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Data collapse, scaling functions, and analytical solutions of generalized growth models
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We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities.
Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita
growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple
linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become
independent from the parameters and initial condition. Analytical solutions are found when time-dependent
coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction
and survival and to calculate the transition’s critical exponents. Considering an extrinsic growth rate as a cancer
treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when

the cancerous cell growth is maximum.
DOI: 10.1103/PhysRevE.83.061902

I. INTRODUCTION

Growth models are useful when one tries to understand,
describe, or predict the behavior of a wide range of time-
dependent processes in physics, chemistry, demography, eco-
nomics, ecology, epidemiology, just to cite a few disciplines.
The simplest way to deal with population growth is to
consider that individuals within the population do not interact
explicitly with external ones. This is represented by the
so-called one-species population dynamics models. These
models quantify the population size (number of individuals)
N(t) > 0 at a certain time ¢, given its initial size Ny =
N(0) > 0, intrinsic growth rate ¥ > 0, and the environment’s
carrying capacity K = N(oo) > 0. The environment’s car-
rying capacity takes into account all possible interactions
among external individuals, species, and resources in a single
parameter [1]. If one assumes an environment with unlimited
resources (an infinite carrying capacity) and that the per
capita growth rate (dN/dt)/N = d1In N/dt = « is constant,
then the population grows exponentially (the Malthus model),
producing a divergence at an infinite time. However, this
divergence can be dismantled considering a finite carrying
capacity. The growth of individual organisms [2], tumors
[3], and other biological systems [4] are well described
by sigmoid curves [5-7] that can be obtained through the
Gompertz [d In(N/K)/dt = —k In(N /K)] or Verhulst model
[dIn(N/K)/dt = —k(N/K — 1)] for instance.

The von Foerster et al. [8] model considers the per
capita growth rate as a power law dIn N/dt = k N*, where
the exponent o produces a divergence at a finite time, in
constrast to the Malthus model (@ — 0). This has been
observed for human population growth [8]. The Richards
model [9] {dIn(N/K)/dt = —«[(N/K)7 — 1]/G} binds the
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Gompertz (§ — 0) and Verhulst (§ = 1) models through the
constant ¢, whose microscopic interpretation is the growth of
interacting cells in a fractal medium [10-12]. A power-law
growth, similar to the von Foerster et al. model, in the
Gompertz model {dIn(N/K)/dt = k[In(N/K)]"} is known
as the hyper-Gompertz model [13,14]. The parameter y
regulates the population size inflection point pj,s = e~7, where
the growth rate is maximum.

Generalized forms of the classical logistic growth equation
are more suitable as predictive models. From the work of
Tsoularis [14] we know that “. . .additional growth characteris-
tics are accommodated by this new model, enabling previously
unsupported, untypical population dynamics to be modelled
by judicious choice of model parameter values alone.” As
an example, the Tsoularis-Wallace model {d In(N/K)/dt =
kN*{[(N/K) —1]/G}”} unifies all the cited models and
presents an analytical (nonexplicit) solution [15].

Permit us a digression to introduce the concepts of scaling
and data collapse. The research of van der Waals was able to
rescale data and collapse them into a nontrivial common curve.
For a given volume, different real gases liquefy at different
temperature and pressure, leading to a first-order transition.
Nevertheless, for the critical values of volume, temperature,
and pressure, the transition becomes of second order (no latent
heat). For each real gas, dividing the temperature, pressure,
and volume by their respective critical values, one obtains
a collapsed (common) curve. This common curve reveals
common aspects of all real gases (a finite particle volume
and short-range interaction among them). This data collapse
had important consequences as the estimation of the temper-
ature for helium liquefaction, which itself lead to relevant
discoveries such as superconductivity and superfluidity [16].
Nowadays, the idea of data collapse is extended to scaling
functions [17], which is one particular aspect of the scaling
hypothesis [18]. The scaling hypothesis also deals with the
scaling laws at critical transition values (such as in the van der
Waals mean-field theory) and renormalization-group theory,
but this latter aspect is beyond the scope of the present
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work. We attain only the power of the scaling function to
connect apparently independent quantities to simple relevant
quantities [19] in population dynamics models and to critical
transition exponents.

Returning to the analytical solutions obtained from the
one-species growth models, we call attention to the following
items. For each model, the time ¢ of the population evolution
is proportional to the inverse of the intrinsic growth rate «.
This gives rise to a dimensionless characteristic time and
can be defined as the system-independent variable T = «t.
Furthermore, we demonstrate how to obtain the scaling
function that depends on the combination of quantities such
that the models become independent from the initial condition
and parameters. A data collapse from the scaling function
occurs even in the Tsoularis-Wallace model, where no explicit
analytical solution is known.

We also deal with models that consider an extrinsic
growth rate, defined as an addition or removal of individuals
proportionally to the population size. It can also be seen as
the interaction factor when considering multispecies models.
Furthermore, in theoretical models of cancer growth, the
extrinsic growth rate can be associated with treatment and
the knowledge of how the transition between survival and
extinction occurs is of utmost importance [20-23]. The
concepts of physics in theoretical models of cancer growth
were already proposed in Ref. [24] in which the authors obtain
a phase transition between tumor growth and latency. A phase
transition is also associated with successful cancer treatment
in Ref. [25].

Here we obtain analytical solutions for time-dependent in-
trinsic and extrinsic growth rates and show their data collapse.
The steady-state (asymptotic) solution is interpreted as the
order parameter. Nontrivial transitions between extinction and
survival phases are found and depend on the extrinsic growth
rate with well-defined critical exponents. In cancer treatment
modeling, we have shown that the relevant quantity in a phase
transition depends not only on the intensity of the treatment
but also on when the cancerous cell growth is maximum.

This paper is structured as follows. In Sec. II we show
the general procedure to obtain the scaling functions and we
calculate these functions for the main one-species population
dynamics (growth) models. In Sec. III we consider the insertion
or removal of individuals through a constant extrinsic growth
rate. We show that this quantity does not affect data collapse.
Moreover, it induces an extinction-survival transition at well-
determined values. We then calculate the transition’s critical
exponents for the simpler models. We show that both time-
dependent intrinsic and extrinsic growth rates do not destroy
data collapse. In Sec. IV we present our final remarks. In the
Appendix we briefly review the one-parameter generalization
of the logarithm and exponential functions and present several
of its properties we used herein.

II. GROWTH MODELS AND SCALING FUNCTIONS

One-species growth models are usually represented by

dIn[p(7)] _

7 G(p), (D
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where T =kt is the time measurement in terms of the
intrinsic growth rate k and G(p) is the per capita growth
rate. One-species population dynamics (growth) models fall
into two categories: one with infinite and the other with finite
carrying capacity. To deal with these two kinds of models,
we introduce the variable p. On the one hand, when the
resources are unlimited (K — o0), as is the case of the
Malthus model, it is convenient to use p = N, where N is
the number of individuals. On the other hand, when there
are limited resources, as is the case of Verhulst model, it is
convenient to express the population size with respect to its
equilibrium value, i.e., p = N/K. In an environment with
limited resources, the steady-state solutions are either species
extinction p* = 0 or survival 0 < p* < 1 given by the roots
of G(p*) = 0. Optimum environment exploration is achieved
when p(t) = 1.
We have heuristically found that the integral

p(T) dp
s(r)=/p0 pG(p)=T_TO (2)

is a general procedure to obtain the scaling function of the
growth models. Here pyg = p(7p) is the initial condition. This
scaling function is linear on 7 (see Fig. 1) and data collapses
independently of the model parameters and initial condition.
In the infinite carrying capacity case p(t) = N(t), we
write variables with tildes; for instance, the scaling function
of Eq. (2) is §(t). For G,(N) = N® (the von Foerster et al.
model) [8], where « is a generalization parameter that produces
a divergence in a finite (dimensionless) time 7', one has the
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FIG. 1. The area below the curve 1/pG(p) grows linearly as a
function of A = t — 7. This behavior does not depend on the model
considered.
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solution N(t) = 1/[a(T — 1)]'/*. The von Foerster et al.
model scaling function is

sute) = WV ey (N];?) Lo

where we have used the generalized §-logarithmic function
(see the Appendix). As @ — 0, one retrieves, for the Malthus
model G(N) =1, dN(t)/dt = N(7), resulting in the ex-
ponential growth N(t)/Ny = e® (Ny = e7), so that Eq. (3)

becomes
o (N A
SO(f)—n( N0> “4)

and one obtains a straight line in a plot §yr, which is
independent from the parameters of the model (intrinsic
growth rate k) and initial condition Nj.

The Richards model [9,12,26,27] can be conveniently
written in terms of the §-logarithmic function [see Eq. (A1)
in the Appendix], dInp(r)/dt = —In; [p(r)]. Based on
Refs. [10,11], a microscopic interpretation can be given to §
relating it to the range of interaction between cells and the frac-
tal dimension where these cells grow [12]. When discretized,
this equation leads to the generalized logistic map [28]. The
solution of the model can be written in terms of the generalized
exponential and logarithm functions [see Egs. (Al) and
(A2) in the Appendix] as p(r) = 1/e; [lnq(po_l)e"]. The
asymptotic limit (t — 00) is p* = p(oc0) = 1, regardless of
the choice of §. The Gompertz model is retrieved with
G =0, so that dIn p/dtv = —1In p and one has the solution
p(t) = P The Verhulst model is retrieved with § = 1,
sothatdlnp/dt =1—pand p(z) =1/[1 — (1 — pal)e"]
is the solution. The scaling function for the Richards model is

[ In_g(po)
a(m) =l (lnq [p(r)]> ’ )
with the following limiting cases:
so(t) = — In{In[p(z) — pol}, (6)
—1
— po —1
si(t) =1In (pl(r) — 1) . @)

With this procedure, one gets rid of the dependence on
the initial condition and parameters retrieving data collapse.
Although Montroll used this transformation for the Verhulst
model in Ref. [26], he did not discuss the data collapse.

One way to include the finite carrying capacity K in the
von Foerster et al. model is to replace N by p=N/K,
rescale the constants, and replace N“ by [—In(N/K)]” in
the saturation function. The von Foerster et al. model in the
In p variable is known as the hyper-Gompertz model [13,
14] d1n p(t)/dt = {—In[p(7)]}¥, whose solution is p(t) =
el =D+ po) I The parameter y regulates the popula-
tion size inflection point piys = e~7, where the growth rate is
maximum. For y > 1, the inflection point tends to 0; for y «
1, it tends to the carrying capacity K. The hyper-Gompertz
model scaling function is given by

$,(®) = =(=In p)' 7 Ini_, {In[p(z) — pol}, (8
so that one retrieves Eq. (6) for y = 1.
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So far, all the models presented have explicit analytical
solutions. However, the Tsoularis-Wallace model does not;
nevertheless, its scaling function can still be obtained. In
terms of the g-logarithm function, the Tsoularis-Wallace
model is

dln
= o= Ing @) ©)
T
The solution p(r) of Eq. (9) is the root of

Bpiq)(=/q,1 —y) = B(=a/q,1 —y) = G'"vt, where
B.(a,b) = [; 1*7'(1 — 1)’~'dt is the incomplete B function
and the scaling function of Eq. (2) is

chi(f)(— Z:,l —)/) — Bpg(— %,1 —]/)

saﬁﬂ/(f) = qu—V
1 Pi() dp’ (10,
g g pta = phyr”

All the models studied can be retrieved by a convenient choice
of o, y, and §. For instance, the Richards model is retrieved for
o =0and y = 1. By setting p = N and y = 0 and rescaling
the growth rate, one retrieves the von Foerster ef al. model.

III. EXTINCTION AND SURVIVAL PHASES: EXTRINSIC
GROWTH RATE

The extrinsic growth rate is defined as the addition or
removal of individuals proportionally to the population size.
It can be seen as the interaction factor when considering mul-
tispecies models [29]. In theoretical models of cancer growth,
the extrinsic growth rate can be associated with treatment and
the knowledge of how the transition between survival and
extinction occurs is of the utmost importance [20-23]. The
concepts of physics in theoretical models of cancer growth was
already proposed in Ref. [24], in which the authors obtained
a phase transition between tumor growth and latency. The
latency phase is aroused by therapeutic strategies aimed at
reducing a growing tumor to dormancy. In addition, cancer
treatment consisting in inhibiting angiogenesis has been found
to be an interesting therapeutic strategy. A phase transition to
a region in the parameter space in which angiogenesis is not
successful was proposed in Ref. [25].

Here we obtain the analytical asymptotic solutions for
the Tsoularis-Wallace model and investigate the effect of
the extrinsic growth rate € on the data collapse. Further, we
show nontrivial transitions between extinction and survival
phases. The transition’s critical exponents are obtained for the
special case @ = 0, so we exclude models with infinite carrying
capacity.

A. Constant extrinsic growth rate

With constant extrinsic growth rates, one can deal with the
transitions between the extinction and survival phases. The
steady-state solution p* represents the order parameter since it
vanishes in the extinction phase and, at critical points, becomes
nonzero, representing survival phases. Let us first consider an
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extrinsic growth rate in the Tsoularis-Wallace model [Eq. (9)]
and call it the Tsoularis-Wallace-Schaefer model:

dln p(7)
dt

where € = €/k.

= p*(O{=Inz[p(D]} + ¢, (1)

1. Steady-state solutions, critical value, and exponents

The steady-state solutions are obtained by considering
dp/dt = 0in Eq. (11), so that p*{p**[—Ingz(p*)]” + €} = 0.
The solution p* =0 represents the extinction phase and
p*¥[—Inz(p*)]” = —e represents the survival phase. The
values separating the extinction and survival phases are the
roots of

(PHM = (p") It = g(—e)'/7. (12)
For a = 0, the solution is
p* = p(00) = ez[—(—€)"/"]. (13)

For € = 0, one has p* = 1, as expected. From the definition
of the generalized exponential function [Eq. (A2), the survival
phase is stable for G(—€)!/” < 1, so that extinction occurs at
a critical value

1
€ = —q—y. (14)
It is also possible to calculate the transition’s critical
exponents. For € 2 €., Eq. (13) leads to

p* — (_1)1/(}/(?)(_@1/4(61/? _ 661/1/)1/5 ~ (£ — &)vl.
(15)

Otherwise, for € < €., according to Eq. (13), one has p* = 0.
The relevant quantity is the control parameter & = €!/¥ and
the critical exponent is v; = 1/§. For v = 1/§ < 1, as the
control parameter decreases, the transition from the survival
phase to the extinction phase is abrupt: a second-order phase
transition. For vy = 1/§ > 1, the system presents a continuous
transition. When § = 0 (the Gompertz model) there is no
transition between phases because ¢ — —oo, according to
Eq. (14). Figure 2 illustrates these transitions. Examples of
these behaviors near (£ — &.) = 0 with their corresponding
critical exponents are presented in Ref. [30].

One can also introduce the susceptibility of the system
x = 0p*/d&, so that from Eq. (15) we get x ~ (§ —&.)",
with critical exponent v, = vy — 1. For § > 1 (which implies
v < 1), the susceptibility diverges at the critical points. We
note the dependence of the critical exponents only on §. The
exponent y affects the control parameter, i.e., only where the
transition occurs, but it does not affect its form.

Keeping o« =0 and taking y =1, one obtains from
Eq. (11) the Richards model with constant extrinsic
growth rate, which we call the Richards-Schaefer model:
dlIn p(r)/dt = —1Ing[p(t)] + €, whose complete solution is
p(r) = ez(€)/ez{Ing[e;(€)/ pole” 1997}, where py = p(0) is
the initial condition. Its asymptotic behavior is p* = p(0c0) =
ez(€), which is a particular case of Eq. (13). As in Eq. (13),
p* vanishes for ge < —1, representing species extinction.
Species survival occurs for € > €., where the critical value
is €, = —1/g and the critical exponents are v; = 1/§ and
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FIG. 2. Plot of the steady-state solution p* as a function of § =
€'/v for different values of §. At the critical value the population
(a) diverges for § < 0 and (b) extinguishes for § > 0. There is no
transition between phases when § = 0 (Gompertz model), there is a
continuous transition when 0 < § < 1, and there is an abrupt (second-
order phase) transition when § > 1. The parameters used are y = 1
and g values are indicated above the curves.

v, = v — 1. For a # 0, Eq. (12) can be solved for particular
cases, which are beyond the scope of this study.

2. Scaling functions

Even in a very general model with an additive term as in the
Tsoularis-Wallace-Schaefer model [Eq. (11)], it is possible to
obtain the scaling function from Eq. (2):

p(t) dp/
@,G,y,€ = ’ 16
S y.e(7) /po p'{p“l=Ing(p)]” + €} (1o

Although this is not a general explicit solution, taking y = 1
and o = 0, we are able to solve the integral and obtain an
explicit analytical form for the Richards-Schaefer model:

ln-q[p(w/eq(e)]) 07
In_g[po/es(e)]

57.6(1) = —[ez(€)] 7 1In (

For € =0, ¢;(0) =1 and one retrieves Eq. (5). Figure 3
depicts data collapse in this very general case. Using three
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FIG. 3. (a) Plot of the population p(t) using the Richards-
Schaefer model for three different sets of parameters and initial
conditions: (I) pp =0.1, § =2.0, and € = —0.1; (I) py = 0.6,
G =0.5,and e = —0.75; and (II) py = 0.8,§ = 1.0, and ¢ = —2.0.
(b) Same set of parameters using the scaled form of the Richards-
Schaefer solution S; .. With the appropriate scaling function, all the
different behaviors in (a) collapse into a single curve (b).

different sets of parameters, a unique curve is obtained when
the appropriate scaling function is used.

B. Time-dependent extrinsic growth rate

Next we consider a very general solution for the Richards
model with a time-dependent extrinsic growth rate. We show
that data collapse can be done even for the time-dependent
intrinsic growth rate. Analytically closed solutions are found
for the constant intrinsic growth rate.

1. Time-dependent intrinsic growth rate

Consider time dependence in both the intrinsic and extrinsic
growth rates:

dlIn[p(t)]
dt
Notice that here we use 7, instead of 7, as the independent

= —« (1) Ing[p(£)] + €(2). (18)
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variable and its solution is

1 ! 1T (4! / _l/q
p(t) = [% (1 +/(; dr'I(t" )k (t ))} , 19)

i(r)=p§exp< / di'k(t) + § / dt’é(t’)), (20)
0 0

where

so that 1(0) = pg.
It is also possible to compute the scaling function, which is

Se.g.eo®) =1Op~I1t)— 1= /0 di'I(the(t).  (21)

For the time-dependent extrinsic growth rate, the insertion
or removal of individuals is a function of time. Note that in
Eq. (18), one may consider a nontrivial model with multi-
plicative «(¢) and additive €(¢) stochastic noise and the data
collapse remains attainable. If €(¢) = 0, one can consider the
time-dependent growth rate as k() = ao(t) + a;y1(¢), where
ap(t) is a deterministic growth and y;(#) may be considered as
a multiplicative stochastic noise [31,32].

2. Constant intrinsic growth rate

Now consider a constant intrinsic growth rate x(¢) = «,
which we call the Richards-Schaefer model [Eq. (22)] with
time-dependent extrinsic growth rate:

dinp(® _ _ Ing p(7) + €(7). @2)
dt

This equation can be explicitly solved and the solution is
conveniently written in terms of the generalized logarithm
and exponential functions:

ezle()]
pe) = PEIYAECIpse T e
eg[ Ing (2 70 )e;[e(0)167[1+q€(t)h]
where
1 T
€(r) = —f dt'e(t)) (24)
T Jo

is the mean value of €(7) up to time 7. As a particular case,
a constant extrinsic growth rate €(r) = € in Eq. (23) leads
to the Richards-Schaefer solution. This very general growth
function (Richards) with a time-dependent extrinsic growth
rate solution allows us to obtain the stability of the two-species
population dynamics model with a time-dependent extrinsic
growth rate [29].

The steady-state solution (r — 00) of Eq. (23) is p* =
p(00) = e;(€), where € = €(00) is the true mean value of
€(7). Species extinction occurs for §é < —1. The steady state
of the population is p* ~ (€ — €.)"/4, where €. = —1/§ and
the susceptibility y = dp*/d€ ~ (€ —€.)/4~1. In this way,
regardless of the increasing complexity, the time-dependent
extrinsic growth rate, or the constant extrinsic growth rate, the
system presents the same critical behavior. The scaling func-
tion of the Richards-Schaefer model with a time-dependent
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extrinsic growth rate is given by

S3.e0(1) = —lezle(m)]} 7 In (ln‘q{” (©)/eg [E(T)”).

In_z{po/ez[€(0)]}
(25)

If €(r) is a random variable, then one has the addi-
tive stochastic growth equation. In this case, if its mean
value vanishes €(t) = 0 and €(1))e(r2) = 028(7, — 11) (the
Gaussian process), then the probability density function
of v =In p satisfies the Fokker-Planck equation 9, P(v) =
0y[P(v) Ing (v)] + (02/2)83[P(v)] [26,33,34]. Correlated and
Lévy-like noise have also been addressed [23,35,36].

IV. CONCLUSION

Here the concepts of data collapse, scaling functions, phase
transitions, and critical exponents are used in population
growth models. These statistical physics concepts are widely
used in many other research areas [37-40]. Through data
collapse, we explicitly show a common characteristic of a wide
range of one-species growth models. By including the extrinsic
growth rate in the models, we are able to establish scaling
and extract associated exponents in equilibrium or nonequi-
librium phase transitions. In modeling of cancer treatment,
the extrinsic growth rate can be associated with radiotherapy
or chemotherapy. The phase transition gives us insight into
how cancerous cell extinction occurs. We have shown that
the relevant quantity for treatment is €'/”, which depends not
only on the intensity of the treatment €, but also on y, which
regulates the time when the growth is maximum. This extrinsic
growth rate may also represent the mean-field approximation
of the interaction of other species. For this reason, we believe in
the data collapse of multispecies models. For time-dependent
coefficients, the most general model we have addressed and
solved is the Richards-Schaeffer model, whose solutions also
present data collapse. Since one can consider stochasticity in
the time-dependent coefficient models, with either additive or
multiplicative noise, we conjecture that the stochastic models
also present data collapse.
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APPENDIX: GENERALIZED LOGARITHMIC AND
EXPONENTIAL FUNCTIONS

In the following we introduce a one-parameter generaliza-
tion of the logarithmic and exponential functions and present
some of their frequently used properties. These generalizations
play a central role [12,28,41,42], as they allow us to easily
retrieve particular cases and permit convenient algebraic tricks
to handle the expressions.

The G-logarithm function is defined as

. xT -1 T odt
Ing(x) = _1/1m~ —— =
7—q g

This one-parameter generalization of the natural logarithm
function, which is retrieved for § — 0, has been introduced in
the context of nonextensive statistical mechanics [41,43,44]
and is defined as the value of the area underneath the
nonsymmetric hyperbole, f;(#) = 1/¢'79, in the interval ¢ €
[1,x] [42]. Note that in Eq. (A1), Inz(x) is not a logarithm
x in the base §. For § <0, Inz(c0) = —1/g; for G > 0,
Ing(0) = —1/4g; for all g, Inz(1) =0, ln,;(x’l) = —1In_z(x),
and d Ing(x)/dx = x77".

The inverse of the §-logarithm function is the §-exponential
function

(AD)

o

it gx>—1

. (A2)
otherwise,

1
eq(x) = | a1 701

so that e;(0) = 1 for all § and [e5(x)]* = eg/4(ax), where a is
a constant. For a = —1, one has

1

ez (x)

(A3)

=e_s(—x).
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