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Influence of the interaction range on the thermostatistics of a classical many-body
system
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We numerically study a one-dimensional system of N classical localized planar rotators coupled
through interactions which decay with distance as 1/rα (α ≥ 0). The approach is a first principle one
(i.e., based on Newton’s law) which, through molecular dynamics, yields the probability distribution
of angular momenta. For α large enough we observe, for longstanding states corresponding to
N " 1 systems, the expected Maxwellian distribution. But, for α small or comparable to unity,
we observe instead robust fat-tailed distributions that are quite well fitted with q-Gaussians. These
distributions extremize, under appropriate simple constraints, the nonadditive entropy Sq upon
which nonextensive statistical mechanics is based. The whole scenario appears to be consistent
with nonergodicity and with the q-generalized Central Limit Theorem. It confirms the more-than-
centennial prediction by J.W. Gibbs that standard statistical mechanics are not applicable for long-
range interactions (i.e., for 0 ≤ α ≤ 1) due to the divergence of the canonical partition function.

PACS numbers: 05.20.-y, 05.45.-a, 65.40.gd, 89.75.Da

More than one century ago, in his historical book El-
ementary Principles in Statistical Mechanics [1], J. W.
Gibbs remarked that systems involving long-range inter-
actions will be intractable within his and Boltzmann the-
ory, due to the divergence of the partition function. This
is of course the reason why no standard temperature-
dependent thermostatistical quantities (e.g., a specific
heat) can possibly be calculated for the free hydrogen
atom, for instance. Indeed, unless a box surrounds the
atom, an infinite number of excited energy levels accu-
mulate at the ionization value, which yields a divergent
canonical partition function at any finite temperature.
To transparently extract the deep consequences of

Gibbs’ remark, in the present paper we focus on the in-
fluence of the range of the interactions within an illustra-
tive isolated classical system, namely the α-XY model [2],
whose Hamiltonian is given by

H =
1

2

N∑

i=1

p2i +
1

2

∑

i!=j

1− cos(θi − θj)

rαij
(α ≥ 0) , (1)

where the planar rotators are located at the sites of a
d-dimensional hypercubic lattice with periodic boundary
conditions. For d = 1, rij takes the values 1, 2, 3...; for
d = 2, it takes the values 1,

√
2, 2, . . . ; for d = 3, it takes

the values 1,
√
2,

√
3, 2, . . . . The distance between any

two rotators is taken to be the minimal one given the
periodic boundary conditions. Without loss of general-
ity we have considered unit moment of inertia, and unit
first-neighbor coupling constant; pi and θi are canonical

conjugate pairs. At the fundamental state, all rotators
are parallel, say θi = 0, ∀i, which corresponds to the
ferromagnetically fully ordered case. At high enough en-
ergies, the values of {θi} are randomly distributed, which
corresponds to the paramagnetic phase. In between,
a second order phase transition occurs. The potential
energy per particle varies with N like Ñ ≡

∑N
j=2

1
rα1j

.

This quantity can be approximated, for α/d < ∞, by

d
∫ N1/d

1 dr rd−1r−α = N1−α/d−1
1−α/d , which in turn behaves,

when N → ∞, like N1−α/d/(1 − α/d) if 0 ≤ α/d < 1,
like lnN if α/d = 1, and like 1/(α/d− 1) if α/d > 1. In
other words, the total potential energy is extensive (in
the thermodynamical sense) for α/d > 1, and nonexten-
sive otherwise. In order to accommodate to a common
practice, we might re-write the HamiltonianH as follows:

H̄ =
1

2

N∑

i=1

p2i +
1

2Ñ

∑

i!=j

1− cos(θi − θj)

rαij
, (2)

which can now be considered as “extensive” for all values
of α/d. This corresponds in fact to a rescaling of time
(hence of pi), as shown in [2]. Also, this rewriting takes
into account the fact that, for all values of α/d, the ther-
modynamic energies (internal, Helmholtz, Gibbs) grow
like NÑ , the entropy, volume, magnetization, number of
particles, etc, grow like N (i.e., remain extensive for both
regions above and below α/d = 1), and the temperature,
pressure, external magnetic field, chemical potential, etc,
must be scaled with Ñ in order to have finite equations of
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states [3]. The particular case α = 0 recovers the HMF
model ([4] and references therein); the α → ∞ model
corresponds to first-neighbor interactions (whose d = 1
case has been analytically studied [5]).
In addition to the above, it has already been shown

that the special value α/d = 1 also emerges dynami-
cally. Indeed, for N → ∞ and energies corresponding to
the paramagnetic region, the largest Lyapunov exponent
of the many-body system remains finite and positive for
α/d > 1, whereas gradually vanishes for 0 ≤ α/d ≤ 1. It
vanishes like N−κ, where κ(α/d) decreases from a posi-
tive value (close to 1/3) to zero when α/d increases from
zero to 1, and remains zero for α/d ≥ 1. It is interesting
to emphasize that κ does not independently depend on
(α, d), but only on the ratio α/d [2, 6, 7]. Consistently
with the fact that, for all values of the energy per particle
u in the paramagnetic region, the Lyapunov exponents
vanish in the limit N → ∞, κ does not depend on u.
Let us briefly mention at this point that the breakdown

of ergodicity which emerges for α/d ≤ 1 [8] points to-
wards the inadequacy of the Boltzmann-Gibbs (BG) the-
ory. It is the aim of nonextensive statistical mechanics [3,
9] to provide a way out of this kind of difficulty. Within
this generalized theory, the stationary state is expected

to yield a probability distribution pq = e
−βqH̄
q /Zq(βq)

with Zq(βq) ≡
∫
dp1...dpNdθ1...dθNe

−βqH̄
q , where exq ≡

[1 + (1 − q)x]1/(1−q) (q ∈ R; ex1 = ex). The index q is
expected to characterize universality classes, possibly a
function q(α/d) to be different from 1 for 0 ≤ α/d < 1,
and equal to 1 for α/d ≥ 1. If this is so, an interesting
quantity would of course be the one-momentum marginal

probability P (p1) =
∫
dp2...dpNdθ1...dθNe

−βqH̄
q /Zq. The

functional form of P (p1) is unknown. A possibility could
however be that, in the N → ∞ limit, we simply have

P (p1) ∝ e
−βqmp2

1/2
qm , i.e., a qm-Gaussian form, where m

stands for momentum. Indeed, q-Gaussians emerge ex-
tremely frequently in nonextensive-like systems (see, e.g.,
[10–15]; see also [16]). The index qm could depend not
only on α/d, but also, in principle, on u (we remind
that the d = 1 critical point for 0 ≤ α < 1 is known
to be uc = 3/4). Now that we have outlined a possible
thermostatistical scenario, let us present the molecular-
dynamical results that we have obtained for the d = 1
Hamiltonian (2) with fixed (N, u), the total energy be-
ing Nu. We have used the Yoshida 4th-order symplectic
algorithm, and we have checked also through the stan-
dard 4th-order Runge-Kutta one. We present in Fig. 1
the “temperature” T (t) ≡ 2K(t)/N , where K(t) is the
time-dependent total kinetic energy of Hamiltonian H̄.
The class of initial conditions that we run are the so-
called water-bag for the moments, with θi = 0, ∀i. As
verified many times in the literature, a quasi-stationary
state (QSS) exists for 0 ≤ α/d < 1 and u + 0.69, af-
ter which a crossover is observed to a state whose tem-
perature coincides with that analytically obtained within
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FIG. 1: Time dependence of T (t) ≡ 2K(t)/N for a water
bag typical single initial condition for (u,N) = (0.69, 200000)
and typical values of α. The upper horizontal line, at T∞ =
0.7114 . . ., corresponds to the (α, N) → (∞,∞) model at u =
0.69 [5]. The middle (lower) horizontal line, at T ' 0.475
(T = 0.380), indicates the BG thermal equilibrium tempera-
ture (the QSS base temperature, corresponding to zero mag-
netization), at u = 0.69 and 0 ≤ α < 1.

BG statistical mechanics [4]. The lifetime of this QSS
appears to diverge with diverging N . It has been long
thought that, after this crossover, the system consistently
adopts a BG distribution in Gibbs Γ space, and there-
fore a Maxwellian distribution for P (pi). The facts that
we now present reveal a much more complex situation,
where robust qn-Gaussians (or distributions numerically
very close to them) emerge before the crossover (just be-
fore for most realizations of the initial conditions, but
also quite before for not few of them) and remain so for
huge times (practically for ever); n stands for numerical.
This unexpected phenomenon occurs for u both below
and above uc = 3/4, and for α both below and above
α = 1 (up to α + 2). Let us emphasize that these qn-
Gaussians only develop their full shape if sufficient time
has been run in order that the apparently stationary state
has practically been attained. This time is extremely long
for 0 < u , 3/4 because the system is then almost inte-
grable (indeed, the Hamiltonian can be straightforwardly
checked to become very close to that of N coupled har-
monic oscillators, by using cos(θi−θj) ∼ 1− 1

2 (θi−θj)2),
and is also extremely long for u . 3/4 because once again
the system is almost integrable (indeed, the Hamiltonian
can be straightforwardly checked to become now very
close to N independent localized rotators). Let us de-
tail now how the single-initial-condition one-momentum
distributions P (p) are calculated within large time re-
gions where T is sensibly constant: for each value of i,
we register its pi at very many (noted n) successive times
separated by an interval τ , and then, following the recipe
of the q-generalized Central Limit Theorem [17], calcu-
late its arithmetic average p̄i (thus corresponding to the
interval t ∈ [tmin, tmax] with tmax − tmin = nτ). We
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FIG. 2: A typical single-initial-condition one-momentum
distribution P (p) for N = 106, u = 0.69, α = 0.9, τ = 1
(corresponding to 5 molecular-dynamical algorithmic steps),
calculated in the region (tmin, tmax) = (200000, 500000) (see
Inset), where the temperature coincides with that analyt-
ically calculated within BG statistical mechanics, namely
T (∞) ≡ 2K(∞)/N ' 0.475. The total energy Nu is con-
served within a relative precision of 10−5 or better. The con-

tinuous curve corresponds to P (p̄)/P0 = e
−β

(P0)
qn [p̄P0]

2/2
qn with

(qn,β
(P0)
qn ) = (1.58, 11.2). The value of qn corresponds to the

red open circle in Fig. 3. Notice that here 1/β(P0)
qn (= T . Each

distribution has been rescaled with its own P0.

then plot the histogram for the N arithmetic averages,
as illustrated in Fig. 2. All the histograms that we have
obtained for sufficiently large times t are well fitted with

e
−βqnp2/2
qn , with (qn,βqn) depending on (α, u,N, τ) as well
as on (tmin, tmax). To check the quality of the fit we in-
troduce (see Fig. 3) a conveniently q-generalized kurtosis
(referred to as q-kurtosis), defined as follows:

κq =

∫∞

−∞
dp p4[P (p)]2q−1/

∫∞

−∞
dp [P (p)]2q−1

3
[∫∞

−∞
dp p2[P (p)]q/

∫∞

−∞
dp [P (p)]q

]2 , (3)

where we have used the escort distributions (see [18] and
references therein). These distributions have the remark-
able advantage of being finite up to q = 3, which is pre-
cisely the value below which q-Gaussians are normaliz-

able, i.e.
∫∞

−∞
dpP0e

−βqp
2/2

q = 1 (q < 3). The use of the

standard kurtosis κ1 = 〈p4〉/3〈p2〉2 has the considerable
disadvantage that 〈p2〉 diverges for q ≥ 5/3, and 〈p4〉 di-
verges for q ≥ 3/2. Hence κ1 becomes useless for q ≥ 3/2,
and it happens that some of the distributions that we ob-
serve do exhibit qn ≥ 3/2. If we use a q-Gaussian P (p)
within Eq. (3), we obtain, through a relatively easy cal-
culation, κq(q) =

3−q
1+q , as also shown in Fig. 3.

In Figs. 4 and 5 we illustrate (qn,βqn) as functions
of (α, u, τ) for large values of N . All the results for qn
have been also reported in Fig. 3. One of the interesting
features that we can observe is that in all cases qn ap-
proaches the BG value q = 1 when τ increases. However,

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.0 1.1 1.2 1.3 1.4 1.5 1.6

κqn
  (qn)

qn

κq(q) = (3− q)/(1+ q)

u = 0.69
τ = 1.0

N =     30000
N =   200000

0.800.90
0.95

1.00
1.05

1.10
1.15

1.20
1.25

1.30
1.35

1.40

1.45
1.50

1.60
N = 1000000

FIG. 3: qn and q-kurtosis κqn that have been obtained from
the histograms corresponding to typical values of α (numbers
indicated on top of the points). The red circle corresponds
to Fig. 2. The continuous curve κq = (3 − q)/(1 + q) is
the analytical one obtained with q-Gaussians. Notice that
κq is finite up to q = 3 (maximal admissible value for a q-
Gaussian to be normalizable), and that it does not depend
on βqn . The visible departure from the dotted line at κq = 1
corresponding to a Maxwellian distribution, neatly reflects
the departure from BG thermostatistics.

this approach is nearly exponential for (α < 1, u < 0.75),
(α > 1, u > 0.75), and (α > 1, u < 0.75), whereas it
is extremely slow for (α < 1, u > 0.75) (notice that,
in the latter case, qn exhibits a zero slope with re-
gard to τ at τ = 1), precisely the region where the
largest Lyapunov exponent approaches zero with increas-
ing N . This suggests the following nonuniform conver-
gence: limN→∞ limτ→∞ qn(α, u,N, τ) = 1 (∀α), whereas
limτ→∞ limN→∞ qn(α, u,N, τ) > 1 (for 0 ≤ α < 1).
Lack of computational strength has not allowed us to di-
rectly verify this conjecture. This leaves as an interesting
open question whether limτ→∞ limN→∞ qn(α, u,N, τ) re-
covers limN→∞ qm(α, u,N), where the latter would cor-
respond to successive approximations for increasingly
large N .
Summarizing, it has been observed for at least one

decade that, for 0 ≤ α < 1, the longstanding QSSs of the
present model exhibit anomalous distributions (Vlasov-
like for some classes of initial conditions, and different,
including q-Gaussian-shaped, ones for other classes) for
the momenta of the rotators, whereas nothing particu-
larly astonishing was expected to occur once the system
had done the crossover to the (presumably stationary)
state whose temperature coincides with that analytically
obtained within the BG theory. The present results (ob-
tained from first principles, i.e., using essentially noth-
ing but Newton’s law) neatly show that, if time is large
enough so that the crossover has occurred (as illustrated
in the Inset of Fig. 2), the situation is far more com-
plex. Indeed, robust and longstanding q-Gaussian dis-
tributions are numerically observed under a wide variety
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2π T∞   /βqn
(P0)

FIG. 4: α-dependences of (qn,βqn ) for (u, τ, N) =
(0.69, 1.0, N), where N = 200000 (N = 30000) for α ≥ 0.6
(α ≤ 0.5), with n never smaller than 300000. We have ver-
ified the existence of finite-size effects, in particular, for α
above and close to unity, qn slowly decreases with increasing
N . Notice that Tα(∞) ≡ K(∞)/2N ' 0.475 up to α ' 1.35,
where it starts increasing (red full circles), and, for α " 1, ap-
proaches the analytical value T∞ = 0.7114 . . .[5] (by using the
values that we have obtained up to α = 40, we observe that
approximatively T∞−Tα ' 0.4/α2 for α " 1). The red open
circles correspond to the example in Fig. 2 (also indicated in
Fig. 3). The dependence of T on (α, t) is noted Tα(t), hence
confusion between T (∞) and T∞ must be avoided. The full
(open) triangles have been obtained from rescaled histograms
where the momenta have been divided by the standard devi-
ation σ (multiplied by P0, as illustrated in Fig. 2). The error
bars corresponding to the triangles are of the same order; the
error bars of T (∞) are of the order of the full circles (red).
Naturally, P0 × σ is nearly constant; to take into account
the numerical deviations (from a strict constant) due to pa-

rameters such as (N,n, τ ), we have normalized both β(σ)
qn and

β(P0)
qn in such a way that the analytical value T∞ = 0.7114 . . .

is recovered.
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FIG. 5: τ -dependence of qn for N = 200000, (tmin, tmax) =
(90000, 1090000) (hence n = 1000000 for τ = 1), and typical
values of u above and below the critical value uc = 0.75, and
of α above and below the special value α = 1 (see [2]). All the
errors bars are of the same order of those indicated on the red
empty triangles. Inset: τ -dependence of [qn(τ )−1]/[qn(1)−1].

of situations. The fact that the temperature be the one
predicted within the BG theory appears to be necessary
but not sufficient for standard statistical mechanics to be
applicable [19]. Indeed, the shape of the momenta distri-
butions can considerably differ from Gaussians, and it is
only when the correlations become negligible (i.e., when
τ . 1 and/or α . 1) that the classical Maxwellian distri-
bution (with β−1

qn = T ) is to be (numerically) recovered.
This example shows the great thermostatistical richness
that a breakdown of ergodicity can cause. It also serves as
an invitation for deeper analysis of the thermal statistics
of all those very many models in the literature that are
definitively nonergodic (e.g., glasses, spin-glasses, among
others), and for which, nevertheless, the BG theory is
used without further justification.
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Agencies).
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