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The effects of ðcurvatureÞ2- and ðtorsionÞ2-terms in the Einstein-Hilbert-Chern-Simons Lagrangian are

investigated. The purposes are two-fold: (i) to show the efficacy of an orthogonal basis of degree-of-

freedom projection operators recently proposed and to ascertain its adequacy for obtaining propagators of

general parity-breaking gravity models in three dimensions; (ii) to analyze the role of the topological

Chern-Simons term for the unitarity and the particle spectrum of the model squared-curvature terms in

connection with dynamical torsion. Our conclusion is that the Chern-Simons term does not influence the

unitarity conditions imposed on the parameters of the Lagrangian but significantly modifies the particle

spectrum.

DOI: 10.1103/PhysRevD.82.064014 PACS numbers: 04.60.Kz, 04.90.+e, 11.10.Kk, 11.15.Bt

I. INTRODUCTION

In connection with the AdS/CFT correspondence in
three dimensions, planar quantum gravity has been the
object of renewed and raising interest [1]. As shown in
Ref. [2], Einstein-Hilbert (E-H) gravity with a negative
cosmological constant has black hole solutions and for
this reason it is interestingly related to two-dimensional
CFT theories on the AdS boundary. In the work of [3],
Witten has reassessed other relevant aspects of three-
dimensional gravity. In a subsequent paper, Li, Song, and
Strominger [4] have proposed a chiral gravity model in
three space-time dimensions and they focus their efforts on
the study of topologically massive gravity.

In spite of E-H gravity in three dimensions having no
propagating degrees of freedom, the introduction of
ðcurvatureÞ2- terms allow new propagating modes.
However, unitarity could be jeopardized due to the
higher-derivative terms. Surprisingly, a recently proposed
higher-derivative model, known as Bergshoeff-Hohm-
Townsend model [5,6], was shown to be unitary and
renormalizable [7,8]. This model is a specific combination
of the E-H action with the wrong sign added with higher-
derivative curvature terms, which is equivalent to the
Pauli-Fierz Lagrangian at the linearized level.

In odd dimensional theories, it is tempting to consider a
Chern-Simons term. In the case of vector fields, this term
gives to the photon a mass in a gauge invariant way.
For planar gravity, this term was first considered by
Deser, Jackiw, and Templeton in Ref. [9]. In fact, the
E-H Lagrangian with the wrong sign added to the Chern-
Simons term propagates a parity-breaking massive spin-2

mode. In spite of the fact that the gravitational Chern-
Simons term has three derivatives, it was shown that this
model has neither ghosts nor acausalities. Furthermore, the
presence of the three derivatives suggests that the ultravio-
let divergences of the model could be stabilized rendering
it power-counting renormalizable. Actually, this was
explicitly shown in Refs. [10–12]. The issue of unitarity
in extensions of these theories, such as the incorporation
of quadratic terms, is not a trivial matter, as discussed
in [13–16].
In four dimensions, massive gravity theories are moti-

vated by the outstanding result that they could suitably
modify Einstein’s general relativity at very large distance
scales (actually, cosmological scales), in such a way that
the present accelerated expansion of our universe may be
taken into account without invoking the idea of dark en-
ergy. Gravity models with dynamical torsion may naturally
yield a way to generate mass for gravitons. So, we take
the viewpoint that, a better understanding of both torsion
propagation and massive gravitons in three-dimensional
space may provide new insights into the way we compre-
hend massive gravitation in connection with dynamical
torsion in four dimensions. More recently, in the work
of Ref. [17], an interesting proposal is presented where
the unitary of a Yang-Mills type formulation for mass-
less and massive gravity with propagating torsion is
investigated.
Once we are convinced of the relevance of investigating

aspects of quantum gravity in three-dimensional space-
time, we could go further and try to understand how the
degrees of freedom associated with torsion may influence
and affect properties of planar quantum gravity, previously
contemplated in the absence of torsion. Our work sets out
just to pursue an investigation of the possible effects
torsion may induce on quantum-mechanical aspects of
planar gravity. Of special interest for us is the emergence
of massive gravitons, once torsion is allowed to be dynami-
cal. For a deeper discussion on the role of torsion in
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four-dimensional quantum gravity, we address the reader
to the works of Refs. [18–22].

In this paper, we shall be mainly interested in the
Chern-Simons topological term, but with the modification
that shall allow propagating torsion. This is appealing
whenever we adopt the vielbein formalism for gravitation,
since, as shown in [23,24], the spin connection and vielbein
can be combined in such way that they form a connection
for a truly gauge theory. In this way, the field-strength
related to this connection carries both the Riemann and
torsion tensor. Our main goal is to investigate the spectrum
and unitary properties of the topological gauge gravity
theory in the first-order formalism. By this, we mean the
E-H Lagrangian with the Chern-Simons term considering
the spin connection and vielbein as independent fields.
Besides that, we also consider ðcurvatureÞ2- and
ðtorsionÞ2-terms, which renders our analysis more general.

In order to analyze the spectral properties of the model,
the attainment of the propagator becomes a primary goal.
There are various methods for the deriving propagators.
The algebraic method based on the spin projection opera-
tors has been shown very efficient and has been widely
used in the literature [25–27]. A three-dimensional analo-
gous basis to the one proposed in [26] is not enough to
handle the problem proposed in this paper. One possibility
to circumvent this issue is to extend the basis by means of
the decomposition of the transverse operator, �, and the
longitudinal operator, !, into more fundamental ones. In
three dimensions, the procedure is to decompose �, which
is a definite spin projector, into two degrees-of-freedom
projectors, � and �. In [28], the set of operators in terms of
f�;!g is rewritten in terms of �, �, and !. As it becomes
clear in that work, additional mapping operators among the
projectors are needed, since we are dealing with degree-of-
freedom projectors rather than spin projectors. The physi-
cal appeal for this decomposition has to do with the differ-
ent role played by parity in four and three dimensions.
This extension of the basis enables one to handle terms
with an explicit Levi-Civita tensor, which is necessary to
describe parity-breaking and to take advantage of the dual
aspects of the fields. The propagator and the conditions for
the absence of ghosts and tachyons are, by this procedure,
directly obtained.

Our results allow us to discuss the role played by the
Chern-Simons term on the conditions for the unitarity and
in the spectrum properties of the model. We also explicitly
analyze the case where we discard the Chern-Simons term
and compare them with the results obtained in [27] for
D ¼ 3, in order to verify the consistency of the proposed
basis.

The outline of this paper is as follows: In Sec. II, we
present the model and the conventions used in this work.
In Sec. III, we work out the propagator of the model.
Section IV tackles the issue of spectrum consistency by
analyzing the conditions for absence of ghosts and tachy-

ons in the massive and massless sectors. Finally, in Sec. V,
we set up our concluding remarks. An appendix follows
where we list the inverse of the spin matrices used to
calculate the propagators of Sec. III.

II. DESCRIPTION OF THE MODEL

For the sake of generality, we investigate a general
gravity Lagrangian which includes quadratic terms in the
curvature and torsion added to a Chern-Simons (CS) term:

L ¼ e½ðu� sÞRþ 1
8ð3ð�þ �Þ � 1

4�ÞR2 þ �R��R
��

þ �R��R
�� þ 1

8ðuþ rþ 2sÞTabcT
abc

þ 1
4ðuþ r� 2sÞTabcT

bca

þ 1
2ðu� 2s� tÞTab

bTac
c� þ dLCS; (1)

where r, s, t, and u are arbitrary parameters with mass
dimension equal to 1, whereas �, �, and � are inverse mass
parameters and d is dimensionless. Also, we should justify
that this apparently unusual combination of parameters is a
mere matter of convenience. Actually, in our analysis of
the spectral conditions (subject of Sec. IV), the parameters
associated to the terms of Lagrangian density above com-
bine in such a way that the form we propose in (1) yields to
considerable algebraic simplifications, without any loss of
generality in our results. The term

L CS ¼ 	
��ðR
�ab!�
ab þ 2

3!
b
c!�c

a!�a
bÞ (2)

is the well-known topological Chern-Simons term.
Some remarks are in order. First, the absence of terms of

Riemann squared is due to the fact that, in three dimen-
sions, the Riemann tensor can be written in terms of the
Ricci tensor and the scalar curvature. Second, the absence
of the cosmological constant and the translational
Chern-Simons term, 	���T��

ae�a [29], are due to a more

subtle reason. We shall adopt the position of expanding the
graviton field around a Minkowski space. But, it is well
known that free-matter solutions for theories with these
two terms are nonflat. As an immediate consequence, the
introduction of these terms would spoil the gauge symme-
try that comes from the reparametrization symmetry of the
nonlinear model. By expanding the action around the (flat)
Minkowski background, we define our quantum theory by
specifying this ground state and the symmetries of corre-
sponding linearized action. By then computing the tree-
level spectrum and concluding that tachyons and ghosts are
absent (this shall be thoroughly done in the sequel), we
make sure that we are expanding around a configuration
stable against quantum corrections. Since the translational
Chern-Simons and the cosmological constant terms would
explicitly break the gauge symmetry of the linear theory,
the possibility of inducing these two terms through radia-
tive corrections is ruled out as long as we expand around
Minkowski space.
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Third, powers of curvature and torsion higher than
two have not been considered in order to avoid higher
derivatives that usually are hazardous to unitarity proper-
ties of the model. Finally, since we are considering the
Chern-Simons term and thus a parity-broken model, there
is the possibility of considering quadratic terms built from
the dual of torsion and Ricci tensor, as, for example,
	�

��T��
aR�

a, R	
���T���, 	��

�T�a
aR��. All these mix-

ings couple the vielbein and spin-connection field strengths
in a nontrivial way. It is interesting to notice that these
terms may be regarded as originating from a Lorentz-
symmetry violating gravity model in ð1þ 3Þ-dimensions
in the presence of a background vector, v�.
The terms 	����v�T��

aR�a, 	����v�RT���, and

	����v�T�a
aR�� yield, respectively, the 3D-terms men-

tioned above for a spacelike background vector, v� ¼
ð0; 0; 0; �Þ. In connection with a paper by Kostelecky
[30] and the work of Ref. [31], an investigation of the
possible origin and consequences of such 4D-terms in
the spectrum of gravity models with deviations from
Lorentz symmetry and a full study of 3D-gravity with
the inclusion of the T-R-type terms above demands special
attention and is the subject of an investigation we are
pursuing.

In this paper, we shall work in the first-order formalism,
where the vielbein (ea�) and spin connection (!�

ab) are

taken as fundamental fields. We also set up the conventions
for the Minkowski metric, �� ¼ ðþ1;�1;�1Þ, the Levi-
Civita symbol, 	012 ¼ þ1, and the Riemann and torsion
tensors,

R��
ab ¼ @�!�

ab � @�!�
ab þ!�

a
c!�

cb �!�
a
c!�

cb;

(3a)

T��
a ¼ @�e�

a � @�e�
a þ!�

a
ce�

c �!�
a
ce�

c; (3b)

where the Greek indices refer to the world manifold and
Latin ones for the frame indices. The contracted tensors are

R�
a ¼ e�bR��

ab; (4a)

R ¼ e�ae
�
bR��

ab: (4b)

In order to settle down a quantum theory, we shall consider
the following fluctuation around the Minkowski vacuum:

e�
a ¼ ��

a þ ~e�
a (5a)

!�
ab ¼ ~!�

ab (5b)

Henceforth, the distinction between Greek and Latin in-
dices becomes unnecessary. It is also convenient to decom-
pose the vielbein fluctuation, ~eab, into its symmetric, �ab,
and antisymmetric, 	ab

c�c, components. An analogous

decomposition is done for the dual field of the spin-
connection fluctuation, c ad being the symmetric and
	ad

e�e the antisymmetric components:

~eab ¼ �ab þ 	ab
c�c; (6a)

~!abc ¼ 	bc
dðc ad þ 	ad

e�eÞ: (6b)

In the sequel, we shall consider �, �, c , and � as the
fundamental fields of the linearized model.

III. CALCULATION OF THE PROPAGATOR

It is our main goal to analyze the spectral consistency of
the model (1). These aspects can be readily obtained by
means of the propagator of the model. In order to accom-
plish this task, let us consider the Lagrangian up to second-
order terms in the quantum fluctuations,

ðLÞ2 ¼ 1

2

X

;�

�
O
���; (7)

where �
 is a multiplet that carries the 18 components
ð�ab; c ab; �a; �aÞ, and O
� is the wave operator which

contains ’s, 	’s, and at most two derivatives. The satu-
rated propagator is written as

� ¼ i
X

;�

S�

O�1


�S�; (8)

with S
 being the sources for the fundamental fields.
The problem of the attainment of the propagator is

reduced to the problem of inversion of the wave operator.
Once a complete basis in which the wave operator can be
expanded is found, the inversion of the operator becomes a
lengthy but straightforward task.
A first step to treat the attainment of the propagator for

Chern-Simons gravity in second-order formalism was car-
ried out in [32,33], with the help of an extension of the
Barnes-Rivers operators [34]. However, the consideration
of Lagrangians with a larger number of free parameters,
specially in first-order formalism, makes this task techni-
cally difficult [35,36], due to the nontrivial algebra that
these operators satisfy.
A more efficient technique that greatly simplifies this

issue is to decompose the wave operator of the linearized
Lagrangian in an orthogonal basis of projector operators.
In [25,26], an orthonormal basis of spin-parity operators in
4D is proposed which is suitable to study spectral proper-
ties of parity-preserving models containing a rank-2 tensor
and a rank-3 tensor antisymmetric in two indices. The great
advantage of an orthonormal basis of spin-parity operators
over the standard ones is that it allows the decomposition
of the wave operator into spin-parity sectors that can be
inverted independently. Gravity Lagrangians in first-order
formalism are fairly well accommodated in this treatment.
Also, the gauge symmetries of the model are conveniently
handled. Its generalization for arbitrary space-time dimen-
sions [27] is straightforward and the particular three-
dimensional case is the one relevant to this paper.
As is well known, the spin-parity operator basis obtained

as a generalization from the one proposed in [26] cannot
handle the Chern-Simons term in a straightforward way,
since the wave operator contains the Levi-Civita symbol.
In others words, this set of operators does not form a basis
for parity-breaking Lagrangians, which is the sort of model
in which the Chern-Simons term is encoded. In order to
circumvent this problem, the authors of [28] propose a
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parity operator basis in 3-D that makes it possible to
analyze parity-breaking gravity models on the same foot
as those that do not violate parity. In [28], it is argued that
each spin decomposition of the field does not have a
definite parity and finding out degree-of-freedom operators
is the convenient way to set up a basis operator in this case.
In this vein, we perform in the sequel the wave operator
decomposition of the linearized Lagrangian. (Further dis-
cussions and a list of these operators are given in [28].)

In the aforementioned basis, the wave operator is
expanded as

O 
� ¼X
J;ij

a’#ij ðJÞP’#
ij ðJPQÞ
�: (9)

Let us clarify the notation. The diagonal operators
P’’
ii ðJPPÞ are projectors in each of the degrees of freedom

of the spin ðJÞ and parity ðPÞ sectors of the field ’, while

the P’#
ij ðJPQÞ (with i � j) are mappings between the pro-

jectors P’’
ii ðJPPÞ and P##

jj ðJQQÞ. This can be read off in the
following relations:X
�

P��
ij ðIPQÞ
�P��

kl ðJRSÞ�� ¼ �jk�
���IJ�QRP��

il ðIPSÞ
�;

(10)

X
i;JPP

PiiðJPPÞ
� ¼ �
�: (11)

The a��ij ðJÞ are the coefficient in the wave operator expan-
sion. These can be arranged in matrices representing the
contribution to the spin ðJÞ. When these matrices are non-
singular, the saturated propagator (8) is given by

� ¼ i
X


;�;JPQ

S�

a

�1’#
ij ðJÞP’#

ij ðJPQÞ
�S�: (12)

However, the considered Lagrangian (1) is invariant
under local Lorentz and general coordinate transforma-
tions. This implies that the linearized Lagrangian is invari-
ant under some local transformations of the fields. Gauge
invariance makes the coefficient matrices become degen-
erate. In Ref. [25], it is shown that the correct gauge
invariant propagator is obtained by taking the inverse any
largest nondegenerate submatrix and then saturating it with
sources.

For the model (1), the coefficients a��ij ðJÞ form the 6� 6

spin-0, 8� 8 spin-1, and 4� 4 spin-2 matrices. The spin-0
and spin-1 matrices are degenerate. We list below the
largest nondegenerate submatrices obtained from them:

að0Þ ¼
2uþ 4rþ 2ð�� �Þp2 2

ffiffiffi
2

p
r 0 8

ffiffiffi
2

p
id

ffiffiffiffiffiffi
p2

p
2

ffiffiffi
2

p
r 2ðuþ rÞ 0 0

0 0 2ðu� t� sÞp2 2
ffiffiffi
2

p
i
ffiffiffiffiffiffi
p2

p
t

�8i
ffiffiffi
2

p
d

ffiffiffiffiffiffi
p2

p
0 �2

ffiffiffi
2

p
it

ffiffiffiffiffiffi
p2

p �4tþ �p2

0
BBBBBB@

1
CCCCCCA; (13a)

að1Þ ¼

2uþ �p2 �4id
ffiffiffiffiffiffi
p2

p
0 �iu

ffiffiffiffiffiffi
p2

p
4id

ffiffiffiffiffiffi
p2

p
2uþ �p2 iu

ffiffiffiffiffiffi
p2

p
0

0 �iu
ffiffiffiffiffiffi
p2

p
1
2 ðu� tÞp2 0

iu
ffiffiffiffiffiffi
p2

p
0 0 1

2 ðu� tÞp2

0
BBBBBBB@

1
CCCCCCCA
; (13b)

að2Þ ¼

2uþ 2ð�þ �Þp2 8id
ffiffiffiffiffiffi
p2

p
0 2iu

ffiffiffiffiffiffi
p2

p
�8id

ffiffiffiffiffiffi
p2

p
2uþ 2ð�þ �Þp2 �2iu

ffiffiffiffiffiffi
p2

p
0

0 2iu
ffiffiffiffiffiffi
p2

p
2sp2 0

�2iu
ffiffiffiffiffiffi
p2

p
0 0 2sp2

0
BBBBBB@

1
CCCCCCA; (13c)

where p2 ¼ pap
a, with pa being the relativistic three-

momentum. Their inverses, needed for the attainment of
the propagators, are given in the Appendix.

In Ref. [27], one considers the same Lagrangian (1),
except for the Chern-Simons term, in an arbitrary space-
time dimension. So, it is worthwhile to compare our results
so far, whenever d ¼ 0, with those in [27], for 2þ 1
dimensions (D ¼ 3), in order to verify the consistency of
new basis of operators. At first glance, one notices that
there are three more matrices than in our treatment. In fact,
the spin-2� and spin-0�, which are contained in the spin-

connection field decomposition, cannot appear here since
the spin operators associated with these spins are identi-
cally zero in three dimensions. It also can be verified
that the spin operators associated with the spin-1þ, in
that work, are mapped into spin-0 operators when we use
the duality relations for the fields. This is noticed in the
spin-0 matrix above: for d ¼ 0, it becomes block-diagonal
with the blocks corresponding to the spin-0þ and spin-1þ
that appear in [27]. The spin-2 and spin-1 matrices,
compared with the spin-2þ and spin-1�, remain essentially
the same. The differences are some rearrangements in the
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parameters of spin-1 and the duplication of the dimension
of the matrices in this work, due to splitting into degrees
of freedom instead of spins. It must be stressed that, by
comparing the parameters in both works, one has to con-
template the fact that in three dimensions the Riemann
tensor can be expressed in terms of the Ricci tensor and
scalar curvature.

IV. SPECTRAL CONSISTENCYANALYSIS

In this section, we analyze the spectral consistency of
the model. With this study, we shall impose conditions
on the parameters of Lagrangian (1) in such a way that it
does not propagate unphysical particles, that is, ghosts and
tachyons. For the sake of clarity, we split the discussions
for the cases of massive and massless poles.

A. Massive poles

In terms of the inverse matrices (27)–(31), we can write
the propagator as

�ðJPÞ ¼ i
X

ij;
;�

A��
ij ðJ;m2ÞS�
P��

ij ðJPQÞ
�S�ðp2 �m2Þ�1;

(14)

where AðJ;m2Þ is the 4� 4 matrix which is degenerate at
the pole p2 ¼ m2.

The condition for absence of ghosts and tachyons are,
respectively, given by

=Resð�jp2¼m2Þ> 0; and m2 > 0: (15)

The condition for absence of ghosts for each spin is
directly related to the positivity of the matrices
ðP AijðJ;m2ÞPijÞ
�:. However, it can be shown that

these matrices have only one nonvanishing eigenvalue at

the pole, which is equal to the trace of AðJ;m2Þ. Also, the
operators Pij themselves contribute only with a sign ð�1ÞN
when calculated at the pole, where N is the sum of the
number of �’s and �’s in each part of the projector.
Therefore, the condition for absence of ghosts for each
spin is reduced to

ð�1ÞNtrAðJ;m2Þjp2¼m2 > 0: (16)

Using the conditions (15) and (16) for the matrices
(27)–(31), we have

Spin� 2: usðs� uÞ< 0; ð�þ�Þ> 0; (17a)

Spin� 1: �< 0; utðu� tÞ< 0; (17b)

Spin� 0: ðsþ t�uÞðs�uÞt> 0;

ðrþuÞuðuþ 3rÞ< 0; �> 0; ð�þ�Þ> 0: (17c)

It is remarkable that the conditions for absence of
tachyons and ghosts are equivalent to the ones obtained
in [27] in the three-dimensional case, even if the Chern-
Simons term spoils the direct identification of the respec-
tive spin matrices.
The roots of the matrices denominators (28), (30), and

(32), which are given in the Appendix, give us the masses
of the propagating particles. A careful look at the parame-
ter combination reveals that only the torsion terms are
crucial for obtaining a massive spectrum (as discussed in
[27]). This is a remarkable difference with the second-
order formalism for gravity, where the Chern-Simons
term brings up a massive graviton. However, this is due
to the higher-derivative character of such a theory.
The mass spectrum,

2: m2� ¼ 8d2

ð�þ �Þ2 þ
uðu� sÞ
sð�þ �Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
8d2

ð�þ �Þ2
�
2 þ 2

uðu� sÞ
sð�þ �Þ

8d2

ð�þ �Þ2
s

; (18a)

1: m2� ¼ 8d2

�2
þ 2ut

�ðu� tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
8d2

�2

�
2 þ 2

2ut

�ðu� tÞ
8d2

�2

s
; (18b)

0: m2� ¼
�

32d2

�ð�� �Þ þ
2tðs� uÞ

�ðsþ t� uÞ �
uð3rþ uÞ

2ð�� �Þðrþ uÞ
�

�
�

32d2

�ð�� �Þ þ
2tðs� uÞ

�ðsþ t� uÞ �
uð3rþ uÞ

2ð�� �Þðrþ uÞ
�
2 þ 4

tuðs� uÞð3rþ uÞ
�ð�� �Þðrþ uÞðsþ t� uÞ

s
; (18c)

is significantly changed by the Chern-Simons term. In the
spin-1 and spin-2 sectors the number of particles changes
from one to two. The influence of the Chern-Simons term
in the spin-0 sector is restricted to shifting the particle
masses. All this happens due to the parity-breaking prop-
erty of the Chern-Simons term. In three dimensions, every
massive particle has one degree of freedom [37]. Since spin
is represented by a pseudoscalar operator in 3-D [38], there

must be a doublet of spins with the same absolute value
for the mass, jmj, so that an irreducible representation of
the Lorentz group extended by time-inversion and parity
transformations be constituted. On the other hand, in a
parity-breaking theory, this doublet structure is lost and
each component spin acquires a different value of jmj.
This becomes explicit when one analyzes the role of the
Chern-Simons term for the particle masses (18a)–(18c).
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B. Massless poles

For the calculation of the massless propagators, some
subtleties require extra care. The wave operator, as well its
inverse, are Lorentz covariant, thus they can be expressed
in terms of the set of following structures:

!ab ¼ papb

p2
; �ab ¼ab�!ab; 	abc; pa: (19)

As we discussed earlier, for the attainment of the propa-
gator, it is extremely convenient to decompose � as �þ �
to build an orthonormal set of parity operators. However,
for the calculation of the residue on the massless pole, the
explicit dependence on pa complicates the identification of
the spin projectors. At this stage, we rewrite the propagator
in terms of the set (19).

Furthermore, since the model is gauge invariant, there
are constraints that the sources satisfy. They consistently
appear in order to inhibit the nonphysical modes from
propagating. The explicit expressions for these constraints
are given in terms of the left null-eigenvectors of the
degenerate coefficient matrices:

X
VðL;nÞ
j ðJÞPkjðJPQÞ
�S� ¼ 0: (20)

The equation (20) implies in the following constraints for
the fundamental sources:

paðSab þ Sba þ 	bca�
cÞ ¼ 0; (21a)

pað�ab þ �baÞ ¼ 0; (21b)

where Sab,�c, and �ab are the sources for the fields c , �,
and �, respectively. To compare with previous results, we
express the final answer for the massless propagator in
terms of the source to the spin-connection field. The rela-
tion among the fields given in (6a) and (6b) enables us to
write the fundamental sources as

Sab ¼ 1
2ð	pqb�apq þ 	pqa�b

pqÞ; (22a)

�a ¼ �2cd�
cd

a; (22b)

with �abc being the source of !abc.
Using (21a), (21b), (22a), and (22b), one can show that

�ðp2 ¼ 0Þ ¼ 1

2p2ðs� uÞ ð�
ab��ab�Þ 4 2i

�2i 1

 !

�
�
1

2
ðacbd þ bcadÞ � ðabcdÞ

�

� ð�de�deÞ � 2id

p2ðs� uÞ2 �
ab�

�
�
1

2
ðac	dbe þ bd	caeÞpe

�
�cd

þ terms that do not contribute to residue;

(23)

where �ab ¼ pc�abc. This result, for d ¼ 0, agrees with the
one obtained in [27] in the three-dimensional case. It is
shown there that this part of the propagator vanishes. To
explicitly calculate the other term, let us expand the source
�ab as

�ab ¼ c1papb þ c2ðpa	b þ pb	aÞ þ c3	a	b; (24)

where

pa ¼ ðp0; ~pÞ; (25a)

qa ¼ ðp0;� ~pÞ; (25b)

with

p2 ¼ q2 ¼ 0; (26a)

p:q ¼ ðp0Þ2 þ ð ~pÞ2; (26b)

p:	 ¼ q:	 ¼ 0; (26c)

	2 ¼ �1: (26d)

Expansion (24) is the most general one for a symmetric
rank-2 tensor that satisfies (21a). Using it in (23), one can
show that the term due to Chern-Simons also identically
vanishes. Therefore, even for d � 0, there is no massless
particles propagating in the model and the relations (17a)–
(17c) are the only ones that must be imposed to ensure the
unitarity of the Lagrangian (1).
Though our efforts have been made to find the correct

relations among the parameters to ensure absence of tachy-
ons and ghosts, it must become clear that these are tree-
level conditions, valid at linear level, by analyzing residues
and poles of the free propagators. Interactions and loop
corrections might give rise to unphysical modes that could
be suppressed by reanalyzing the spectrum and finding
new conditions among the loop-corrected parameters, so
that ghosts do not show up. Therefore, at the nonlinear
level, the spectrum might become plagued by ghosts,
whose suppression has to be reassessed at each order in
perturbation theory.

V. CONCLUDING REMARKS

We have considered a general gravity Lagrangian with-
out higher derivatives and with a parity-breaking Chern-
Simons term in the first-order formalism. It was our interest
to investigate the possible unitary Lagrangians that one can
obtain from it and determine the influence of the Chern-
Simons term in the particle spectrum.
The proposal of applying the basis of spin projection

operators developed in [28] was successfully implemented.
Two striking features must be emphasized: first, its
orthogonality properties makes the inversion of the wave
operators easier and, second, the analysis of the symme-
tries of the model becomes a systematic procedure. Also,
the results that appear in the literature for the same
Lagrangian, but without the Chern-Simons term, are re-
covered, as was expected. For these reasons, it became
clear that this basis of operators is not a mere algebraic
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convenience. The role of parity in three dimensions gives
the operators a physical meaning. An analogous construc-
tion might be implemented for dealing with Lorentz-
breaking theories in four dimensions, since parity-breaking
terms in three dimensions are intrinsically related to
Lorentz-symmetry-breaking terms in four dimensions.

From the analysis of the spectral consistency (Sec. IV),
we see that the Chern-Simons term does not modify
the unitary relations. Therefore, the possible unitary
Lagrangians are the same as those obtained in [27] added
up with the Chern-Simons term. The main contribution of
this term, due to its parity-breaking character, is to raise
the number of massive particles in the spin-1 and spin-2
sectors, as well as shifting their masses. Furthermore, only
massive modes propagate. In the particular case of the
Einstein-Hilbert-Chern-Simons Lagrangian in the first-
order formalism, there are no massive particles and, con-
sequently, we have no propagating modes. So, we conclude
that the topological Chern-Simons term is compatible with
the propagation of the torsion as long as unitarity is to be
respected.

We understand that the Chern-Simons term does not
alter the conditions for unitarity due to its lower derivative
character and by virtue of its topological aspect. Actually,
as we know, a Chern-Simons term alone does not yield
local perturbations that we may identify as particles. The
same should not be true for other parity-breaking terms
(such as the ones listed in Sec. II), since they carry deriva-
tives of a higher order. We have no concrete arguments in
favor of this possibility, but, to our mind, they should be
investigated. Also, we expect no modification in the parti-
cle content of the massive sector since, by analyzing the
possible degrees of freedom that can be propagated, all
massive modes have been consistently excited. The genu-

ine massless spin-2 nonmassive mode (corresponding to
the massless graviton) should not exist in three dimensions
by a simple counting of the on-shell degrees of freedom. It
remains to be elucidated if the remaining massless modes
could propagate in a way compatible with unitarity.
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APPENDIX: INVERSE MATRICES

The inverse matrices that appear in the propagators are
given by

a�1ð0Þ ¼ 1

D0

Að0Þ
11 Að0Þ

12 Að0Þ
13 Að0Þ

14

Að0Þ
12 Að0Þ

22 Að0Þ
23 Að0Þ

24

Að0Þ
13 Að0Þ

23 Að0Þ
33 Að0Þ

34

�Að0Þ
14 �Að0Þ

24 �Að0Þ
23 Að0Þ

44

0
BBBB@

1
CCCCA; (27)

where

D0 ¼ 8p2½ðuþ rÞððuþ 2rþ ð�� �Þp2Þ
� ðððu� t� sÞ�p2 � 4tðu� sÞÞÞ
� 64d2p2ðu� t� sÞÞ;

� 2r2ððu� t� sÞ�p2 � 4tðu� sÞÞ�;

(28)

Að0Þ
11 ¼ 4ðuþ rÞð�4tðu� sÞ þ ðu� t� sÞ�p2ÞÞp2; Að0Þ

12 ¼ �2
ffiffiffi
2

p
rð2ðu� t� sÞð�4tþ �p2Þ � 8t2Þp2;

Að0Þ
22 ¼ ðð2uþ 4rþ 2ð�� �Þp2Þð2ðu� t� sÞð�4tþ �p2Þ � 8t2Þ � 256d2p2ðu� t� sÞÞp2;

Að0Þ
13 ¼ 64dtðrþ uÞp2; Að0Þ

14 ¼ �32
ffiffiffi
2

p
idðu� t� sÞðrþ uÞ

ffiffiffiffiffiffi
p2

q
p2;

Að0Þ
22 ¼ 4ððuþ 2rþ ð�� �Þp2Þð�4ðu� sÞtþ ðu� t� sÞ�p2Þ � 64d2p2ðu� t� sÞÞp2; Að0Þ

23 ¼ �64
ffiffiffi
2

p
drtp2;

Að0Þ
24 ¼ 64idrðu� t� sÞ

ffiffiffiffiffiffi
p2

q
p2; Að0Þ

33 ¼ 4ð�4tþ �p2Þðuð3rþ uÞ þ ðuþ rÞð�� �Þp2Þ � 256p2d2ðuþ rÞ;
Að0Þ
34 ¼ �8

ffiffiffi
2

p
i
ffiffiffiffiffiffi
p2

q
tðuð3rþ uÞ þ ð�� �Þðuþ rÞp2Þ; Að0Þ

44 ¼ 8p2ðu� t� sÞðuð3rþ uÞ þ ð�� �Þðuþ rÞp2Þ:

a�1ð1Þ ¼ 1

D1

Að1Þ
11 Að1Þ

12 Að1Þ
13 Að1Þ

14

�Að1Þ
12 Að1Þ

11 �Að1Þ
14 Að1Þ

13

Að1Þ
13 Að1Þ

14 Að1Þ
33 Að1Þ

34

�Að1Þ
14 Að1Þ

13 �Að1Þ
34 Að1Þ

33

0
BBBBBBB@

1
CCCCCCCA
; (29)

where

D1 ¼ 1
2p

2ð4d2ðu� tÞ2p2 � ð12p2ðu� tÞ�� utÞ2Þ; (30)
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Að1Þ
11 ¼ � 1

4
ðu� tÞ

�
1

2
ðu� tÞ�p2 � ut

�
p2;

Að1Þ
12 ¼ � i

2
ðu� tÞ2d

ffiffiffiffiffiffi
p2

q
p2;

Að1Þ
13 ¼ �duðu� tÞp2;

Að1Þ
14 ¼ � i

2

ffiffiffiffiffiffi
p2

q
u

�
1

2
ðu� tÞ�p2 � ut

�
;

Að1Þ
33 ¼ �

��
1

2
p2�� t

�
ðu� tÞ2 þ

�
1

4
p4�2 � 2t2

�
ðu� tÞ � t2

�
1

2
�p2 þ t

�
� 4ðu� tÞd2p2

�
;

Að1Þ
34 ¼ �2idu2

ffiffiffiffiffiffi
p2

q
;

a�1ð2Þ ¼ 1

D2

Að2Þ
11 Að2Þ

12 Að2Þ
13 Að2Þ

14

�Að2Þ
12 Að2Þ

11 �Að2Þ
14 Að2Þ

13

Að2Þ
13 Að2Þ

14 Að2Þ
33 Að2Þ

34

�Að2Þ
14 Að2Þ

13 �Að2Þ
34 Að2Þ

33

0
BBBBBBB@

1
CCCCCCCA
; (31)

and where

D2 ¼ 2p2ð16d2s2p2 � ðuðs� uÞ þ p2sð�þ �ÞÞ2Þ;
Að2Þ
11 ¼ �sðsuþ sð�þ �Þp2 � u2Þp2;

Að2Þ
12 ¼ 4ids2

ffiffiffiffiffiffi
p2

q
p2;

Að2Þ
13 ¼ �4dusp2;

Að2Þ
14 ¼ iu

ffiffiffiffiffiffi
p2

q
ðuðs� uÞ þ sð�þ �Þp2Þ;

Að2Þ
33 ¼ � 1

s
ððuðs� uÞ þ sð�þ �Þp2Þ2 � 16s2d2p2 þ u2ðuðs� uÞ þ sð�þ �Þp2ÞÞ;

Að2Þ
34 ¼ �4idu2

ffiffiffiffiffiffi
p2

q
: (32)
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