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Abstract. A long standing problem in glassy dynamics is the geo-
metrical interpretation of clusters and the role they play in the ob-
served scaling laws. In this context, the mode-coupling theory (MCT) of
type-A transition and the sol–gel transition are both characterized by
a structural arrest to a disordered state in which the long-time limit
of the correlator continuously approaches zero at the transition point.
In this paper, we describe a cluster approach to the sol-gel transition
and explore its predictions, including universal scaling laws and a new
stretched relaxation regime close to criticality. We show that while
MCT consistently describes gelation at mean-field level, the percola-
tion approach elucidates the geometrical character underlying MCT
scaling laws.

1 Introduction

A large variety of soft matter systems undergoes a transition from a fluid to a solid-
like state when one of the parameters controlling the system state (temperature,
volume fraction, etc.) is changed. Such transition is accompanied by a rapid growth
of the relaxation time, often without any apparent increase of long-range spatial
correlations. Consequently, the system is structurally disordered while its dynamics
appears arrested on the experimental timescales. Paradigmatic examples include, but
are not limited to, structural glasses [1,2], gels [3–5], colloids [6] and granular matter.
Since the linear size of elementary units in these materials spans several orders

of magnitude (from nm in simple liquids to μm in colloids and mm in granular me-
dia) and the possible very different nature of their interactions, one can naturally
wonder whether the slow relaxation observed near this transition, and the resulting
amorphous state, may exhibit features which are universal in the sense of statistical
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mechanics, i.e., features which do not depend on the microscopic details of the system
under consideration and their specific interactions.
The first conceptual problem one has to deal with when addressing such an is-

sue is whether the amorphous state is the result of a genuine thermodynamic phase
transition or rather a purely dynamic effect in which there is no true static ergodic-
ity breaking. Secondly, one would like to have a geometric characterization of slow
relaxation, e.g., in terms of suitably defined clusters, and, more generally, one would
like to identify the appropriate order parameter describing the phase, where ergod-
icity is broken. For generic amorphous systems, these two difficulties turn out to be
challenging even at mean field theory level which is, in statistical mechanics, the very
preliminary step for understanding universal scaling features.
We focus here on the slow relaxation dynamics near the sol-gel transition. From

a theoretical point of view, gelation naturally lends itself to a cluster approach in
which universal glassy features are obtained in terms of percolation scaling exponents.
Therefore, it may arguably represent the first crucial step towards the understand-
ing of more complex situations (e.g. structural glasses) in which there is no obvious
description in terms of clusters.
The present contribution is organized as follows. After a preliminary discussion

of the nature of the sol-gel transition (Sect. 2) we present a percolation-based cluster
approach to the relaxation dynamics near the gelation point (Sect. 3). Then, we
discuss the mode-coupling theory of continuous glass transitions (Sect. 4). The link
between these two distinct and independent theoretical settings is suggested in the
Sect. 5. Finally, in the conclusions, we present some open problems and speculations
about the nature of weak and strong gels.

2 Gelation: Static or dynamic transition?

Gelation corresponds to the transformation of a viscous liquid (sol) into an elas-
tic amorphous solid (gel). This process generally arises from the bonding of multi-
functional monomers in solution and leads, above a certain monomer concentration
threshold, to the formation of a macroscopic polymer network which enables the sys-
tem to bear mechanical stresses. For an interesting kinetic model for gelation see
Ref. [7]. From a geometric point of view, the sol-gel transition is the manifestation
of the formation of a percolating cluster of crosslinked polymers which has a fractal
structure [3,4,8]. This view has been supported by several experiments (for a review
see [5] and references therein).
The gel properties generally depend on the nature of the reaction involved in

the bonding formation. Chemical gels are characterized by covalent bonds which are
irreversible and permanent: once the gel is formed there is no way to go back to the
original state we started with. Boiled eggs and dental filling pastes are some common
examples of chemical gels in which polymerization is driven by temperature and light,
respectively. Physical gels (such as gelatins), instead, features reversible bonds (e.g.
hydrogen bonds) which break and form continuously at a fixed rate controlled by
thermal fluctuations. Depending on the bond lifetime, which can vary from μs to
s, physical gels can be classified in weak or strong. In strong gels, clusters keep their
identity and never break on the experimental time-scale, so they share similar features
with chemical gels.
At experimental level [9–11], it is generally known that the sol-gel transition always

occurs continuously and is typically associated with the onset of non-exponential,
stretched relaxation behavior and a dramatic increase of the relaxation time or vis-
cosity, a peculiar distinctive feature of glassy dynamics [12].
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At theoretical level, percolation theory is the most natural approach for describing
the scaling features associated with the spanning polymer network, as early suggested
by Flory [13] and Stockmayer [14]. They consistently predict that the sol-gel transi-
tion has a continuous nature, as experimentally observed. An important issue largely
debated (see [15] and references therein) is whether the underlying free-energy of the
system is regular and therefore the slow relaxation near the gelation point should
have a purely dynamical origin. It has been suggested [16] that while chemical gels
exhibit a singularity in the free energy, resembling in part spin glasses or the random
field Ising model [17], physical gels have a purely dynamical origin. We postpone the
discussion of this point to the final part of this contribution and focus now on the
percolation description of the slow dynamic near the sol-gel transition.

3 Dynamic cluster approach to sol-gel transition

The static percolation approach used to describe the structural properties of gelation
can be extended to deal with the dynamic relaxation near the sol-gel transition. Here
we discuss a cluster approach [18] originally developed in Ref. [19] that allows to de-
scribe the scaling features of relaxation in terms of percolation critical exponents and
one additional dynamical exponent. For the sake of comparison with mode-coupling
theory, we particularize the results obtained in Ref. [19] to the mean-field case (cor-
responding to a system with infinite spatial dimensionality).
We consider a system of randomly distributed monomers with a fixed volume

fraction φ. At t = 0, permanent bonds are introduced at random between monomers
located within a distance chosen to represent the range of monomers interaction [20].
Following the percolation approach [3,4], the sol-gel transition is defined as the point
corresponding to the formation of an incipient spanning cluster. Accordingly, the
results of percolation theory [8] imply that in the sol phase, near the threshold, the
cluster size distribution n(s) is

n(s) ∼ s−τ exp
(
− s
s∗
)
, (1)

where τ is the Fisher exponent, s∗ is a cut-off value proportional to ξdf , df is the
fractal dimension, and ξ is the connectedness length, which diverges at the threshold
with the exponent ν. In the gel phase, there is a finite density P∞ of particles in the
percolating cluster and, in agreement with the results of percolation theory [8], the
distribution of finite-size clusters is given by

n(s) ∼ s−τ exp
[
−
( s
s∗
)(d−1)/d]

, (2)

which coincides with Eq. (1) in the mean-field limit, where the system dimension
d→∞. We can then assume that the cluster structure evolves in time as follows.
– Every cluster decays exponentially in time,

fs(t) ∼ exp
(
− t
ts

)
· (3)

– The lifetime of any cluster increases with its size as [24]:

ts ∼ sx, (4)

where the exponent x depends on the microscopic mechanism responsible for
the single cluster relaxation.
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Using the above assumptions, which are borne out by experiments and numerical
simulations, and neglecting the correlation between particles belonging to different
clusters, one can compute several dynamical quantities such as the self-intermediate
scattering function, the dynamical susceptibility, the Van–Hove function, and the
non-Gaussian parameter [19]. Here we are interested in the time correlation function,
Φ(t), which is defined as

Φ(t) =
∑
s

s n(s) fs(t). (5)

Replacing the sum in the above equation by an integral, with some approximations
(for details see Ref. [19]), the time dependence of Φ(t), is expressed in terms of the
critical percolation exponents β and τ , along with the dynamic exponent x. The
predictions are:

(i) At the gelation threshold, φ = φc, Φ(t) is a power-law:

Φ(t) ∼ t−a, (6)

where

a =
τ − 2
x
· (7)

(ii) In the sol phase, φ < φc, at a distance ε = (φc − φ)/φc from the threshold, the
long time limit (t ≥ τε) relaxation is described by a combination of algebraic
and stretched exponential decays:

Φ(t) ∼ |ε|β
(τε
t

)c
exp

[
−
(
t

τε

)y]
, (8)

with

y =
1

x+ 1
, c = y

(
τ − 3
2

)
· (9)

This form agrees with experimental [9–11] and numerical findings [25,26] in
gelling systems.

(iii) In the gel phase, φ > φc, at distance ε = (φc − φ)/φc from the threshold, one
obtains exactly the same form for the relaxation function, once the long-time
limit has been subtracted

Φ(t)− P∞ ∼ |ε|β
(τε
t

)c′
exp

[
−
(
t

τε

)y′]
· (10)

where P∞ is the density of the percolating cluster, which goes to zero at the
threshold as P∞ ∼ |ε|β , and the exponents y′ and c′ are given by

y′ =
1− 1
d

1− 1
d
+ x
, c′ = y′

τ − 3
2
− 1
2d

1− 1
d

, (11)

which, in the mean-field limit, d→∞, coincide with y and c, Eq. (9).
(iv) Finally, the relaxation time is found to diverge at the threshold, τε ∼ |ε|−ζ ,

with an exponent given by

ζ =
βx

τ − 2 · (12)
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Fig. 1. Left: the correlator, Φ(t), with x = 1, evaluated from Eq. (5), for the bond percolation
on a Bethe lattice of coordination number 4 (for which the percolation threshold is pc = 1/3),
at p = 0.315, 0.32, 0.325, 1/3, 0.3417, 0.3467, 0.3517 (corresponding to ε = −0.055, −0.04,
−0.025, 0, 0.025, 0.04, 0.055). Right: rescaled non-arrested part of correlator vs. rescaled
time, |ε|2t, at ε = ±0.055, ±0.04, ±0.025. Dashed line is given by Eq. (8), with c = y =
1/(x+ 1) = 1/2.

Such calculations are in agreement with the theoretical predictions obtained in
Ref. [27–29] in the Rouse and Zimm models for randomly cross-linked monomers,
where x = 1 and x = 1/2, respectively, and were confirmed in Ref. [19] by measur-
ing the self-intermediate scattering function in molecular dynamics simulations of a
model for permanent gels, where bonds between monomers are described by a FENE
potential [30–36].
In mean-field, the critical exponents are β = 1 and τ = 5/2. Moreover, using the

exact results on the cluster size distribution of Ref. [37], the expression Eq. (5) can be
exactly evaluated for any value of the bond occupation probability, p. In Fig. 1(left),
we show the numerically computed Φ(t) for x = 1 and different values of p.
In Fig. 1(right), the rescaled correlator, ΔΦ(t)/|ε| is plotted versus the rescaled

time, t |ε|ζ (with ζ = 2x = 2, and a = 1/2x = 1/2), for different values of the bond
occupation probability. Notice that ΔΦ(t) is the non-arrested part of the correlator,
which coincides with Φ(t) in the fluid phase, and with Φ(t)−P∞ in the frozen phase,
where P∞ goes to zero linearly at the threshold, P∞ ∼ |ε|, with ε = (p − pc)/pc. As
expected, after an initial transient, the curves collapse on a unique curve, which is well
fitted by the theoretical expression, Eq. (8), with exponents c = y = 1/(x+1) = 1/2.

4 Mode-coupling theory for the continuous glass transition

The mode-coupling theory (MCT) (for a review, see [38]) is considered one of the most
comprehensive first-principles approaches to the relaxation dynamics of supercooled
liquids. Since its first appearance, however, the nature of the singularity predicted
by MCT has been much debated because it appears as an artifact of uncontrolled
approximations (and therefore it should actually represent a dynamic crossover). In
spite of this and other limitations, several predictions of MCT have been substantially
confirmed in real systems at qualitative and sometimes quantitative level (e.g. for
short-range attractive colloids). MCT generally predicts that the glass transition is
unrelated to any thermodynamic singularity and that the nature of this dynamic glass
transition can be either continuous (type A) or discontinuous (type B).
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Since the gel state is structurally disordered and gelation is a continuous transition
one would reasonably expect that the percolation predictions outlined in the previous
section be consistent with the MCT of type A glass transition. This is not obvious a
priori since no reference to clusters is made in MCT. In order to address this issue
we now briefly review the MCT framework and then compare with the percolation
approach in the next section.
In MCT the time evolution of the correlator of density fluctuations, Φ(t), obeys

the integro-differential equation:

Φ(t) + t0 Φ̇(t) +

∫ t
0

M[Φ(t− s)] Φ̇(s) ds = 0. (13)

This equation is obtained by using the Zwanzig–Mori projection formalism applied
to Langevin equation of motion. An additional inertial term would appear if we were
using Newton equation of motion as a starting point. We denote with t0 the charac-
teristic timescale of the microscopic motion and, for simplicity, we neglect the wave-
vector dependence of Φ(t). The memory kernel functional M[Φ(t − s)] accounts for
the caging of a particle by its neighbors. It depends smoothly on the static structure
factor and does not involve any thermodynamic singularity. In the high temperature
or low-density limit, the memory kernel is substantially negligible and therefore re-
laxation is exponential. At sufficiently high-density or low-temperature, instead, the
nonzero value of the memory kernel causes a viscosity increase that through a feed-
back mechanism eventually leads to the structural arrest of dynamics. This means
that the long-time limit of Φ(t) remains finite as the system keeps some memory of
its initial state, i.e., it is a glass.
To obtain quantitative predictions about the general features of relaxation dynam-

ics and the shape of the phase diagram, one can study schematic models in which
the memory functional is represented by a low-order polynomial of correlators, with
coupling constants that depend solely on the static structure factor. The two most
studied cases are the F12 and F13 schematic models. In the first model, the mem-
ory kernel is represented as the superposition of a linear term and a quadratic term:
M12[Φ(t)] = v1Φ(t) + v2Φ

2(t), while in the second model the quadratic term is re-
placed by a cubic one, M13[Φ(t)] = v1Φ(t) + v3Φ

3(t). The coupling parameters v1, v2
and v3 control the system state and by changing their value a glass transition can be
obtained. The key quantity to locate this transition is the non-ergodicity parameter,
that is the long-time limit of the correlator, q = limt→∞ Φ(t), also known as the
Edwards–Anderson parameter in the spin-glass literature. In the fluid state, when
the system is ergodic, Φ(t) decays to zero and q = 0. When q is finite, the system
is unable to fully relax, its dynamics is arrested and the liquid becomes a glass. For
schematic models, one can easily derive the liquid-glass phase diagram. Taking the
long-time limit of Eq. (13), one obtains the bifurcation equation:

q

1− q = M[q] (14)

whose solutions give different kinds of ergodic-nonergodic transitions, continuous and
discontinuous. In connection with the sol-gel transition, we are only interested in
the continuous transition. Therefore, we restrict here our attention to this case. The
phase diagrams of the schematic models introduced above are shown in the Fig. 2.
The continuous transition line is, for both schematic models, represented by the seg-
ment across which q smoothly departs linearly from zero, q ∼ ε (red full lines in
figures).
Near the continuous transition line, the MCT makes several specific predictions.

At the threshold, the correlator decays as a power law, Φ(t) ∼ t−a, and the structural
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Fig. 2. Phase diagrams of schematic mode-coupling theory for the F12 (left) and F13 (right)
models. Red full lines correspond to the continuous transitions.

relaxation time, τε, at distance ε from the critical line, behaves as τε ∼ |ε|−ζ with an
exponent ζ which is generally related to a by

ζ =
1

a
· (15)

Furthermore, the exponent a can be related to the coupling parameters vi.
In the F12 schematic model, the continuous transition line corresponds to the

segment v1 = 1 and v2 ∈ [0, 1] (red full line in Fig. 2, left). Near the continuous
transition [38], one gets

Γ2(1− a)
Γ(1− 2a) = v2, (16)

where Γ is the Euler’s gamma function.
In the F13 schematic model the continuous transition line corresponds to the

segment v1 = 1 and v3 ∈ [0, 4] (red full line in Fig. 2, right). Again near the continuous
transition, one gets:

Γ2(1− a)
Γ(1− 2a) = 0. (17)

The case v2 = v3 = 0, the so called F1 model, is especially interesting because the
time evolution of correlation function can be exactly computed [38]:

ΔΦ(t) =
|ε|
2

[√
τε

πt
exp

(
− t
τε

)
− erfc

(√
t

τε

)]
, (18)

where ΔΦ(t) is the non-arrested part of the correlator and τε � ε−2 near the transition
(with ε = 1− 1/v1). The MCT results for this special case will be compared with the
predictions of the dynamic percolation approach.

5 Comparison between cluster approach and mode-coupling theory

We are now in the position to compare the MCT results with the predictions obtained
with the dynamic percolation approach at the mean field level.
First of all, the non-ergodicity parameter, q = limt→∞ Φ(t), approaches zero as

q ∼ εβ with β = 1, which coincides with the mean-field value of the order parameter
exponent of random percolation. This is the first hint suggesting the relevance of
percolation in this context. In fact, MCT was originally developed to deal with the
localization-diffusion behavior of the Lorentz gas (and the related problem of the
conductor–insulator transition of quantum fluids in a random potential), a context
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Fig. 3. Correlator (left) and its non-arrested part (right), Φ(t) and ΔΦ(t), respectively,
obtained numerically solving MCT Eq. (13), with memory kernel M13 and v3 = 1. The
dotted line is the stretched relaxation regime, Eq. (8), with exponents determined according
to percolation predictions, Eqs. (7) and (9), x = 1, c = y = a = 1/2. The dashed line
represents the late stage exponential decay.

in which percolation naturally appears. Secondly, from Eqs. (7) and (9), using the
mean-field critical exponent, τ = 5/2, mean-field universal relations can be derived:

ζ a = 1, y = c =
2a

2a+ 1
, (19)

where the first relation reproduces the second MCT relation, Eq. (15). Further, precise
predictions can be obtained for the MCT solutions for the F12 model.
Near the continuous critical line, the correlator Φ(t) is expected to be characterized

by an intermediate scaling regime given by Eq. (8), with exponents given by Eqs. (7)
and (9) and x determined by

Γ2(1− 1/2x)
Γ(1− 1/x) = v2. (20)

In particular this relation for v2 = 0 gives x = 1 and consequently, from Eq. (19),
y = c = a = 1/2 and ζ = 2.
This prediction agrees with the exact solution, Eq. (18). Accordingly, at short

times t/τε � 1 relaxation is algebraic, Φ(t) ∼ t−1/2, while at large times, t/τε 	 1,
it is exponentially fast. Expanding Eq. (18), for small t/τε, one finds:

ΔΦ(t) � |ε|
2

√
τε

πt

[
1−
√
πt

τε
+
t

τε

]
, (21)

that is, to the first leading order in
√
t/τε, Eq. (8) with a normalized relaxation

time τ̃ε = πτε. Thus the early and late stage relaxation behaviors are bridged by a
scaling regime described by Eq. (8) with exponents exactly matched by the percolation
predictions.
At intermediate times, data are well fitted by Eq. (8), with the exponents given

above x = 1, c = y = a = 1/2. At long times, exponential decays are observed.
Agreement is found also, by solving numerically the MCT equation for other values
of v2, for which the solution cannot be expressed in closed form [5], comparing with
the cluster approach prediction with the corresponding values of x given by Eqs. (20).
Here, we have also found excellent agreement with the numerical MCT solutions

for the F13 model along the continuous transition line for different values of v3. Along
this line the critical exponents do not change, and according to Eq. (17) they are all
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given by the same value x = 1 (see Fig. 3 for the particular case v3 = 1). In Ref. [39],
the possibility that the schematic MCT F13 model can describe mean field chemical
gel is discussed in a model, where hard spheres are linked by permanent bonds with
a given probability, p. To further analyze this connection, the above predictions can
be easily checked along the percolation line.

6 Conclusions

After reviewing a cluster approach to the sol-gel transition, and the dynamical behav-
ior of the continuous glass transition, as described by MCT, here we have presented
some recent results, showing that MCT can be consistently interpreted as the infinite
dimensional limit of the cluster percolation approach. This result has two interesting
consequences. On the one hand, it shows that MCT is a suitable theory to describe
the continuous transition to the arrested state occurring in gelation. On the other,
this correspondence elucidates the geometrical character underlying MCT. This clus-
ter approach thus provides new insight into the dynamical relaxation behavior and
predicts a new intermediate stretched exponential regime in MCT with universal
features.
A different behavior however is found in these two problems. The stretched ex-

ponential in the MCT extends only over an intermediate regime with a crossover to
a simple exponential behavior in the long time regime, while in the cluster approach
to chemical gelation the stretched exponential behavior extends forever. The reason
for this latter behavior is related to the property of the bonds being permanent.
The cluster approach introduced here thus applies to sol-gel transitions which are
characterized by a free energy singularity, as in chemical gelation. If the bonds prob-
ability are instead characterized by a finite lifetime (but long compared to density
relaxation), there is no singularity in the free energy, and the cluster approach would
describe reversible gelation characterized by an intermediate stretched exponential
followed by a simple exponential.
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