential at the origin. As such, this potential has been
frequently used as an empirical model for anharmonic
interactions in the study of a large variety of physical
systems and conditions, including the rotating vibrational
states of diatomic molecules [2], the adsorption of atoms
and molecules by solid surfaces [3], and the deformation
of cubic metals [4]. Figure 1 shows that, according to this
potential, the energy difference between levels gradually
decreases as the level number n increases.
Variants of the Morse potential have also been utilized

to investigate the physical behavior of semiconductor
surfaces and interfaces [5,6]. Also in the study of thermal
denaturation of double-stranded DNA chains, the Morse
potential has been successfully applied to model hydrogen
bonds connecting two bases in a pair [7–10].
It is the purpose of this letter to show that the Morse

potential emerges naturally as an effective interaction

10009-p1



Raimundo N. Costa Filho et al.

-5 0 5 10 15 20 25
η

0

3

6

9

E
 

γ=-0.25

-25 -15 -5 5
 η

0

5

10

15

20

V
e
ff
 (

η
)

γ=0.0

γ=0.1

γ=0.2

D

Fig. 1: The effective potential given by Veff(η) =D(1− e
γη)2

for γ = 0 (solid line), γ = 0.1 (dashed line), and γ = 0.2 (dotted
line). Here we use ω= 1 and adopt atomic units, namely �=
m= 1. As shown, the anharmonicity of the potential depends
on γ. The energy levels for γ =−0.25 are shown in the inset.
The parameter D corresponds to the dissociation energy of the
diatomic molecule.

when a particle is subjected to a harmonic potential in a
contracted space. This physical situation is substantiated
here in terms of the following quantum operator for non-
additive translations [11,12]:

〈x|Uγ(ε)|ψ〉=ψ(x+ ε(1+ g(γx))), (2)

where there is no restriction on g(γx). The action of
Uγ(ε) on the bra vector 〈x| can therefore be expressed
as 〈x|Uγ(ε) = (Uγ(ε)

†|x〉)† = 〈x+ ε(1+ g(γx))|. For infini-
tesimal transformations we obtain that

Uγ(δx) = 1+
i

�
p̂γδx, (3)

and
i

�
〈x|p̂γ |ψ〉= (1+ g(γx))

d

dx
〈x|ψ〉, (4)

where p̂γ is the momentum operator. Considering the
particular case where the function g(γx) = γx and a finite
displacement a, we can rewrite eq. (2) as

〈x|Uγ(a)|ψ〉=ψ

(

xeγa+
eγa− 1

γ

)

, (5)

from which one can immediately recognize the action
of the dilation/contraction operator xd/dx. It is worth
mentioning that x has dimension of length and γ of the
inverse of length. Moreover, as defined in eq. (2), the non-
additive operator Uγ(a) corresponds to the infinitesimal
generator of the q-exponential function [13]

expq(u)≡ (1+ (1− q)u)
1/(1−q), (6)

where u is a dimensionless variable, and γ ∝ (1− q). Equa-
tion (6) represents a fundamental mathematical definition
for the generalized thermostatistics of Tsallis and its appli-
cations [14–21].
At this point, it is important to state that the momen-

tum operator p̂γ is Hermitian with regard to the following
scalar product:

(ψ, φ) =

∫

dx

1+ γx
ψ∗(x)φ(x), (7)

where the range of integration shall depend on the specific
boundary conditions of the system under investigation.
Equation (7) implies that the action of Uγ(a) is unitary.
Indeed, the measure of integration dx/(1+ γx) is invariant
under the action of the transformation, x→ y= xeγa+
(eγa− 1)/γ, and the decomposition of the unit operator
takes the form,

1=

∫

dx

1+ γx
|x〉〈x|. (8)

The equation of motion for a particle in the x-
representation of this dilated/contracted space corre-
sponds to a time-dependent Schrödinger-like equation in
the form,

i�
∂

∂t
ψ(x, t) =Hψ(x, t), (9)

where the Hamiltonian operator is H = p̂2γ/2m+V (x),
and the modified momentum operator can be written
for short as p̂γ =−i�Dγ , with Dγ ≡ (1+ γx)d/dx being
a deformed derivative in space. Equation (9) can then be
rewritten as

i�
∂

∂t
ψ(x, t) =−

(

�
2

2m

)

D2γψ(x, t)+V (x)ψ(x, t), (10)

or, more explicitly, as

i�
∂

∂t
ψ(x, t) = −(1+ γx)2

�
2

2m

∂2

∂x2
ψ(x, t)

−γ(1+ γx)
�
2

2m

∂

∂x
ψ(x, t)+V (x)ψ(x, t).

(11)

However, it is more convenient to express eq. (11) in
terms of a simple change of variables, as suggested by the
decomposition of the unit operator eq. (8). More precisely,
we can define a variable η through the differential equation
dη/dx= 1/(1+ γx) with boundary condition η(0) = 0,
whose solution is

η=
ln(1+ γx)

γ
. (12)

From this transformation, it is important to notice
that the “canonical coordinate” can be written as
x= (exp(γη)− 1)/γ. In this way, a finite interval [0, L]
for x corresponds to [0, L̄], with L̄= ln(1+ γL)/γ, for the
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variable η. Equation (11) rewritten in terms of the new
variable η becomes

i�
∂

∂t
φ(η, t) =−

�
2

2m

∂2

∂η2
φ(η, t)+Veff(η)φ(η, t), (13)

where φ(η, t) =ψ(x(η), t) and Veff(η) = V (x(η)). Assuming
that

φ(η, t) =Φ(η) exp (−iEt/�), (14)

the transformation (12) leads us back to a more familiar
version of the time-independent Schrödinger equation,

EΦ(η) =−
�
2

2m

d2

dη2
Φ(η)+Veff(η)Φ(η). (15)

If we now consider the problem of a standing wave in
a null potential, Veff(η) = 0, it follows that the standard
form of the plane wave solution is recovered in terms of
the transformed variable η, namely Φ(η) = e±ikη. In the
archetypal case of a harmonic oscillator, V (x) = 12mω

2x2,
the transformed effective potential becomes,

Veff(η) =
mω2

2γ2
(eγη − 1)2, (16)

where ω is the frequency of the oscillator. Strikingly, by
identifying D≡mω2/2γ2 and α≡−γ, we conclude that
eq. (16) corresponds exactly to the expression (1) for the
Morse potential. To the best of our knowledge, this is
the first time that a connection based on fundamental
quantum principles is provided between this potential,
which has been widely utilized as a consistent description
for the vibrational structure of diatomic molecules, and
the harmonic potential. A physical interpretation for this
correspondence can be made in terms of a position-
dependent (effective) mass induced due to the presence
of a material body in the system [11] as, for example, the
case of electrons propagating through abrupt interfaces in
semiconductor heterostructures [22–26].
The wave function solution for the quantum Morse

oscillator (QMO) has been previously determined as [1]

Φn(z) =Anz
se−

1

2
zL2sn (z), (17)

where z = 2mωeγη /(γ2�), s = mω/(γ2�) − n − 1/2,
L2sn (z) = (z

−2sez/n!)dn(e−zzn+2s)/dzn is the generalized
Laguerre polynomial [27], and An is the normaliza-
tion constant. The energies for the QMO can then be
calculated as

En = �ω

(

n+
1

2

)[

1−
γ2�

2mω

(

n+
1

2

)]

, (18)

where the integer n is restricted by the condition 0� 2n�
2mω/(γ2�)− 1, leading to a finite number of bound states
and En � �ω(n+1/2)/2. Equation (18) clearly indicates
that, in the limit of small values of γ, the QHO spectrum
is recovered. In the main plot of fig. 1 we show the form
of the potential (16) for different values of γ, while in

the inset the energy levels are depicted for γ =−0.25.
The potential is symmetric in γ, i.e., V (γ) = V (−γ). The
energy difference between levels decreases as the quantum
number increases.
Finally, we show that an uncertainty relation for the

QHO in the (deformed) x-representation can be disclosed
in the framework of our theoretical approach. In order
to do this, expected values for x̂ and p̂ must be calcu-
lated. Considering that the following correspondence holds
between expected values of a given operator Ô in the
x-space and η-space:

〈

Ôx

〉

x
=
〈

Ôη

〉

η
=

∫

dηψn(η)
∗Oηψn(η), (19)

and using a procedure similar to the one adopted in
ref. [28], we obtain,

〈x̂〉n,x =−
γ�

mω

(

n+
1

2

)

, (20)

〈p̂γ〉n,x = 0, (21)

〈

x̂2
〉

n,x
=
�

mω

(

n+
1

2

)

, (22)

〈

p̂2γ
〉

n,x
=m�ω

(

n+
1

2

)[

1−
�γ2

mω

(

n+
1

2

)]

, (23)

so that the uncertainty relation for the QHO in the
(deformed) x-representation can be written as

ΔxΔpγ = �

(

n+
1

2

)[

1−
γ2�

mω

(

n+
1

2

)]

, (24)

which is always non-negative, as it should, due to the
existence of a finite number of bound states. We attribute
these remarkable features physically to the x-dependent
effective mass previously alluded to.
For the ground state, eq. (24) is identical to the

one previously obtained in ref. [11], namely ΔxΔpγ �
(�/2)(1+ γ〈x〉). The uncertainty of the QHO ground
state in the (deformed) x-representation can therefore be
smaller than the usual value �/2. Note that in both expres-
sions for energy (18) and uncertainty (24) the parameter
γ, which defines whether the space is contracting (γ < 0)
or dilating (γ > 0), appears squared. Consequently, for the
harmonic potential in a deformed space, the energy is
symmetric under contraction or dilation.
It is interesting to note that the Morse potential can

be associated to a two-dimensional harmonic oscillator
in polar coordinates for ω= 1, and considering atomic
units, �=m= 1. In fact, it is this relationship that allows
one to solve the QMO using ladder operators [29], and
study this problem through supersymmetry [30]. As a
consequence, our approach also provides a conceptual
basis for the map between a 1D-QHO and a 2D-QHO in
polar coordinates. This mapping is the result of the new
commutation relation for x̂ and p̂ generated through the
translation operator introduced in [11] and used here.
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Previous studies have focused on plausible modifications
on the position momentum [31–33], so that a minimum
length and momentum could be defined for quantum
theory. In particular, Quesne et al. [34] have shown that, if
some special generalized deformed commutation relations
are employed (e.g., [−e−x, p] = i[e−x+βp2]), the Morse
potential can be obtained as an effective potential of the
theory. In all these studies, however, modified commuta-
tion relations are introduced in an ad hoc. manner, i.e.,
they are not obtained from a first-principle mechanism,
like the non-additive translation operator employed in
this work. Another important point here is that the
parameter γ, responsible for the dilation/contraction in
the translation, corresponds exactly to the minus value of
the α parameter for the Morse potential. In the particular
case of the Hydrogen molecule, for example, the numerical
value of this parameter is γ =−α=−1.4 a.u.
In summary, we have shown that a one-dimensional

harmonic potential in a space deformed by the action of
the operator defined as in eq. (2) can be equivalent to the
Morse potential in a regular space. As the particle trav-
els in a different way in the deformed space, it feels the
harmonic potential as a Morse potential in regular space.
This equivalence is achieved when g(γx) = γx, namely for
the case in which the translation occurs as a contraction
in a deformed space, γ < 0. Such a physical framework has
perfect analogy with the behavior of a position-dependent
(effective) mass particle on a non-homogeneous substrate,
typified by electrons moving through abrupt interfaces in
semiconductor heterostructures. In this particular situ-
ation, the anharmonic feature of the Morse potential
emerges naturally from the standard quantum harmonic
oscillator. We should point that the transformation used
here is very similar to the one used in general relativity,
where there the position x transforms to a function f(x),
in opposition to a Galilean transformation that is additive.
We thus conclude that our study, based on a non-additive
translation operator, provides a first-principle explanation
for anharmonic properties.
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