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Nonlinear Ehrenfest’s urn model
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Ehrenfest’s urn model is modified by introducing nonlinear terms in the associated transition probabilities.
It is shown that these modifications lead, in the continuous limit, to a Fokker-Planck equation characterized by
two competing diffusion terms, namely, the usual linear one and a nonlinear diffusion term typical of anomalous
diffusion. By considering a generalized H theorem, the associated entropy is calculated, resulting in a sum of
Boltzmann-Gibbs and Tsallis entropic forms. It is shown that the stationary state of the associated Fokker-Planck
equation satisfies precisely the same equation obtained by extremization of the entropy. Moreover, the effects of
the nonlinear contributions on the entropy production phenomenon are also analyzed.
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I. INTRODUCTION

Ehrenfest’s urn model (sometimes also called Ehrenfest’s
flea model) [1] has played an important role in clarifying the
foundations of statistical mechanics, providing an interpre-
tation of irreversibility in a statistical manner. The model is
defined by N balls distributed in two urns (or boxes), 1 and 2,
such that at each discrete instant of time s, a ball is chosen at
random and moved from the box in which it is found to the
other box. At the beginning of the 20th century, such a simple
model was useful in explaining the heat exchange between
two bodies at unequal temperatures, where the temperatures
are mimicked by the number of balls in each box, and the heat
exchange becomes a random process (see, e.g., Ref. [2]).

Let us then define N1(s) and N2(s) [N1(s) + N2(s) = N ]
as the number of balls in each box at time s and P (l,s) as
the probability for finding N1(s) = l balls inside urn 1 and
N2(s) = N − l balls in urn 2 at time s. Hence, at time s + 1
the probability P (l,s + 1) for finding l balls in urn 1 follows
the master equation

P (l,s + 1) = l + 1

N
P (l + 1,s) + N − l + 1

N
P (l − 1,s).

(1)

Due to the randomness of the process, the move of a ball
from box 1 to box 2 (from box 2 to box 1), leading to l + 1 → l

(l − 1 → l), occurs with the transition probabilities appearing
in the first and second terms in the right-hand side of the master
equation given by the fractions of balls in boxes 1 and 2 at time
s, (l + 1)/N and [N − (l − 1)]/N , respectively. In this case,
the equilibrium distribution is given by a binomial distribution
of the number l, approaching a Gaussian form in the limit
N → ∞ [2–4]. This later result may be seen if one considers
the continuum limit of Eq. (1); let us then rewrite this equation
as

NP (l,s + 1) = l[P (l + 1,s) − P (l − 1,s)]

+ [P (l+1,s)+P (l − 1,s)]+NP (l−1,s) (2)
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to introduce the variables

x =
√

2D

N

(
l − N

2

)
; t = s

N
;

⇒ �x =
√

2D

N
; �t = 1

N
, (3)

where D represents a constant (to be identified later on with
the diffusion constant), as well as to define a continuous one-
dimensional probability for finding a ball at a given “position”
x at time t , P (x,t) = NP (l,s). It is important to notice that
due to the symmetrization introduced in the variable x, when
N → ∞, one has x ∈ [−∞,∞], so that in the equilibrium
state one expects 〈x〉 = 0. Hence, expanding the probabilities
of Eq. (2) and keeping terms up to O(1/N), one obtains the
following linear Fokker-Planck equation [2,5]:

∂P (x,t)

∂t
= 2

∂

∂x
[xP (x,t)] + D

∂2P (x,t)

∂x2
, (4)

which may be associated with a random walker in the presence
of a parabolic confining potential φ(x) = x2, i.e., subjected to
a restoring force A(x) = −[dφ(x)/dx] = −2x [6].

The Ehrenfest model of Eq. (1), which defines a procedure
of uncorrelated and random actions for moving balls between
the two boxes, was shown to be directly related to the
Boltzmann-Gibbs (BG) entropy [7]. Consistently, consider-
ing the continuous limit above, the linear Fokker-Planck
equation (4) is associated with the BG entropy by means
of an H theorem [6,8,9]. It is also well known that Eq. (4)
presents a Gaussian distribution as its time-dependent solution,
which, for a time much smaller than the one required for the
approach to the stationary state, leads to a variance 〈x2〉 ∼ t ,
which is typical of a linear-diffusion process [6]. Moreover,
the long-time limit of this Gaussian distribution coincides
with the distribution that appears from the extremization of
BG entropy. Consequently, the linear Fokker-Planck equation,
Gaussian distribution, linear diffusion, and BG entropy are all
intimately related to uncorrelated events within the present
problem.

Many attempts were made in the literature to modify Ehren-
fest’s urn model (see, e.g., Refs. [3,4,10,11]), although none
of them has been associated with nonlinear Fokker-Planck
equations (NLFPEs) [12], to our knowledge. One should
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call attention to the modification carried out in Ref. [11],
where the transition probabilities were changed to yield, in
the continuous limit, a linear nonhomogeneous Fokker-Planck
equation, which is usually considered for studying anomalous
transport in an optical lattice. As proposed in Ref. [13], this
Fokker-Planck equation presents a q-Gaussian distribution,
which is typical of nonextensive statistical mechanics [14],
as its stationary state; this solution, which comes from the
nonhomogeneous character of the equation, has recently been
considered successfully in fitting data from experiments on
optical lattices [11,15].

Increasing interest in the study of NLFPEs has occurred
recently [8,9,12,14,16–23], motivated by the fact that they
appeared to be candidates for explaining a wide range of pro-
cesses associated with anomalous-diffusion phenomena [24].
Based on this, generalizations of Ehrenfest’s urn model by
incorporating nonlinear contributions to yield NLFPEs in the
continuous limit become very relevant. For this purpose, in
the present work we perform modifications of the Ehrenfest
model in Eq. (1) by introducing nonlinear transition probability
rates, following a procedure similar to the one considered
in Refs. [25,26], where NLFPEs were obtained by carrying
out approximations on a master equation. Such modifications
are motivated by the behavior of many complex systems, in
which the transition probabilities may be directly affected
by regions with different concentrations of constituents,
excluded-volume effects, long-range repulsive (or attractive)
interactions, and/or strong correlations; later, this procedure
was justified by scaling arguments (see, e.g., Refs. [27–29]).
In the next section we define the modified Ehrenfest’s urn
model and obtain its corresponding NLFPE, and considering
a generalized H theorem, we calculate the associated entropic
form. In Sec. III we investigate stationary-state solutions of the
NLFPE and show that such distributions follow an equation
that coincides with the one obtained by extremization of
the entropy; some particular cases are analyzed. Moreover,
considering the NLFPE, in Sec. IV we discuss the phenomenon
of entropy production, emphasizing the effects of the nonlinear
contributions. Finally, in Sec. V we present our conclusions.

II. NONLINEAR EHRENFEST’S URN MODEL
AND ASSOCIATED ENTROPY

Following the model in Eq. (1), let us introduce a modified
Ehrenfest’s urn model,

P (l,s + 1) = Wl+1,l[P ] P (l + 1,s) + Wl−1,l[P ] P (l − 1,s),

(5)

where the transition probabilities Wl+1,l[P ] and Wl−1,l[P ] for
removing one ball from box 1 (l + 1 → l) and for adding
one ball in box 1 (l − 1 → l), respectively, do not correspond
to simple uncorrelated events, but rather depend on the
occupation probabilities P . Inspired by Refs. [25,26], herein
we consider the following ansatz for the general transition
rates to recover several particular cases of interest, defined as

Wl+1,l[P ] = (l + 1) + wl+1,l[P ]

N
,

Wl−1,l[P ] = N − (l − 1) + wl−1,l[P ]

N
, (6)

where

wl±1,l[P ] = c1P
μ−1(l ± 1,s) + c2P

ν−1(l,s)

− c2P
ν−2(l ± 1,s)P (l,s) − c1

×P −1(l ± 1,s)P μ(l,s). (7)

In the equation above the dimensionless constants c1 and
c2, as well as the exponents μ and ν, assume real values,
such that the transition probabilities satisfy 0 � Wl+1,l[P ] � 1
and 0 � Wl−1,l[P ] � 1. One notices that the uncorrelated
moves of Eq. (1) are recovered in the following cases: (i)
c1 = c2 = 0 and (ii) nonzero c1 and c2, with the exponents
μ = 0 and ν = 2. The above dependence on the occupancy
probabilities is closely related to the one introduced previously
in the master equation of Refs. [25,26], which has led
to a very general type of NLFPE. Several terms of the
equation above contribute to increasing (or decreasing) the
transition probabilities Wl±1,l[P ], depending on the occupancy
probabilities of each box. For example, if c1 and c2 are both
positive, the term c1P

μ−1(l + 1,s) increases (decreases) the
transition probability Wl+1,l[P ] for 0 < μ < 1 (μ > 1). On
the other hand, the term c2P

ν−1(l,s) contributes to keeping
the same number of balls (to changing the number of balls) if
0 < ν < 1 (ν > 1) in both transition probabilities Wl±1,l[P ].
Such effects appear to be combined in the other two terms
in Eq. (7), e.g., in c2P

ν−2(l ± 1,s)P (l,s). The types of
contributions in Eq. (7) should be relevant in several complex
systems, in which one takes into account excluded-volume
effects, long-range repulsive (or attractive) interactions, and/or
strong correlations, like those mentioned in Ref. [25], where
one may find phenomena such as particle diffusion in porous
media [30,31], surface growth in fractals [31], and financial
transactions [32].

As described in the previous section for the uncorrelated
case, let us now consider the continuous limit; for that, we
rewrite Eq. (5) as

NP (l,s + 1) = l[P (l + 1,s) − P (l − 1,s)] + [P (l + 1,s) + P (l − 1,s)]

+NP (l − 1,s) + [wl+1,lP (l + 1,s) + wl−1,lP (l − 1,s)], (8)

and substituting the transition probabilities from Eq. (7) one obtains

NP (l,s + 1) = l[P (l + 1,s) − P (l − 1,s)] + [P (l + 1,s) + P (l − 1,s)] + NP (l − 1,s)

+c1[P μ(l + 1,s) + P μ(l − 1,s)] + c2P
ν−1(l,s)[P (l + 1,s) + P (l − 1,s)]

−c2P (l,s)[P ν−1(l + 1,s) + P ν−1(l − 1,s)] − 2c1P
μ(l,s). (9)
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Now, considering the same change of variables as in Eq. (3) defining P (x,t) = NP (l,s), and expanding the probabilities up to
O(1/N ), one gets the following NLFPE:

∂P (x,t)

∂t
= 2

∂[xP (x,t)]

∂x
+ D

∂2P (x,t)

∂x2
+ aD

∂2P μ(x,t)

∂x2
+ bDP ν−1(x,t)

∂2P (x,)

∂x2
− bDP (x,t)

∂2P ν−1(x,t)

∂x2
, (10)

where we have defined a = (2c1/N
μ) and b = (2c2/N

ν). The
equation above can still be written in the general form [8,9,26]

∂P (x,t)

∂t
= −∂{A(x)�[P (x,t)]}

∂x

+D
∂

∂x

{
�[P (x,t)]

∂P (x,t)

∂x

}
, (11)

where

A(x) = −2x, �[P (x,t)] = P (x,t),

�[P (x,t)] = 1 + aμP μ−1(x,t) + b(2 − ν)P ν−1(x,t). (12)

In the functional �[P (x,t)] (which should be a positive
quantity [8,9]) one notices the presence of both linear and
nonlinear contributions, with the first one being associated
with random moves. On the other hand, the latter terms appear
due to correlations between moves, introduced according to
Eqs. (6) and (7), and are usually associated with anomalous
diffusion in the present NLFPE. Hence, the correlated-
move limit, or, equivalently, the anomalous-diffusion regime,
corresponds to a region for x such that aμP μ−1(x,t) +
b(2 − ν)P ν−1(x,t) 	 1, whereas for aμP μ−1(x,t) + b(2 −
ν)P ν−1(x,t) 
 1, the linear diffusion (associated with random
moves) dominates.

Consistent with the uncorrelated Ehrenfest model, the linear
Fokker-Planck equation is recovered from Eqs. (11) and (12)
by setting aμ = b(2 − ν) = 0, from which one has several
particular cases: (i) a = b = 0 and (ii) nonzero a and b, with
the choices μ = 0 and ν = 2 for the exponents. Moreover,
one should notice that apart from the constant factor D, the
nonlinear diffusion terms of Eq. (10) correspond precisely
to those of the NLFPE obtained in Ref. [25] by means of
approximations on a master equation. In this previous work,
in order to obtain these terms we also considered transition
probabilities depending on P (x,t). In fact, apart from being
restricted to an external harmonic potential φ(x) = x2, i.e., to a
restoring force A(x) = −[dφ(x)/dx] = −2x, Eq. (10) differs
from Eq. (2.4) of Ref. [25] by the linear diffusion contribution.

In general, the functionals �[P (x,t)] and �[P (x,t)] of
Eq. (11) should satisfy certain mathematical requirements,
such as differentiability and positiveness [8,9]; moreover, to
ensure normalizability of P (x,t) for all times one must impose
the conditions

P (x,t)|x→±∞ = 0,
∂P (x,t)

∂x

∣∣∣∣
x→±∞

= 0,

A(x)�[P (x,t)]|x→±∞ = 0 (∀ t). (13)

An important result that follows from Eq. (11) represents the
H theorem, which ensures that after a sufficiently long time,
the associated system will reach a stationary state. Hence, the
proof of the H theorem by using NLFPEs has been carried out
by many authors in recent years [8,9,12,18–21]. In the case
of a system under a given confining external potential φ(x),

the H theorem corresponds to a well-defined sign for the time
derivative of the free-energy functional,

F [P ] = U [P ] − θS[P ], U [P ] =
∫ ∞

−∞
dx φ(x)P (x,t),

(14)
with θ representing a positive parameter with dimensions of
temperature. Herein, the entropy may be considered in the
general form [8,9,21],

S[P ] = k

∫ +∞

−∞
dxg[P (x,t)],

g(0) = g(1) = 0,
d2g

dx2
� 0, (15)

where k denotes a positive constant with dimensions of
entropy, whereas the functional g[P (x,t)] should be differ-
entiable twice, at least. Considering the NLFPE in Eq. (11),
for a well-defined sign of the time derivative of the free energy
[which was considered as (dF/dt) � 0 in Refs. [8,9,21]], one
finds that the functionals of Eq. (11) should be directly related
to the entropic form,

− d2g[P ]

P 2
= �[P ]

�[P ]
, (16)

where we assumed, as usual, D = kθ . Hence, substituting the
functionals from Eq. (12) into Eq. (16), integrating twice, and
imposing the conditions in Eq. (15), one obtains the following
entropic form:

S[P ] = −k

∫ +∞

−∞
dxP ln P + ka

∫ +∞

−∞
dx

P − P μ

μ − 1

+ k
b(2 − ν)

ν

∫ +∞

−∞
dx

P − P ν

ν − 1
. (17)

One should recall that the second term on the right-hand side of
this equation exists only for μ �= 0; in the particular case μ = 0
this term vanishes already in the functional �[P ] in Eq. (12).
One notices well-known contributions in the above entropic
form, namely, the BG, as well as two contributions of Tsallis
type, characterized by the exponents μ and ν, respectively.
These two latter contributions may also fall into the class of
two-index entropic forms introduced in the literature [33–37]
by appropriately defining the parameters a, b, μ, and ν (see,
e.g., Ref. [9]). The prevalence of one particular type of entropy
or a competing effect between different types of entropy
will depend on the particular values of these parameters. In
Ref. [22] a system of interacting vortices, typical of type-II
superconductors, was shown to be described by a NLFPE of
the type shown in Eqs. (11) and (12), characterized by an
associated entropy in the form of Eq. (17) with μ = ν = 2, i.e.,
given by a sum of the BG and Tsallis contributions. Moreover,
most recent studies of this system have shown that the term
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resulting from μ = ν = 2 prevails in the superconducting
phase [38,39].

In the next section we will study stationary-state solutions
of the NLFPE defined by Eqs. (11) and (12); we will show that
such distributions follow an equation that coincides with the
one obtained by extremization of the entropy in Eq. (17) and
we will analyze some particular cases.

III. EQUILIBRIUM DISTRIBUTIONS

Let us first consider the stationary-state distributions of the
NLFPE defined by Eqs. (11) and (12); for that, we rewrite this
NLFPE in the form of a continuity equation,

∂P (x,t)

∂t
= −∂J (x,t)

∂x
, (18)

where the probability current density is given by

J (x,t) = −2xP (x,t) − D[1 + aμP μ−1(x,t)

+ b(2 − ν)P ν−1(x,t)]
∂P (x,t)

∂x
. (19)

As required by an appropriate conservation of probability,
the stationary-state solution Pst(x) is obtained by setting
Jst(x) = 0,

Jst(x)=−2xPst−D
[
1 + aμP

μ−1
st +b(2 − ν)P ν−1

st

]∂Pst

∂x
=0,

(20)

which, after an integration over x, yields

ln(Pst) + aμ

μ − 1
P

μ−1
st + b(2 − ν)

ν − 1
P ν−1

st = 1

D
(C − x2), (21)

where C represents an integration constant.
Now, we will extremize the entropy of Eq. (17) under

the constraints of probability normalization and internal
energy definition according to Eq. (14). Supposing a unique
extremizing state (usually referred to as equilibrium), a direct
consequence of the H theorem is that the system should
reach this equilibrium state after a sufficiently long time.
The maximum-entropy principle is established herein by
extremizing the functional [40]

[P (x,t)] = S[P (x,t)]

k
+ α

(
1 −

∫
dxP (x,t)

)

+β

(
U −

∫
dxφ(x)P (x,t)

)
, (22)

with α and β representing Lagrange multipliers. The extrem-
ization of this functional yields(

dg[P ]

dP
− α − βφ(x)

)∣∣∣∣
P=Peq(x)

= 0, (23)

where Peq(x) represents the probability distribution at equilib-
rium. Now, considering the entropy of Eq. (17), one finds

−(ln Peq+1) + a

μ − 1

(
1−μP μ−1

eq

) + b(2 − ν)

ν(ν−1)

(
1 − νP ν−1

eq

)
= α + βφ(x). (24)

Using φ(x) = x2, the equation above can be rewritten as

ln Peq + aμ

μ − 1
P μ−1

eq + b(2 − ν)

ν − 1
P ν−1

eq = β(C ′ − x2). (25)

Apart from an additive constant, the above equation, which
holds for the state that extremizes the entropy, coincides with
Eq. (21) for the stationary state of the corresponding NLFPE
through the identifications Peq(x) ↔ Pst(x) and by considering
the Lagrange multiplier β = D−1 = (kθ )−1. This remarkable
result shows the consistency of the connection between the
entropic functional in Eq. (17) and the NLFPE defined by
Eqs. (11) and (12), already stated by Eq. (16) through the H

theorem. Herein, this connection is reinforced by showing that
the stationary distribution of the NLFPE coincides with the
equilibrium distribution obtained independently through the
maximum-entropy principle.

Next, we solve Eq. (25) [or, equivalently, Eq. (21)] in some
particular cases. Since the power terms in Eq. (17) are readily
associated with Tsallis entropy [14], herein, for simplicity we
will be restricted to those situations where μ = ν = 2 − q,
where q denotes Tsallis’s entropic index. With this choice,
Eq. (25) becomes

ln Peq(x) + a(2 − q) + bq

1 − q
P 1−q

eq (x) = β(C ′ − x2), (26)

which may be written also in terms of the q logarithm, lnq(u) ≡
(u1−q − 1)/(1 − q) [ln1(u) = ln(u)], as

ln[Peq(x)] + [a(2 − q) + bq] lnq[Peq(x)] = β(C ′′ − x2).

(27)

From the equation above one sees that the equilibrium
distribution Peq(x) will result from a competition between
these logarithms, such that its final form will depend on the
choices of a, b, and q; below we consider some typical values
of q.

(a) Case with q = 1. This particular case corresponds to
BG entropy, as well as to the linear Fokker-Planck equation,
for which Eq. (27) leads to

(1 + a + b) ln[Peq(x)] = β(C ′′ − x2). (28)

The solution of the equation above is given by the standard
Gaussian distribution,

Peq(x) =
(

1

πA

)1/2

exp

(
−x2

A

)
, (29)

where the constant A is found by imposing normalization and
depends on the constants in Eq. (28).

(b) Case with q = 0. Substituting q = 0 into Eq. (26), one
obtains

ln Peq(x) + 2aPeq(x) = β(C ′ − x2), (30)

which is similar to the equilibrium equation found in Ref. [22]
for a system of interacting vortices, which is typical of type-II
superconductors. This system was shown to be described by
a NLFPE like the one in Eqs. (11) and (12), characterized by
an associated entropy in the form of Eq. (17) with μ = ν = 2.
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FIG. 1. (Color online) The equilibrium distribution Peq(x) of Eq. (32) is represented vs x in the following cases: (a) β = 2 and typical
values of a (increasing values of a from top to bottom); (b) a = 1 and typical values of β (increasing values of β from bottom to top). The
parameter C ′ is found in each case by imposing normalization.

Writing Eq. (30) as

2aPeq(x) exp[2aPeq(x)] = 2a exp[β(C ′ − x2)], (31)

one identifies the form XeX = Y , which defines the im-
plicit W -Lambert function, such that X = W (Y ) (see, e.g.,
Ref. [41]). Hence,

Peq(x) = 1

2a
W {2a exp[β(C ′ − x2)]}. (32)

Although Eq. (30) does not present an explicit analytical
solution, the equilibrium distribution above recovers two
well-known limiting cases: (i) 2a 
 1, where the Gaussian-
distribution behavior dominates, and (ii) 2a 	 1, where the
W -Lambert function approaches a parabola, corresponding
to the relevant limit for the superconducting phase of real
type-II superconductors [38,39]. It should be mentioned that
the solution of Eq. (32) matches precisely the one in Ref. [22]
by a simple redefinition of the parameters a and β, as well
as of the constant C ′. Both parameters a and β affect directly
the width of the distribution, as shown in Fig. 1. In Fig. 1(a)
we exhibit the above equilibrium distribution for β = 2 and
typical values of the parameter a; one sees that the width of
the corresponding distribution increases for increasing values
of a. On the other hand, one concludes from Fig. 1(b) that the
Lagrange parameter β is related to the inverse of the width
of the distribution in the sense that larger values of β yield
smaller widths and vice versa.

(c) Case with a general q. One can write Eq. (26) as

(1 − q) ln Peq(x) + [a(2 − q) + bq]P 1−q
eq (x)

= (1 − q)β(C ′ − x2), (33)

leading to

[a(2 − q) + bq]P 1−q
eq (x) exp{[a(2 − q) + bq]P 1−q

eq (x)}
= [a(2 − q) + bq] exp[(1 − q)β(C ′ − x2)], (34)

where one identifies a form similar to the one in Eq. (31), for
which the W -Lambert function appears,

[a(2 − q) + bq]P 1−q
eq (x)

= W {[a(2 − q) + bq] exp[(1 − q)β(C ′ − x2)]}. (35)

Hence, one gets the following solution:

Peq(x)=
[
W {[a(2 − q) + bq] exp[(1−q)β(C ′−x2)]}

a(2−q) + bq

]1/(1−q)

,

(36)

where one should have [a(2 − q) + bq] > 0 (in agreement
with Ref. [25]), and for each set of q, a, and b, the parameter
C ′ is found by imposing normalization. One should notice that
the distribution above recovers that of Eq. (32) in the particular
case q = 0.

In Fig. 2 we exhibit the above equilibrium distribution for
β = 1, typical values of the parameters a and b, and q < 1
[Figs. 2(a) and 2(b)] and q > 1 [Figs. 2(c) and 2(d)]. The cases
q < 1 yield essentially short-tailed distributions, and one sees
that the parameters a and b are directly related to the width
of the distribution in the sense that larger values for these
parameters yield larger widths, as can be seen by comparing
Figs. 2(a) and 2(b). On the other hand, the cases q > 1 lead to
a behavior typical of long-tailed distributions, and for a better
visualization, they are shown in log-linear representations. As
for the cases with q < 1, by increasing the parameters a and
b, one increases the width at midheight, as can be seen by
comparing Figs. 2(c) and 2(d).

IV. ENTROPY-PRODUCTION ANALYSIS

Associating the present generalization of Ehrenfest’s urn
problem with the NLFPE defined by Eqs. (11) and (12), as
done in the previous section, it is possible to analyze the
entropy production resulting from the irreversible process
characterized by moving balls between urns. In this case, one
may write [42,43]

d

dt
S[P ] = � − , (37)
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FIG. 2. (Color online) The equilibrium distribution Peq(x) of Eq. (36) is represented vs x for β = 1, typical values of the parameters a and
b, and (a) and (b) q < 1 (in a linear-linear representation) and (c) and (d) q > 1 (in a log-linear representation). In all cases, the maximum
Peq(x = 0) decreases by increasing values of q.

where one identifies the entropy flux, associated with the
exchanges of entropy between the system and its neighborhood
(represented herein by the confining potential φ(x) = x2, i.e.,
by a restoring force A(x) = −[dφ(x)/dx] = −2x) [44],

 = k

D

∫ +∞

−∞
dxA(x)J (x,t). (38)

Additionally, one has the entropy-production contribution,

� = k

D

∫ +∞

−∞
dx

{J (x,t)}2

�[P ]
, (39)

and since k, D, and �[P (x,t)] were all defined previously as
positive quantities, one has the desirable result � � 0.

From now on, we restrict our analysis to the situation
investigated in the previous section, which is typical of
nonextensive statistical mechanics, by considering the case
μ = ν = 2 − q; the probability current in Eq. (19) becomes

J (x,t) = −2xP (x,t) − D{1 + [a(2 − q) + bq]P 1−q (x,t)}
× ∂P (x,t)

∂x
. (40)

The above expression may be written as

J (x,t) = −2xP (x,t) + J (l)(x,t) + J (nl)(x,t), (41)

where

J (l)(x,t) = −D
∂P (x,t)

∂x
, (42)

J (nl)(x,t) = −D[a(2 − q) + bq]P 1−q (x,t)
∂P (x,t)

∂x
. (43)

We have split the above probability current into linear
and nonlinear diffusion contributions, respectively. The first
one, J (l)(x,t), corresponds to the diffusion contribution to
the probability current due to random moves (i.e., without
correlations), whereas J (nl)(x,t) carries the nonlinearities,
associated with anomalous diffusion, and as discussed in
Sec. II, it should be related to correlations between moves.
It is important to recall that the equilibrium solution of
Eq. (36) implies [a(2 − q) + bq] > 0 (which represents a
condition also found in Ref. [25]). Hence, for the x region
such that [a(2 − q) + bq]P 1−q (x,t) 	 1 [i.e., |J (nl)(x,t)| 	
|J (l)(x,t)|], the anomalous diffusion, produced by correlated
moves, prevails, whereas for [a(2 − q) + bq]P 1−q (x,t) 
 1
[i.e., |J (nl)(x,t)| 
 |J (l)(x,t)|], the linear diffusion, associated
with random moves, dominates.

Let us then consider a situation such that at the initial
time both urns have approximately the same number of balls,
i.e., N1(s) ≈ N/2 and N2(s) ≈ N/2, so that the variable x
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defined in Eq. (3) is small at the beginning of the evolution.
This represents a typical situation that occurs with the time-
dependent solution P (x,t) of the NLFPE in Eqs. (11) and (12)
(see, e.g., Refs. [16,17]). Hence, in this regime, the diffusion
contributions in Eq. (41) prevail over the confining one,
leading to � 	 ; particularly, the nonlinear contribution
J (nl)(x,t) yields an increase in the total entropy production
in Eq. (39). Therefore, the correlations between moves,
introduced herein in the exchange transition rates, by means
of nonlinear dependences on the occupancy probabilities
result in an enlargement of the total entropy production of
the present model. On the other hand, the approach to the
stationary state occurs for sufficiently long times such that the
confining contribution in Eq. (41) becomes the same order as
the diffusion ones; although small in this regime, the nonlinear
diffusion contribution still yields an increment with respect to
the linear one for the total entropy production.

V. CONCLUSIONS

We have carried out modifications of Ehrenfest’s urn model
by introducing nonlinear terms in the associated transition
probabilities. These nonlinearities, which were set by means
of the dependence on the occupancy probabilities of both urns,
were argued to be related to correlations between moves. We
have shown that these modifications lead, in the continuous
limit, to a Fokker-Planck equation characterized by two
competing diffusion terms, namely, the usual linear one and a
nonlinear diffusion term typical of anomalous diffusion.

Considering such a Fokker-Planck equation, an H theorem
led to the associated entropy, which was shown to be given
by a sum of Boltzmann-Gibbs and Tsallis entropic forms.
Two independent procedures, namely, the extremization of
the entropy and the stationary state of the corresponding
Fokker-Planck equation, have yielded the same equation
for the equilibrium distribution, which was solved in some
particular cases.

Furthermore, by using the associated Fokker-Planck equa-
tion we have also analyzed the phenomenon of entropy
production. It was shown that for short times of the evolution,
when the entropy-production contribution prevails over the
entropy flux, the correlations between moves, introduced
herein by means of nonlinear dependences on the occupancy
probabilities in the exchange transition rates, result in an
enlargement of the total entropy production of the present
model.

In the same way that the uncorrelated Ehrenfest’s urn model
has played an important role in the statistical interpretation
of some irreversible processes, the present modified model
is expected to provide further insights into irreversible pro-
cesses that occur in many complex systems, described by
nonlinear equations, for which generalized entropic forms
are applicable. The dependence of the transition probabilities
on the occupancy probabilities considered herein is closely
related to the one introduced previously in the master equation
in Refs. [25,26], which has led to a very general type of
nonlinear Fokker-Planck equation. Particularly, this model
should be relevant for physical systems in which the transition
probabilities may be directly affected by some characteristics
usually found in complex systems, such as (i) excluded-volume
effects, which yield restrictions in position transitions, (ii)
charged constituents, characterized by long-range Coulomb
interactions, e.g., found in ionic solutions, where regions
characterized by larger (or smaller) concentrations of ions
influence the diffusion of other ions, and (iii) regions with
distinct concentrations of constituents, like in social and bio-
logical systems, which affect directly the associated transition
probabilities. The application of the present formalism to some
of these problems is in progress.

ACKNOWLEDGMENTS

We thank C. Tsallis for fruitful conversations. The partial
financial support from CNPq and FAPERJ (Brazilian funding
agencies) is acknowledged.

[1] P. Ehrenfest and T. Ehrenfest, Über zwei bekannte Einwände
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