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Abstract
We show that nonlinear dynamics of a scalar field ϕ may be described as a
modification of the spacetime geometry. Thus, the self-interaction is interpreted
as a coupling of the scalar field with an effective gravitational metric that is
constructed with ϕ itself. We prove that this process is universal, that is, it is valid
for an arbitrary Lagrangian. Our results are compared to usual analogue models
of gravitation, where the emergence of a metric appears as a consequence of
linear perturbation.

PACS numbers: 02.40.Ky, 04.20.Cv, 04.20.Gz

1. Introduction

Analogue gravity has become an active field of relativistic physics in recent years. This
terminology involves the description of distinct physical processes in terms of an effective
modification of the metrical structure of a background spacetime. The basic idea is to
investigate aspects of general relativity using systems that may be reproduced in the laboratory
or admit a simple geometrical interpretation of their physical features. The analogies may
include classical or quantum aspects of fields in curved spacetimes and they have been
concentrated in the study of artificial black holes, emergent spacetimes, effective signature
transitions, breakdown of Lorentz invariance and quantum gravity phenomenology (a complete
list of references can be found in [1] and [2]).

Until now, the analogies have focused only on perturbative aspects of the system. Hence,
they have been restricted mainly to the propagation of excitations (photons or quasi-particles)
through a given background configuration [3–12]. In this way, the relevant equations describe
an approximative solution that considers linearized fluctuations over a given background
configuration. The evolution of these perturbations is always governed by an effective metric
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which could be associated with specific gravitational configurations. By ‘specific’ it is
understood that only aspects of test fields propagating in a given gravitational background
are considered, i.e. all effects due to gravitational back-reaction should be negligible (see [13]
for a pedagogical exposition). We note that in this scheme, only perturbations ‘perceive’ the
effective metric.

However, the effective metric is not a typical and exclusive component of perturbative
phenomena, i.e. intimately associated with linearization on top of a background. Indeed, as we
shall prove in this paper, we claim that it is possible to describe the dynamics of scalar field
ϕ in terms of an emergent geometrical configuration. Then, we may interpret the equation of
motion as if ϕ were embedded in an effective curved structure generated by itself. This result
accomplishes a new geometrization scheme for the dynamics of ϕ.

In a recent communication [14], two of us have shown that it is possible to go beyond
some of the linearized approximations in the case of a scalar field. This means that there
exists a special situation such that the nonlinear equation of motion for ϕ can be described
equivalently as a field propagating in a curved spacetime. Our previous result was restricted
only to a unique Lagrangian, which was given in terms of an infinite series of powers of w,
where w = γ μν∂μϕ∂νϕ.

In this paper, we move a step forward and show that our previous result is much broader and
constitutes a general property of any self-interacting relativistic scalar field. Our fundamental
claim may be summarized as follows:

• the dynamics of a relativistic scalar field endowed with a Lagrangian L(w, ϕ) can be
described as if ϕ interacted minimally with an emergent metric constructed solely in terms
of ϕ and its derivatives.

It is important to emphasize that our result is completely independent of any process
of linearization and does not rely on any kind of approximation. In the particular case of
excitations on top of a given background solution, our scheme provides a recipe to reobtain all
the usual typical results to analogue models after a straightforward linearization procedure. In
addition, we also discuss how the back-reaction issue is connected to our analysis.

In the following section, we summarize the common knowledge in analogue models
stressing some of the points that might be helpful to distinguish it from our result. In
section 3, we develop the geometrization of the dynamics of any scalar nonlinear field.
Section 4 is devoted to analysing the problem of back-reaction, while in section 5 we connect
our result with the description of hydrodynamical fluids.

2. Effective geometries: a brief review

In this section, we briefly review some well-known results and approximations concerning the
effective metric technique. For the sake of simplicity, let us consider a relativistic real scalar
field ϕ propagating in a flat Minkowski spacetime with a nonlinear dynamics provided by the
action [15]

S =
∫

L(ϕ,w)
√−γ d4x,

where w ≡ γ μν∂μϕ ∂νϕ is the canonical kinetic term and γ = det(γμν ) is the determinant of
the metric in arbitrary curvilinear coordinates. The equation of motion immediately reads

(Lw ∂νϕ γ μν );μ = 1

2
Lϕ, (1)
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where LX denotes the first derivative of L with respect to the variable X and the semicolon (;)
means the covariant derivative with respect to γμν . This is a quasi-linear second-order partial
differential equation for ϕ of the form [16]

ĝαβ (x, ϕ, ∂ϕ) ∂α∂βϕ + F (x, ϕ, ∂ϕ) = 0, (2)

where F (x, ϕ, ∂ϕ) stands for terms depending only on the curvilinear coordinates x, the field
ϕ and its first derivatives ∂ϕ. A straightforward calculation shows that the object ĝαβ can be
expressed as

ĝμν ≡ Lwγ μν + 2Lww∂μϕ∂νϕ (3)

and determines the principal part of the equation of motion, i.e. the part that involves the
higher order derivative terms. In what follows we discuss how the ĝαβ may be associated with
the contravariant components of a Riemannian effective spacetime. Let us note that there exist
two complementary aspects of this association. In a typical condensed matter system, these
aspects may be identified respectively with the geometrical and physical regimes of acoustics.

2.1. Ray propagation

The first aspect that can be rephrased in terms of an effective spacetime occurs in the realm of
geometrical optics approximation. Although the main part of this discussion may be elegantly
stated in terms of Hadamard’s formalism of discontinuities [17, 18], we develop our arguments
in the context of the Eikonal approximation. The aim of the approximation is to evaluate the
characteristic surfaces of the nonlinear equation (1). The basic idea is to consider a continuous
solution ϕ0 of (1) and a family of approximated wavelike solutions of the form [19]

ϕ(x) = ϕ0(x) + α f (x)exp(iS(x)/α), (4)

where α is a real parameter and both the amplitude f (x) and the phase S(x) are continuous
functions. As long as, by assumption, both ϕ(x) and ϕ0(x) satisfy (1), in the limit of a rapidly
varying phase, which is equivalent to taking α → 0, we find the dispersion relation

ĝαβkαkβ = 0 (5)

with kμ ≡ S,μ and ĝαβ being evaluated at the solution ϕ0. This is the Eikonal equation, which
constitutes a first-order nonlinear PDE for S(x) and determines the causal structure of the
theory [20]. Now, suppose that the matrix ĝαβ is invertible, i.e. there exists ĝμν such that
ĝμα ĝαν = δμ

ν . Defining the affine structure of the space in such a way that ĝαβ||ν = 0, we obtain
that, once the vector kμ is a gradient, the following equation holds:

ĝμνkα||μkν = 0. (6)

The above result allows one to interpret the rays describing the perturbations of the scalar
field as if they were propagating as null geodesics in the effective metric ĝμν , i.e. the effective
metric determines the causal structure of the field’s excitations. Thus, there exist two distinct
metrics in this framework: the background Minkowskian γ μν that enters in the dynamics of
the field ϕ and the effective metric ĝμν that controls the propagation of rays in the geometrical
optics limit.

Given that both equations (5) and (6) are invariant under conformal transformations, we
obtain that kα is a null geodesic with respect to any metric proportional to the effective metric
as was defined in (3). Thus, there is a degeneracy of metrics in the sense that any metric
conformally related to ĝμν equally describes the evolution of rays. One may conveniently
choose one of the above metrics to investigate ray propagation in curved spacetimes. However,
this conformal freedom works only for the perturbations in the geometrical optics limit. As
we will see below, it cannot be implemented in the next aspect of analogue gravity, namely
when we consider wave-like propagation.

3



Class. Quantum Grav. 28 (2011) 245008 E Goulart et al

2.2. Wave propagation

The second type of analogy with gravitational physics comes from a relaxation of the
geometrical optics limit. In other words, we shall look for the dynamics of an arbitrary first-
order field’s perturbations δϕ and show that they satisfy a wave-like equation in an effective
curved manifold. To do so, we again consider a continuous solution ϕ0 of the equation (1) and
seek for the equation that governs the evolution of the perturbations around this background
solution, i.e.

ϕ = ϕ0 + δϕ with δϕ2 � δϕ. (7)

As has been shown sometimes in the literature (see, for instance, [22, 21]), a
straightforward calculation yields a Klein–Gordon-like equation in an effective spacetime
whose metric f̂ μν is determined by the background configuration ϕ0. Inserting the above
ansatz into (1) and keeping only terms up to first order in δϕ, we can recast the equation of
motion for the perturbation as

� f̂ δϕ + m2
effδϕ = 0, (8)

where we have defined the effective metric f̂ μν and the effective mass term meff as

f̂ μν = L−2
w (1 + βw)−1/2ĝμν, with β ≡ 2Lww/Lw (9)

m2
eff ≡ L−2

w (1 + βw)−1/2

[
Lϕϕww − 1

2
Lϕϕ + ∂ ĝαβ

∂ϕ
ϕ,α;β

]
. (10)

Inasmuch as we are dealing with more than one metric, we thought that it would be convenient
to introduce a notation to specify with which metric tensor the d’Alembertian is constructed,
i.e. we define the notation

� f̂ δϕ ≡ 1√
− f̂

(

√
− f̂ f̂ μνδϕ,μ),ν . (11)

Note that both the effective metric and the effective mass term should be evaluated on
the background solution ϕ0(x), leading to a linear equation for the perturbation δϕ. Thus, the
perturbation propagates as a massive scalar field in an effective emergent spacetime that makes
no reference to the perturbation itself. We stress that this result is valid for all sufficiently small
excitation and has nothing to do with the frequency of the wave. Both sections 2.1 and 2.2 deal
with approximations. Nevertheless, they are complementary in the sense that in the optical
regime one considers only waves with small amplitudes and very short wavelength (very
high frequency), while in the other the amplitude is made very small letting the frequency be
completely arbitrary.

3. Geometrization of field dynamics

So far we have treated only perturbative aspects of propagation. From now on we are going to
investigate the relation between the full equation of motion (1) and the effective metric seen by
its excitations. Thus, we address the question of whether it is possible that both the perturbation
and the field itself propagate in a similar emergent scenario. Note that this is exactly the case
for linear theories, i.e. for linear scalar field theory both the field and its excitations propagate
in the same background metric, namely the Minkowskian spacetime.

4
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A non-trivial situation appears when one considers nonlinear theories. In [14], it was
shown that for a nonlinear theory given by a specific Lagrangian, the dynamics of the scalar
field and its perturbations can be described as if they both were immersed in an effective curved
spacetime. Thus, as happens in general relativity, one can define a unique Riemannian metric
that interacts with everything (in this case, the scalar field and its excitations) and characterizes
a common background.

The novelty of this work is that the above-mentioned result is actually general. In other
words, for any nonlinear scalar theory, one can define a Riemannian metric tensor which
provides the geometrical structure ‘seen’ by the field. Therefore, there exists an effective
spacetime ‘generated’ by the nonlinearity of the scalar field dynamics which will prescribe
how this field propagates. A direct proof of our claim can be summarized in the following
theorem.

Theorem 1. Any scalar nonlinear theory described by the Lagrangian L(w, ϕ) is equivalent
to the field ϕ propagating in an emergent spacetime with the metric ĥμν (ϕ, ∂ϕ) and a
suitable source j(ϕ, ∂ϕ), both constructed explicitly in terms of the field and its derivatives.
Furthermore, in the optical limit, the wave vectors associated with its perturbations follow
null geodesics in the same ĥμν (ϕ, ∂ϕ) metric.

Proof. The equation of motion (1) describing the scalar field can be written as
1√−γ

∂μ(
√−γ Lw∂νϕγ μν ) = 1

2
Lϕ.

We shall define the effective metric constructed with the Lagrangian L(w, ϕ), the Minkowskian
metric γμν and the scalar field ϕ as

ĥμν ≡ Lw√
1 + βw

(
γμν − β

1 + βw
ϕ,μϕ,ν

)
, with β ≡ 2Lww/Lw. (12)

As a consequence of the Cayley–Hamilton theorem, the determinant of a mixed tensor T = T α
β

may be decomposed as a sum of traces of its powers in the form

detT = − 1
4 Tr

(
T4

) + 1
3 Tr (T) .Tr

(
T3

) + 1
8 Tr

(
T2

)2 − 1
4 Tr (T)2 .Tr

(
T2

) + 1
24 Tr (T)4 .

Thus, the determinant of ĥμν is given by√
−ĥ = L2

w

(1 + βw)3/2

√−γ . (13)

Supposing that Lw �= 0, the inverse is given through the relation ĥμα ĥαν = δμ
ν , i.e.

ĥμν ≡
√

1 + βw

Lw

(γ μν + βϕ,μϕ,ν ) . (14)

Therefore, a straightforward calculation shows that

ĥμν∂νϕ = (1 + βw)3/2

Lw

γ μν∂νϕ. (15)

Finally using the above relations, the equation of motion for the scalar field can be recast as

1√
−ĥ

∂μ(

√
−ĥ ĥμν∂νϕ) = Lϕ

2L2
w

(1 + βw)3/2. (16)

Note that the left-hand side of this equation is nothing but the d’Alembertian constructed
with the effective metric ĥμν . Also, the right-hand side depends only on the field and its first
derivative. Using the same notation presented in relation (11), we obtain

�ĥϕ = j(ϕ, ∂ϕ), (17)

5
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where we have defined the effective source term as

j(ϕ, ∂ϕ) ≡ Lϕ

2L2
w

(1 + βw)3/2. (18)

The last step of our proof is straightforward once we realize that ĥμν and ĝμν are
conformally related, indeed

ĥμν = L2
w√

1 + βw
ĝμν.

Recalling that equations (5) and (6) are conformally invariant, we can without further
calculation write

ĥαβkαkβ = 0 (19)

ĥμνkα||μkν = 0, (20)

hence completing our proof showing that in the optical limit the wave vectors follow null

geodesics in the ĥμν metric. �

Let us make some comments about what we have done. The novelty is that we have
constructed an effective geometrical scenario to describe the dynamics of a nonlinear field
and not just its perturbations. Thus, we are somehow generalizing previous results concerning
analogue models of gravitation. In another way, we can rephrase the above statement as follows:
it is impossible to distinguish between a nonlinear field propagating in a Minkowski spacetime
and the same field interacting minimally with an effective gravitational configuration ĥμν ,
constructed in terms of ϕ.

In the particular case of a theory where the Lagrangian does not depend explicitly on ϕ,
i.e. L(w), equation (17) reduces to a ‘free’ wave propagating in a curved spacetime generated
by itself

�ĥϕ = 0.

We should mention that the term free field has a peculiar meaning in this context.
The effective metric is constructed with the scalar field ϕ; therefore, the above free
Klein–Gordon equation is actually a complicated nonlinear equation for ϕ. Notwithstanding,
general relativity presents a very similar situation since besides the Klein–Gordon equation in
curved spacetime, i.e. an intricate coupling between the metric and the scalar field, there is also
Einstein’s equations which describe how the scalar field modifies the spacetime metric. Thus,
in GR the spacetime metric also depends on the scalar field in a non-trivial way. Of course,
we can consider approximative situations where we truncate this back-reaction process and
consider only the dynamics of the scalar field in a given spacetime that does not depend on its
configuration. We shall examine this approximative situation in some details in section 4.

Another point worth emphasizing is that it is the nonlinearity in the kinetic term that
produces the effective metric. If we consider algebraic nonlinearities such that L(w, ϕ) =
w + V (ϕ) with V (ϕ) any function of the scalar field, the effective metric trivializes to the
Minkowskian metric. Thus, it is the nonlinearity in w that it is essential to generate the curved
effective spacetime.

Finally, to make connection with previous results concerning exceptional dynamics [14],
we mention that the unique Lagrangian found in that work is recovered if one requires equation
(14) to be equal to (3), which amounts to a differential equation for the Lagrangian.

6
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4. Addressing the back-reaction issue

Quantum field theory in curved spacetimes has been intensively investigated from the
perspective of analogue gravity. The idea is to use a semi-classical approach where a physical
situation can be approximated by a classical background field plus small quantum fluctuations
satisfying linearized equations. Thus, the analogy only holds if we consider quantum effects
where the gravitational back-reaction is negligible, i.e. the equations are essentially kinematics.
An important discussion concerns the accurate description of these quantum fluctuations onto
the dynamics of the classical background solution. Although there exist some recent attempts to
include these semi-classical back-reactions in the analogue gravity program (see, for instance,
[23]), little has been said about this issue from its classical counterpart.

From the perspective of general relativity, the back-reaction is basically the following.
Classically, matter fields influence gravitation via their energy–momentum tensor. Thus, any
disturbance of the matter configuration immediately implies a modification of its background
geometry. In this highly nonlinear process, one has to take into account these altered metrics
back into the matter equations of motion. However, the situation is not so simple since the
perturbed metric by itself depends on the perturbed field in a nontrivial way due to Einstein’s
equations. In addition, we should mention that in our study, the effective metric depends
algebraically on the field and its first derivatives, while in general relativity the matter field
appears as a source term; hence, the metric depends on the matter field through PDEs.

A very similar back-reaction process is included in our hidden metric perspective. To
see how this works, let us suppose that we do know an exact continuous solution ϕ0 of
equation (17). The system behaves as a wave equation evolving in a metric ĥμν

0 (14) with the
source j0 (18), both evaluated at ϕ0. Now, suppose that we disturb this solution, i.e. we have a
new scalar field and an associated metric in the form

ϕ1 = ϕ0 + δϕ (21)

ĥμν

1 = ĥμν

0 + δĥμν. (22)

As a consequence of theorem 1, the following equations result:

�ĥ0
ϕ0 = j(ϕ0, ∂ϕ0), �ĥ1

ϕ1 = j(ϕ1, ∂ϕ1). (23)

Thus, ϕ0 and ϕ1 propagate as waves associated with different metric structures. This happens
because the disturbance of the background solution ϕ0 implies a simultaneous disturbance of
the background metric ĥμν

0 .
If we assume that the perturbations are infinitesimal, i.e. δϕ2 << δϕ, we obtain, up to

first order, the linear equation

[
δ
(√−ĥĥμν

)
ϕ0,ν +

√
−ĥ0 ĥμν

0 δϕ,ν

]
,μ

= j0 δ

√
−ĥ +

√
−ĥ0 δ j, (24)

where all the background quantities depend only on position, and all the perturbed quantities
δ j and δĥμν are to be written in terms of δϕ and its derivatives δϕ,α , i.e.

δĥμν = ∂ ĥμν

∂ϕ
δϕ + ∂ ĥμν

∂ϕ,α

δϕ,α, δ j = ∂ j

∂ϕ
δϕ + ∂ j

∂ϕ,α

δϕ,α. (25)

Using the usual relation between the variation of the determinant and the variation of the
metric

δ

√
−ĥ = − 1

2

√
−ĥ ĥαβ δĥαβ, (26)

7
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we obtain, after a tedious but straightforward calculation, that equation (24) is simply the
well-known Klein–Gordon-like equation in a given curved background (8),

� f̂ δϕ + m2δϕ = 0, (27)

where both the metric f̂ μν and the mass term m2 are calculated with respect to the ϕ0

configuration. This expression is exactly the same as that discussed in section 2.2, which is by
no means a coincidence. Once equation (17) is completely equivalent to (1), perturbations (21)
must coincide with the previous perturbative approach (7). Nevertheless, note that in order to
obtain this result, it is indispensable to include the variation of the background metric. This
characterizes a process that is similar to a gravitational back-reaction. The background metric
f̂μν that rules the motion of perturbations δϕ may be obtained in terms of the metric ĥμν that
rules the motion of the whole field ϕ evaluated at the background configuration, up to first
order as

f̂ μν = [(1 + βw)−1ĥμν]ϕ0 . (28)

It is interesting to note that f̂ μν and ĥμν are related by a simple conformal transformation.
We thus recover all the previous linearized results concerning field theory in curved spacetimes.
In the limit of a wavelength sufficiently small, we also reobtain the Eikonal approximation
discussed in section 2.1.

5. Example: the geometry of hydrodynamic flows

It is well known that any theory of the form L(w, ϕ) with a timelike gradient ∂μϕ (w > 0)
may be alternatively described as an effective hydrodynamic flow [24, 25]. In this section, we
apply our method to describe such a relativistic fluid. We restrict ourselves to the case of an
irrotational barotropic flow which has only one degree of freedom, i.e. can be described by a
single scalar field. The particular situation where the Lagrangian does not depend explicitly
on ϕ gives rise to a hydrodynamical flow with conserved number of particles [26, 27, 25]. We
will investigate this simplified configuration in what follows.

First, note that the energy–momentum tensor of a scalar field with a Lagrangian that is
not an explicit function of ϕ, i.e. L(w), is given by

Tμν ≡ 2√−γ

δ
√−γ L

δγ μν
= 2Lwϕ,μϕ,ν − Lγμν. (29)

Assuming that w > 0, we can define a normalized timelike congruence of observers
comoving with the fluid

vμ = ∂μϕ√
w

(30)

the vorticity of which wαβ ≡ v[μ ;ν] is identically zero. Thus, we identify the scalar ϕ with
a velocity potential. Furthermore, the timelike constraint on ∂μϕ implies that the anisotropic
pressure πμν and the heat-flux vector qμ identically vanish. Thus, the energy–momentum
tensor (29) describes a perfect fluid with the energy density ρ and pressure p given by the
relations

ρ = 2Lww − L, p = L. (31)

Note that it is possible to write the pressure as a function of the energy density, thus
yielding a barotropic equation of state given by p(ρ). We define for future convenience the

8
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velocity of sound, particle density and enthalpy respectively as

c2
s ≡ ∂ p

∂ρ
= 1

1 + βw
, n ≡ exp

∫
dρ

ρ + p
= √

w Lw, μ ≡ ρ + p

n
= 2

√
w. (32)

The dynamical equations governing the motion of a perfect fluid are immediately obtained
by projecting the conservation law T μν

;ν = 0,

ρ̇ + (ρ + p)θ = 0

p, α pα
μ + (ρ + p)aμ = 0,

where pμν ≡ gμν − vμvν is the projector, θ ≡ v
μ

;μ is the expansion scalar and aμ ≡ vμ;νvν

is the acceleration four-vector. In the case under investigation, all the physical quantities that
appear in the above equations depend explicitly on the field ϕ and its derivatives. Thus, these
equations are not independent. On the other side, calculating explicitly the divergence of the
energy–momentum tensor directly from its definition (29), we obtain

T μν

;ν = ϕ,μ(Lwγ αβϕ,α );β = 0. (33)

Thus, the conservation of the fluid’s energy–momentum is nothing but equation (1) with
Lϕ = 0. Consequently, our theorem guarantees that the fluid flow may be described as an
effective wave equation of the form �ĥϕ = 0. Using relations (32), the effective metric finally
reads

ĥμν = μ

2ncs

[
γ μν + (

c−2
s − 1

)
vμvν

]
. (34)

Summarizing,

• the dynamics of a relativistic perfect fluid with a barotropic equation of state is such that its
velocity potential evolves as a wave embedded in an emergent curved manifold generated
by the wave itself.

A similar metric was first obtained by Moncrief [28] in studying spherical accretion of
matter onto a non-rotating black hole. Recently, a similar result was obtained by Vikman in
the context of k-essence theories [24]. Nevertheless, both investigations were restricted to
the case of non-gravitating fluid perturbations, i.e. acoustic propagation. In our scheme, all
these previous results may be obtained using the metric f̂ μν instead of ĥμν . Here, the effective
spacetime governs not only the sound cone of fluid excitations (characteristic surfaces) but
also fluid dynamics itself.

Note that the converse is also true. Any fluid may be mapped onto a Lagrangian of the
form L(w). To see what Lagrangian corresponds to a given p = f (ρ) it is convenient to invert
the barotropic equation to obtain ρ = f −1(p). Now, relation (31) implies the differential
equation

2w
dL

dw
= L + f −1(L). (35)

For a given fluid, in general, there is a Lagrangian L(w) which is a solution of the above
equation. In this scenario, fluids with the constant equation of state which are very popular in
cosmology, i.e. p = λρ with λ constant, are simply power law solutions,

L(w) = 2λ

1 + λ
w(1+λ)/2λ ⇒ p = λρ,

which give rise to the effective metric

ĥμν

(λ)
= κλ

ρ(1−λ)/(1+λ)

[
γ μν + αλ

ρ2λ/(1+λ)
vμvν

]
(36)

9
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with

κλ = 1√
λ

(
1 + λ

2

)(1−λ)/(1+λ)

, αλ = 1 − λ

λ

(
2

1 + λ

)2λ/(1+λ)

.

This result implies that the scalar field ϕ governing the flow of any perfect fluid may be
entirely described in terms of an effective metric generated by itself. It would be interesting to
apply our scheme to the study of these fluids in the context of cosmology. We shall exemplify
a simplified Newtonian limit in the appendix.

6. Conclusion

In this paper, we have investigated the relation between the equation of motion of a relativistic
self-interacting field and a wave propagating in a curved spacetime. We have shown that
for any theory of the form L(w, ϕ), there always exists a spacetime endowed with a metric
ĥμν such that both above-mentioned dynamics are equivalent. Hence, the dynamics of the
nonlinear theory can be described as a minimal coupling with an emergent gravitational
metric constructed with the scalar field and its derivatives. The novelty of our analysis is
that geometrization is an universal process, i.e. it is valid for an arbitrary Lagrangian. As a
concrete application, due to the fact that there is a formal equivalence between a scalar field
and an ideal barotropic fluid, we used our geometrization scheme to describe the evolution of
an irrotational hydrodynamical flow.

As long as our result does not rely on any kind of approximation, typical to effective
metric techniques, we hope that it can shed light and open new perspectives for the analogue
gravity program. In particular, it would be very interesting to investigate further consequences
of our formalism in the intricate semi-classical back-reaction or field quantization.

We suspect that our analysis might be generalized to describe other kinds of nonlinear
fields such as spinors, vector or tensors. We will come back to this discussion elsewhere.

Appendix. Hydrodynamics with Newtonian approximation

Analogue models with fluids in the non-relativistic regime have been extensively studied due
to their valuable applications. As a typical example, there is the case of the so-called acoustic
black holes [3, 5] in which the sound wave disturbances in an accelerated fluid mimic the
propagation of light in a curved spacetime. When the velocity of the background flow reaches
the speed of sound characteristic of this medium, a sonic horizon is created trapping the
sound just as the gravitational black hole traps light inside the event horizon. These models
have opened a promising avenue to study important aspects of physics in curved spacetimes
such as Hawking’s radiation or some phenomenological corrections coming from quantum
gravitation [10].

In order to find a Newtonian approximation of our results presented in section 5, we
should take the limit where the velocity field vμ goes to vμ = (1,�v), where |�v| << 1, and
the energy density is much higher than the pressure so that n → ρ and μ → 1. In this case,
the effective metric reads

ĥμν → 1

2ρcs

(
c2

s η
μν + vμvν

)
, (A.1)
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but, as shown before, excitations of the fluid (phonons) propagate along null geodesics in a
conformal metric given by equation (28), i.e.

f̂ μν = 1

2ρcs

⎛
⎜⎜⎝

1
... v j

· · · · · · · · · · · · · · · · · · · · · · · · ·
vi

...
(−c2

s δ
i j + viv j

)

⎞
⎟⎟⎠ , (A.2)

which is the same result as obtained in the models mentioned above (up to some definitions
such as the spacetime signature). Therefore, from our geometrization of hydrodynamics, we
can also get the usual non-relativistic fluid models.
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