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Abstract

Theoretical Physics Department

Quantum Dissipative Harmonic Systems: a Study of the Specific Heat

by Lucianno Augusto Coddato Antunes e Defaveri

We start this work by briefly introducing the reader to the theory of quantum dissipa-

tion in open quantum systems, using the Caldeira-Leggett model, with our focus being

obtaining the thermodynamic properties of these systems. We show that the specific

heat can become negative, which can be better understood when it is interpreted as the

change of the environment specific heat when we attach an extra degree of freedom [G.-

L. Ingold et al, Phys. Rev. E 79, 061105 (2009)]. We proceed introducing the problem

which was our original motivation: for a model also composed of harmonic oscillators

[H. Hasegawa, J. Math. Phys. 52, 123301 (2011)], it is possible to obtain negative

specific heat in contradiction with the findings of [G.-L. Ingold et al.], where only for

the free particle potential we could obtain such result. We obtain that because of the

different potential re-normalizations, each system describes a different physical reality,

ensuring that there is in fact no contradiction. The last chapter is dedicated to analyse

the influence of the system internal interaction in its thermodynamic proprieties.
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Resumo
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Dissipação Quântica em Sistemas Harmônicos: um Estudo do Calor

Espećıfico

por Lucianno Augusto Coddato Antunes e Defaveri

Começamos esse trabalho introduzindo brevemente o leitor (a leitora) sobre dissipação

quântica em sistemas quânticos abertos, usando o modelo Caldeira-Leggett, com o ob-

jetivo de obter as propriedades termodinâmicas desses sistemas. Mostramos que o calor

espećıfico pode se tornar negativo, o que pode ser entendido melhor quando passamos

a interpretá-lo como a mudança do calor espećıfico do ambiente quando acrescentamos

um grau de liberdade extra [G.-L. Ingold et al, Phys. Rev. E 79, 061105 (2009)].

Prosseguimos introduzindo o problema que foi nossa motivação original: para um mode-

lo também de osciladores harmônicos [H. Hasegawa, J. Math. Phys. 52, 123301 (2011)]

nós temos que é posśıvel obter calores espećıficos negativos em contradição ao resultado

de [G.-L. Ingold et al.], onde apenas para o potencial da part́ıcula livre podeŕıamos

obter tal resultado. Obtemos que, por causa das diferentes renormalizações do poten-

cial, cada sistema descreve uma realidade f́ısica diferente, garantindo que de fato não há

contradição. O último caṕıtulo é dedicado a analizar diferentes a influência da interação

interna do sistema em suas propriedades termodinâmicas.
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Chapter 1

Introduction

The phenomenon of dissipation has always been of great importance when dealing with

real physical systems. In certain experimental situations the coupling of a system with

the environment can be made so small that it can be considered negligible, but even

so, no system can truly be considered isolated. We can illustrate how dissipation can

greatly affect a system dynamics with a classical example: consider a harmonic oscillator

at an nonequilibrium position with frequency Ω0 and a velocity proportional damping

γ. Assuming that the damping is very small when compared to the oscillator frequency,

γ � 2Ω0, the frequency of oscillation would remain unchanged
√

Ω2
0 − γ2/4 ≈ Ω0, while

the system slowly approaches equilibrium. In that case, for a time scale much smaller

than to 2/γ, we could neglect the damping. In other hand, having a damping γ > 2Ω0

would cause the dynamics of the system to change dramatically, from an oscillation that

slowly decreases its amplitude to an exponential decay to equilibrium position.

In order to consider dissipation in quantum mechanics it is first necessary to over-

come certain obstacles since we are, in principle, restricted to the Hamiltonian formalism,

where we have conservation of energy for time independent Hamiltonians. Classically we

could simply introduce a velocity dependent damping term in the equations of motion,

like in the harmonic oscillator where we would introduce a force −γq̇.

Trying to write a suitable model for dissipation, one that can be used to obtain

meaningful physical results while also being analytically tractable, we can guide ourselves

by classical analogy. Consider the damped harmonic oscillator; while we express the

damping trough a velocity dependent term, in reality, the damping arises from the

interaction between the system and the environment. In the case of a pendulum - or

simply a falling object - the damping arises from the interaction with the air molecules

that surround the system. In the quantum regime, the damping must also arise from

1
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HS

System

HSB

Interaction

HB

Bath, Environment

Energy Flow

Figure 1.1: This is a simple representation of the model for dissipation, the system
(described by HS) is connected to the environment (described by HB) by a coupling
(HSB). Having simply a system connected to a bath is not enough to represent dissi-
pation, since we are dealing with harmonic oscillators and it is perfectly reasonable to
believe that the energy can flow from the environment back to the system. Because of

that it is necessary to make restrictions in the coupling and bath.

the interaction between the system degrees of freedom with the environment degrees of

freedom.

The more widely used model for dissipation in condensed matter [1–19], the Caldeira-

Leggett model, is composed of a system degree of freedom coupled bi-linearly to an

environment represented by a collection of harmonic oscillators. It was named after

Amir Caldeira and Anthony Leggett [20, 21] who successfully used the model to de-

scribe quantitatively the influence of dissipation in quantum tunnelling. Although the

model is often named after them, they where not the first ones to analyse and solve for

systems of harmonic oscillators with bi-linear couplings [22–25].

• In this work we are interested in analysing the thermodynamics of dissipative

harmonic systems. We are particularly interested in the specific heat.

Two alternative routes have been proposed for the evaluation of the specific heat of

the free particle [9]. The first, and perhaps most intuitive, is to take the derivative of

the average of the kinetic energy (as obtained in [26]) by the temperature. The other

method is to use the partition function ratio [1, 9, 11, 13–16] defined as

Z ≡ ZS+B

ZB
, (1.1)

to derive the thermodynamic proprieties of the system. Both methods can yield different

results, in particular, using the partition function ratio the specific heat could assume

negative values. Initially this information comes as a shock since from basic textbooks
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in statistical physics we have built the idea that an increase in the temperature of a

system will necessarily cause an increase in its internal energy. However, it is known

that the specific heat in micro canonical ensembles can become negative. One example is

a self-gravitating system introduced in [27] whose specific heat is negative and constant

with respect to the temperature.

This is not the case for canonical ensembles, where the specific heat is always posi-

tive,

∂

∂T
〈E〉 =

〈E2〉 − 〈E〉2
kBT 2

. (1.2)

The appearance of negative specific heat using the canonical formalism raised some

eyebrows regarding the system’s stability and if the theory leading to such result needed

revision [9].

Later work would prove that the system, even with negative specific heat, would

remain stable [11]. It also provided an explanation for the appearance of anomalous

values in the heat capacity. The specific heat, as calculated using (1.1), becomes the

difference

C = kBβ
2 ∂

2

∂β2
ln

(
ZS+B

ZB

)
= CS+B − CB. (1.3)

We could interpret (1.3) as the change in the environment specific heat when an extra

degree of freedom is attached to it. If we are considering a free particle, the specific

heat may become negative. That is not the case for the harmonic oscillator, where, as

a function of the temperature, it may present a ”dip” in its value; however it can never

become negative, as we show in this dissertation. This difference can be explained since

the uncoupled specific heat of the free particle is smaller than the harmonic oscillator

by a factor of two (see also [11]). We would also like to point out that obtaining a ”dip”

is a result just as surprising as obtaining negative value.

We dedicate the beginning of chapter 2 to discuss the Caldeira-Leggett model to

obtain the Langevin equation for the system alone and demonstrate how it can effectively

describe dissipation. Still in chapter 2, we proceed to re-obtain the results in [9, 11] using

a new method introduced in [14], which we believe contains a valuable new insight to

the analysis.

In chapter 3 we start by introducing a new model, that we are going to label as

the NS + NB model, as defined in [13]. This model is particularly interesting since

it contains a system with one or more (NS) degrees of freedom linearly coupled to a

bath with NB degrees of freedom. We are also faced with a distinct problem: in this
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model, the specific heat of the harmonic oscillator can indeed become negative. At first

this would suggest that the results are contradictory, however such result is directly

connected with the choice of coupling, different from the Caldeira-Leggett model, which

is causing a potential renormalization on the bath oscillators. We have dedicated the

second half of chapter 3 to elucidate that matter.

Our last chapter is exclusively dedicated to analysing systems with more than one

degree of freedom that are also linearly coupled with each other. This will allow us to

isolate the effects of the internal coupling between the system degrees of freedom from

the renormalization effects. Unlike in the NS +NB model, in chapter 4 we study ways of

coupling with the environment that remain consistent with the Caldeira-Leggett model.

The most intuitive way of coupling would be to simply linearly couple all the system

degrees of freedom to the same bath. Another less straight forward way would be to

couple each degree of freedom, or groups of degrees of freedom to individual baths. This

last coupling is already being used when analysing dissipative diamagnetism [10, 12].

Let us summarize our results:

• using the method introduced by G.-L. Ingold [14], we obtained an expression for

the change in the density of eigen-frequencies for the harmonic oscillator,

• we proceeded to use the change in the density to prove that for the Drude bath,

the harmonic oscillator can never have negative specific heat,

• we compared the models used by G.-L. Ingold et al. [11] and H. Hasegawa [13], in

order to pin-point the reason for the results being qualitative different,

• having reached the conclusion that the difference in the results arises from the

different potential renormalizations, we assume a general renormalization in order

to study its effects on minimal models,

• we finish our work by studying different models for systems with several degrees

of freedom in accordance with the Caldeira-Leggett model1.

1We must credit in the last two items of this list the heavy collaboration with Professor Gert-Ludwig
Ingold, from Augsburg University, Germany.



Chapter 2

Single Degree of Freedom

The model of a single degree of freedom coupled to environmental degrees of freedom,

although simple, can serve as a very solid base to analyse dissipative quantum systems

in general. In classical mechanics, we can express dissipation simply by introducing a

velocity dependent term in our equation of motion. For a classical harmonic oscillator

with one degree of freedom we would have:

q̈ + γq̇ + Ω2
0q = 0, (2.1)

where Ω0 is the system frequency and γ its damping constant.

Within the quantum regime we can write the time evolution of an operator in the

Heisenberg picture by using the Heisenberg equation,

φ̇ =
i

~
[H,φ] , (2.2)

where H is the Hamiltonian of the system. The commutation relation of the position

and momentum operators

[q, p] = i~. (2.3)

For simplicity, from now on we shall refer to the operators of position and momentum

as coordinates.

We start this chapter by obtaining the Langevin equation for our quantum system

through the removal of the bath coordinates in the system equation of motion. After

5
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γ(t)
Ω0

M

ξ(t)

Figure 2.1: A representation of a general damped harmonic oscillator system. We
have the damping represented by γ(t) and the fluctuating force ξ(t).

we remove the bath, the final equation contains a damping that isn’t memory-free,

q̈ +

∫ t

0
γ(t− s)q̇(s)ds+ Ω2

0q = ξ(t). (2.4)

We also obtain the fluctuation force term ξ(t), which will provide the fluctuation around

the equilibrium position. Note that one would simply need to define the damping as

γ(t) = 2γδ(t), referred to as ohmic damping, to re-obtain equation (2.1). This more

general equation is often referred as Langevin equation [1–3].

Latter in this chapter we use the exact value of (1.1), obtained using path integrals,

to calculate the specific heat. After that we introduce an alternative method for the

calculations, as shown in [14] for the case of the free particle (here we will also use it

to solve the Harmonic Oscillator), and show that both methods yields the same result.

This new method consists on taking the bath perspective, and express the change in

the specific heat (and other thermodynamic functions) by using a new function that

represents the change in the density of eigen-states.

2.1 The System Perspective

First and foremost we need to define the Hamiltonians for our system and bath. The

system Hamiltonian is going to be defined as a particle of mass M and potential V

HS =
P 2

2M
+ V (q), (2.5)

where the system coordinates are (q, p) for position and momentum respectively. Through-

out this chapter we are going to consider only two possibilities for the potential:

1. the free particle V = 0,

2. the harmonic oscillator V (q) = MΩ2
0q

2/2.
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Despite the fact we freely use the terms ”free particle” and ”harmonic oscillator”, our

system Hamiltonian can be abstracted to represent any sort of degree of freedom under

a potential.

The bath Hamiltonian is defined as:

HB =
∞∑
n=1

(
p2
n

2mn
+
mnω

2
n

2
x2
n

)
. (2.6)

The interaction Hamiltonian needs to be defined with some care:

HSB =
∞∑
n=0

{
−cnxnq +

c2
n

2mnω2
n

q2

}
. (2.7)

Here we have the bilinear coupling term proportional to cn and an extra term that

exclusively affects the system coordinates. Latter on in this section we will see that,

even though it is not required to express dissipation, without this term we would obtain

an unwanted potential re-normalization. Using this interaction Hamiltonian we can

write the complete Hamiltonian as

H =
P 2

2M
+
MΩ2

0

2
q2 +

∞∑
n=1

{
p2
n

2mn
+
mnω

2
n

2

(
cn

mnω2
n

q − xn
)2
}
. (2.8)

Using the Heisenberg equations, we can obtain the equations of motion (time evo-

lution) of the position and momentum operators for the system and the bath:

ẍn + ω2
nxn =

cn
mn

q, (2.9)

Mq̈ +MΩ0q =
∞∑
n=1

(
cnxn −

c2
n

mnω2
n

q

)
, (2.10)

where we have already considered that p = Mq̇ and pn = mnẋn. We can remove the

bath coordinates from the system equations by solving the bath equations exactly. The

homogeneous solution can be obtained easily using the initial values (xn(0), pn(0)) and

for the solution of the inhomogeneous equation we can use the Green function of the

harmonic oscillator:

xn(t) = xn(0) cos(ωnt) +
pn(0)

mnωn
sin(ωnt) +

∫ t

0
ds
cn
ωn
q(s) sin(ωn(t− s)). (2.11)

We can work on the last expression integrating by parts to obtain∫ t

0

ds

ωn
sin(ωn(t− s))q(s) =

q(t)

ω2
n

− cosωn(t)

ω2
n

q(0)−
∫ t

0

ds

ω2
n

cos(ωn(t− s))q̇(s). (2.12)
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M

ω1m1

ω2m2

ω3m3

ω4m4

ωimi

Ω0

(a) Uncoupled system.

M

ω1 m1

ω2 m2

ω3 m3

ω4 m4

ωi mi

Ω0

(b) Coupled system.

Figure 2.2: This is a representation of the Caldeira-Leggett model using classical
springs to represent the interactions.

Replacing this result in (2.10) we obtain the Langevin equation for the system:

q̈ +

∫ t

0
dsγ(t− s)q̇(s) + Ω2

0q = ξ(t), (2.13)

with the fluctuating force term:

ξ(t) =
1

M

∞∑
n=1

cn

{(
xn(0)− c2

n

mnω2
n

q(0)

)
cos(ωnt) +

pn(0)

mnωn
sin(ωnt)

}
, (2.14)
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and the damping kernel:

γ(t) =
1

M

∞∑
n=1

c2
n

mnω2
n

cos(ωnt). (2.15)

If the term
∑∞

n=1 c
2
n/2mnω

2
n q

2 wasn’t included in the interaction Hamiltonian we would

now have an effective potential V ′eff(q) = M
(
Ω2

0 −
∑∞

n=1 c
2
n/Mmnω

2
n

)
q, which would

have changed our system beyond damping. In chapter 3 we shall discuss in more detail

situations where the potential is renormalized, for now it is sufficient to note that if

we want to compare systems subjected to the same potential for different couplings, we

need to define the extra term in HSB.

The proprieties of the fluctuating force are not relevant in our discussion [14, 15].

The damping kernel is the only element responsible for the damping. This allows us to

define a new function J , which we will call spectral density of bath modes

J(ω) = π

∞∑
n=1

c2
n

2mnωn
δ(ω − ωn), (2.16)

allowing us to re-write the damping kernel as

γ(t) =
2

πM

∫ ∞
0

dω
J(ω)

ω
cos(ωt). (2.17)

Even though equation (2.16) shows we could replace cn = mnω
2
n without any loss of

generality, we are going to maintain it so that we can later on keep track of terms from

the coupling and from the bath.

Note also that we are not required to specify all the individual cn, ωn and mn,

instead we can simply define J(ω) for it contains all the proprieties regarding the bath

and the coupling [1, 2, 15]. This result is of great importance, not only we can write

J(ω) using the microscopic proprieties of a given environment, we can also define it

phenomenologically [2].

Considering that our system of oscillators was disturbed from equilibrium position

of minimal energy, we need to have the system to loose energy until returns to the

equilibrium. If γ(t) is always positive, like for the classical damping constant γ, we

would have an irreversible energy flow from the system to the environment. However,

even if γ(t) becomes negative for a given interval of time, as long as we have the damping

strength γ0 to be positive [1]

γ0 =

∫ ∞
0

dtγ(t) (2.18)
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we will have dissipation and converge to equilibrium.

For environments composed of a finite number of harmonic oscillators, after a certain

time, the Poincaré recurrence time, the system returns arbitrarily close to its original

configuration. On the other hand, if we had an infinite number of environment harmonic

oscillators, Poincaré recurrence time becomes inaccessible [28, 29]. A simple way of

achieving that is to define J(ω) so that we no longer have a discrete but a continuous

distribution of frequencies.

We could re-obtain the classical ohmic damping by choosing

J(ω) = Mγω, (2.19)

which would render a memory free damping. This choice for J(ω) is not very realistic

since it diverges for high frequencies. One way to work around this is to introduce cutoff

frequency ωc. We could use the step function Θ,

J(ω) = Mγω Θ(ωc − ω), (2.20)

to describe the cutoff. Since the step function can be difficult to work with, we are going

to use a more convenient algebraic cutoff as in [16]:

J(ω) = Mγωs
ω2p−s+1
c

(ω2
c + ω2)p

(2.21)

that leads to a converging γ(t) for 0 < s < 2p + 2. For small frequencies, J(ω) ∝ ωs.

When s = 1, we refer to the damping as being Ohmic, even though it has a cutoff, s < 1

is referred as sub-Ohmic damping and s > 1 as super-Ohmic damping. A particular

case of Ohmic damping for s = p = 1 is often referred to as the Drude bath

JD(ω) = Mγω
ω2
D

ω2
D + ω2

. (2.22)

This type of bath has been extensively used [1, 9, 11, 15, 16]. In this work we will often

used it to obtain analytical exact solutions. All the calculations made in this chapter

will assume our bath to be Ohmic.

2.2 Short Digression on Thermodynamics

In order to discuss the thermodynamics of our system we need first to remind ourselves of

some definitions from statistical physics. We start from the quantum canonical partition

function:
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Z = tr exp(−βĤ) =
∞∑
n=1

〈n| exp(−βĤ)|n〉 =
∞∑
n=1

exp(−βEn), (2.23)

where we are taking |n〉 to be a complete set of the Hamiltonian eigenstates.

In our problem we are only employ harmonic potentials so that it is possible in both

cases to transform the coordinates in such way that the complete Hamiltonian can be

re-written in an uncoupled form:

H =

N∑
i=1

~λi
(
n̂i +

1

2

)
, (2.24)

where λi represents the eigen-frequencies of the complete Hamiltonian and n̂i the number

operator of the i-th eigen-frequency. Since it is a system with several degrees of freedom,

the basis of energy becomes: |n1n2...nN 〉 and the partition function is written as:

Z =
∑
{ni}
〈n1n2...nN | exp

(
−βĤ

)
|n1n2...nN 〉, (2.25)

where we are taking {ni} to mean all possible values of n1n2...nN . Thus

Z =
∑
{ni}

exp

(
−β

N∑
i=1

~λi
(
ni +

1

2

))
=
∑
{ni}

N∏
i=1

exp

(
−β~λi

(
ni +

1

2

))
, (2.26)

and by changing the order in which we evaluate the product and the summation we drop

{ni} and use just ni from 0 to∞ since the new coordinates are uncoupled. Contemplat-

ing all possible combinations we get

Z =

N∏
i=1

∞∑
ni=1

exp

(
−β

N∑
i=1

~λi
(
ni +

1

2

))
=

N∏
i=1

csch
(
β~λi

2

)
2

. (2.27)

Of course, the partition function of a system of uncoupled harmonic oscillators is equal

to the product of the partition function of each oscillator.

Z =

N∏
i=1

Zi ; Zi =
1

2 sinh
(
β~λi

2

) . (2.28)
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From the last equation we can obtain expressions for the energy and the specific

heat as:

E(T ) = − ∂

∂β
lnZ = −

N∑
i=1

∂

∂β
lnZi =

N∑
i=1

(
~λi
2

)
1

tanh
(
β~λi

2

) , (2.29)

C(T ) = −β2 ∂
2

∂β2
lnZ =

N∑
i=1

(
~λiβ

2

)2 1

sinh2
(
~λiβ

2

) . (2.30)

Note that the only information required from the system to obtain both quantities are

the eigen-frequencies. We can define the density of eigen-frequencies:

ρ(ω) =

N∑
i=1

δ(ω − λi), (2.31)

with two auxiliary functions:

Eho(ω) =

(
~ω
2

)
1

tanh
(
β~ω

2

) ; Cho(ω) =

(
~ωβ

2

)2 1

sinh2
(
~ωβ

2

) , (2.32)

with the subscript standing for Harmonic Oscillator. Now we can rewrite (2.29) and

(2.30) as:

E(T ) =

∫ ∞
0

ρ(ω)Eho(ω)dω (2.33)

C(T ) =

∫ ∞
0

ρ(ω)Cho(ω)dω (2.34)

In the case of an open quantum system, using the partition function ratio (1.1) we

obtain that:

E(T ) = ES+B(T )− EB(T ) =

=

∫ ∞
0

(ρS+B(ω)− ρB(ω))Eho(ω)dω, (2.35)

C(T ) = CS+B(T )− CB(T ) =

=

∫ ∞
0

(ρS+B(ω)− ρB(ω))Cho(ω)dω. (2.36)

We introduce now a new function that we call shift in the density of eigen-frequencies

[14]:

∆ρ(ω) = ρS+B(ω)− ρB(ω) (2.37)
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which can be used to obtain the energy, the specific heat and other thermodynamic

proprieties described by the logarithm of (1.1). Taking N →∞ and using a continuous

distribution of frequencies, we can replace (2.31), as we did for J(ω), by a smooth

continuous function.

2.3 Using the Exact Partition Function Ratio

It is possible to calculate (1.1) using path integrals for the harmonic oscillator and free

particle potentials [15]. Since the thermodynamic proprieties described by (1.1) are

going to be derived using the logarithm of this expression

ln
ZS+B

ZB
= lnZS+B − lnZB, (2.38)

we can interpret the result as the difference caused in the environment proprieties once we

couple the additional degree of freedom from the system. This can be clearly visualized

in a experimental situation where, once the coupling is introduced, we can only perform

measurements in the complete environment.

In this section our aim is to mathematically calculate the specific heat using the

partition function ratio for the free particle

Z1 =
L

~

√(
2πM

β

) ∞∏
n=1

νn
νn + γ̂(νn)

, (2.39)

where L represents the volume where the system is restricted to and will not interfere

with the specific heat. Also for the harmonic oscillator:

Z2 =
1

~βΩ0

∞∏
n=1

ν2
n

ν2
n + νnγ̂(νn) + Ω2

0

(2.40)

where νn = 2πn/~β are the Matsubara frequencies and the hat operator represents the

Laplace transform [2, 9, 11].

Since in a later section we will obtain these same results, we have decided to postpone

an analysis until the end of the chapter. Because of that, this section will be focused

only in the mathematical evaluation of the specific heat.
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2.3.1 Series Expansion for the General Bath

We first calculate the energy for the free particle using an Ohmic damping without

further specifying J(ω):

U1 = − ∂

∂β
lnZ1 = − ∂

∂β

{
− lnβ

2
+
∞∑
n=1

(ln νn − ln(νn + γ̂(νn)))

}
=

=
1

2β

{
1 + 2

∞∑
n=1

(
γ̂(νn)− νnγ̂′(νn)

νn + γ̂(νn)

)}
, (2.41)

and for the harmonic oscillator:

U2 = − ∂

∂β

{
− lnβ +

∞∑
n=1

(
ln ν2

n − ln(ν2
n + νnγ̂(νn)) + Ω2

0

)}
=

=
1

β

{
1 +

∞∑
n=1

(
νnγ̂(νn)− ν2

nγ̂
′(νn) + 2Ω2

0

ν2
n + νnγ̂(ν) + Ω2

0

)}
. (2.42)

We calculate the energy so that latter we can derive the specific heat.

Defining the functions:

f1(x) =
γ̂(x)− xγ̂′(x)

x+ γ̂(x)
, (2.43)

f2(x) =
xγ̂(x)− x2γ̂′(x) + 2Ω2

0

x2 + xγ̂(x) + Ω2
0

, (2.44)

it is easy to see that we can rewrite the expressions for the energy as:

U1 =
1

β

{
1

2
+
∞∑
n=1

f1(νn)

}
, (2.45)

U2 =
1

β

{
1 +

∞∑
n=1

f2(νn)

}
. (2.46)

We can then use the Euler-Maclaurin formula,

∞∑
n=0

g(i) =

∫ ∞
0

g(x)dx+
1

2
(g(∞) + g(0)) +

+
∞∑
k=1

B2k

(2k)!

(
g2k−1(∞)− g2k−1(0)

)
, (2.47)
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where g is a continuous function and Bk are the Bernoulli numbers, to obtain final

expression for the energy as a low temperature series:

U1 =
~

2π

{∫ ∞
0

f1(x)dx+

∞∑
k=1

B2k

(2k)!

(
2π

~
kBT

)2k (
f2k−1

1 (∞)− f2k−1
1 (0)

)}
, (2.48)

U2 =
~

2π

{∫ ∞
0

f2(x)dx+

∞∑
k=1

B2k

(2k)!

(
2π

~
kBT

)2k (
f2k−1

2 (∞)− f2k−1
2 (0)

)}
. (2.49)

The specific heat can be directly evaluated as:

C1 =

∞∑
k=1

B2k

(2k − 1)!

(
2π

~
kBT

)2k−1 (
f2k−1

1 (∞)− f2k−1
1 (0)

)
, (2.50)

C2 =
∞∑
k=1

B2k

(2k − 1)!

(
2π

~
kBT

)2k−1 (
f2k−1

2 (∞)− f2k−1
2 (0)

)
, (2.51)

with the leading terms being:

C1 =
π

3

1 + γ̂′(0)

γ̂(0)

kBT

~
+O(T 3), (2.52)

C2 =
π

3

γ̂(0)

Ω2
0

kBT

~
+O(T 3). (2.53)

2.3.2 Solution for the Drude Bath

We can now obtain an analytical result using the Drude bath (2.22),

γ̂(z) = γ
ωD

z + ωD
, (2.54)

for the free particle:

Z1 =
L

~

√(
2πM

β

) ∞∏
n=1

νn(νn + ωD)

ν2
n + ωDνn + γωD

=
L

~

√(
2πM

β

) ∞∏
n=1

(
1 + ωD

νn

)
(

1 + ω1
νn

)(
1 + ω2

νn

) ; (2.55)

lnZ1 = D1 +
∞∑
n=1

{
ln

(
1 +

ωD
νn

)
− ln

(
1 +

ω1

νn

)
− ln

(
1 +

ω2

νn

)
− lnβ

2

}
,(2.56)
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where D1 stands for terms that are constant in β and the frequencies ω1 and ω2 are the

roots of the polynomial in the denominator of (2.55)

x2 + ωDx+ γωD = (x+ ω1)(x+ ω2), (2.57)

ω1,2 =
1

2

(
ωD ±

√
1− 4γ

ωD

)
. (2.58)

Note that we could have 1 − 4γ/ωD < 0, which would make ω1 and ω2 be complex

valued numbers (complex conjugate of each other). It is important to note that these

frequencies do not represent observable quantities, the partition function is always real

making the energy or the specific heat also real.

The specific heat becomes:

C1

kB
= β2 ∂

2

∂β2
lnZ1 =

∞∑
n=1


(
~βω1

2π

)2 1(
n+ ~βω1

2π

)2 +

(
~βω2

2π

)2 1(
n+ ~βω2

2π

)2 −

−
(
~βωD

2π

)2 1(
n+ ~βωD

2π

)2

+
1

2
, (2.59)

that we can simplify using the definition of the Trigamma function:

ψ′(z) =

∞∑
n=0

1

(n+ z)2
; ψ′(1 + z) =

∞∑
n=1

1

(n+ z)2
, (2.60)

and with the recurrence relation:

ψ′(1 + z) = ψ′(z)− 1

z2
. (2.61)

We thus obtain:

C1

kB
=

(
~βω1

2π

)2

ψ′
(
~βω1

2π

)
+

(
~βω2

2π

)2

ψ′
(
~βω2

2π

)
−

−
(
~βωD

2π

)2

ψ′
(
~βωD

2π

)
− 1

2
. (2.62)
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For the harmonic oscillator, one has alternatively:

Z2 =
1

~βΩ0

∞∏
n=1

ν2
n(νn + ωD)

ν3
n + ωDν2

n + (Ω2
0 + γωD)νn + ωDΩ2

0

=
1

~βΩ0

∞∏
n=1

(
1 + ωD

νn

)
(

1 + ω1
νn

)(
1 + ω2

νn

)(
1 + ω3

νn

) , (2.63)

lnZ2 = D2 − lnβ +
∞∑
n=1

{
ln

(
1 +

ωD
νn

)
− ln

(
1 +

ω1

νn

)
− (2.64)

− ln

(
1 +

ω2

νn

)
− ln

(
1 +

ω3

νn

)}
(2.65)

Similarly to before, D2 stands for terms that are constant in β and the frequencies ω1,

ω2 and ω3 are the roots of the polynomial in the denominator of (2.63)

x3 + ωDx
2 + (Ω2

0 + γωD)x+ ωDΩ2
0 = (x+ ω1)(x+ ω2)(x+ ω3), (2.66)

the actual expression of the individual frequencies is omitted because they would be very

extensive without further physical insight. We would like to point out that, since this is

a third degree polynomial, it is possible that two of these frequencies become imaginary

(ω1 and ω2) and complex conjugate of each other. Once again we would nonetheless

obtain only real observables.

Then one arrives at the final expression

C2

kB
=

∞∑
n=1


(
~βω1

2π

)2 1(
n+ ~βω1

2π

)2 +

(
~βω2

2π

)2 1(
n+ ~βω2

2π

)2 +

+

(
~βω3

2π

)2 1(
n+ ~βω3

2π

)2 −
(
~βωD

2π

)2 1(
n+ ~βωD

2π

)2

 , (2.67)

C2

kB
=

(
~βω1

2π

)2

ψ′
(
~βω1

2π

)
+

(
~βω2

2π

)2

ψ′
(
~βω2

2π

)
+

+

(
~βω3

2π

)2

ψ′
(
~βω3

2π

)
−
(
~βωD

2π

)2

ψ′
(
~βωD

2π

)
− 1. (2.68)

2.4 The Bath Perspective

The specific heat obtained using (1.1) can be understood as the change in the environ-

ment specific heat caused by the coupling with an extra degree of freedom [11]. So,
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obtaining the shift in the eigen-frequency density (2.31) can be seen not only as a alter-

native method for obtaining the thermodynamic proprieties associated with (1.1) but

also could provide an additional physical insight in the effects of the coupling.

Like in last section, we start with the series expansion of a general bath and proceed

to obtain the exact solution for the Drude bath. Let us define the scaled variables:

q̃ =
√
Mq, x̃n =

√
mnxn,

p̃ =
p√
M
, p̃n =

pn√
mn

. (2.69)

With this choice, the Hamiltonian (2.8) takes the form of:

H =
1

2

(
p̃2 +

(
Ω2

0 +

NS∑
n=1

c2
n

Mmnω2
n

)
q̃2

)
+

1

2

NS∑
n=1

(
p̃2
n + ω2

nx̃
2
n

)
−

−
NS∑
n=1

cn√
mnM

x̃nq̃. (2.70)

In matrix form it is possible to write:

2H =
(
p̃ p̃1 . . . p̃N

)
Î


p̃

p̃1

...

p̃NS

+
(
q̃ x̃1 . . . x̃N

)
Â


q̃

x̃1

...

x̃NS

 , (2.71)

where we define the matrix Â as:

A =



Ω2
0 + c2n

Mmnω2
n
− c1√

m1M
− c2√

m2M
. . . − cN√

mNM

− c1√
m1M

ω2
1 0 . . . 0

− c2√
m2M

0 ω2
1 . . . 0

...
...

...
. . . 0

− cN√
mNM

0 0 0 ω2
N


. (2.72)

The eigenvalues of Â are the squared eigen-frequencies of the coupled system. Let’s

write the eigenvalue equations:

Â~v = Ω2~v,(
Ω2

0 +
c2
n

Mmnω2
n

)
v0 −

∞∑
n=1

cn√
mnM

vn = Ω2v0, (2.73)

− cn√
mnM

v0 + ω2
nvn = Ω2vn.
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We can solve for vn from the third equation and replace it on the second equation.

It is possible then to cancel out v0 and obtain the expression:

Ω2
0 +

c2
n

Mmnω2
n

+

NS∑
n=1

c2
n

mnM
(Ω2 − ω2

n)−1 = Ω2, (2.74)

which can be further simplified to:

NS∑
n=1

c2
n

mnω2
n (Ω2 − ω2

n)
= M

(
Ω2 − Ω2

0

Ω2

)
. (2.75)

If we take Ω0 to be zero and Ω to be nonzero we recover the result for the free particle

[14],

∞∑
n=1

c2
n

mnω2
n (Ω2 − ω2

n)
= M. (2.76)

If we take a look at the definitions of the partition function ratio in previous section it

is clear that taking the limit when Ω0 → 0, for the harmonic potential will not yield the

result for the free particle. Taking this limit represents the loss of a degree of freedom,

which completely changes the system. Therefore we will now separate into free particle

and harmonic oscillator to avoid running into problems.

2.4.1 The Expression for the Eigen-Frequencies

Continuing the calculations, we shall now define, without loss of generality (since we

can still redefine mn and/or cn), the eigenfrequencies of the environmental oscillator as

ωn = n∆, where ∆ represents the spacing between two consecutive frequencies. With

this definition we can recover the result for continuous frequencies by calculating the

limit where ∆ vanishes.

It is also convenient to find an expression for the masses mn as a function of the bath

eigen-frequencies. Using the definition of the spectral density as in (2.16), integrated

with a continuous function f , gives us the relation:

∫ ∞
0

dωJ(ω)f(ω) =

∞∑
n=1

c2
n

mnωn
f(ωn). (2.77)

Replacing the original spectral density (composed of a sum of deltas) by a smooth

function, it is possible to replace the integral on the left hand side of the equation above

by a summation of step ∆, allowing to isolate the mass term mn and obtain an expression

as a function of the eigenfrequencies:
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∞∑
n=1

∆J(n∆)f(n∆) =
π

2

∞∑
n=1

c2
n

mn(n∆)
f(n∆), (2.78)

and thus:

c2
n

mn(n∆)2
=

2

π

J(n∆)

n∆
∆. (2.79)

Since we are dealing with Ohmic baths, J(ω) ∝ ω for ω ≈ 0, J(n∆)/(n∆) does not

diverge.

The last equation allows us to rewrite (2.75) in the following form:

∞∑
n=1

c2
n

mnω2
n (Ω2 − ω2

n)
=

2

π

∞∑
n=1

J(n∆)

n∆

∆

(Ω2 − (n∆)2)
= M

(
1− Ω2

0

Ω2

)
. (2.80)

Since J(n∆)/(n∆) is a well behaved even function (see (2.21)), it can be written as

a series of (n∆)2 expansion around Ω2,

J(x)

x
=
J(Ω)

Ω
+
∞∑
n=1

an(x2 − Ω2)n, (2.81)

where

an =
1

n!

dn

d(x2)n
J(x)

x

∣∣∣∣
x=Ω

(x2 − Ω2), (2.82)

that when applied at summation (2.79)

∞∑
n=1

J(n∆)

n∆ (Ω2 − (n∆)2)
=
∞∑
n=1

J(Ω)

Ω(Ω2 − (n∆)2)
−
∞∑
n=1

an(x2 − Ω2)n−1, (2.83)

allows us to isolate the first term as the singular term. If we take the spacing to be

very small, ∆ → 0, the well behaved terms can be expressed in the form of an integral

(∆ ≈ dω). Equivalently we have:

∞∑
n=1

J(Ω)

Ω(Ω2 − (n∆)2)
+

∞∫
0

dω

{(
J(ω)

ω
− J(Ω)

Ω

)
1

Ω2 − ω2

}
, (2.84)

We can use residue techniques to calculate∫ ∞
0

dω

Ω2 − ω2

J(Ω)

Ω
= 0. (2.85)
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Using the definition of the Laplace transform of the damping kernel [14],

γ̂(z) =
2

πM

∫ ∞
0

dω
J(ω)

ω

z

ω2 + z2
, (2.86)

we can obtain the second term:

−γ̂(iΩ) =
2

πM

∫ ∞
0

dω
J(ω)

ω

iΩ

Ω2 − ω2
, (2.87)

−πM
2

Imγ̂(iΩ)

Ω
=

∫ ∞
0

J(ω)

ω

dω

Ω2 − ω2
. (2.88)

We solve the summation using:

cotx =
1

x
+ 2x

∞∑
n=0

1

x2 − π2n2
, (2.89)

∞∑
n=1

1

Ω2 − n2∆2
=

1

2

(
π

cot
(
πΩ
∆

)
Ω

− ∆

Ω2

)
. (2.90)

Using all these results, we can rewrite equation (2.75) as:

cot

(
πΩ

∆

)
− ∆

πΩ
= G(Ω), (2.91)

where we have defined the function G(Ω) to make (2.75) more compact:

G(Ω) =
M

J(Ω)

(
Ω2 − Ω2

0 + Ω Imγ̂(iΩ)
)
. (2.92)

In the case of the free particle the calculations would be the same, but we use instead

lower case letter g:

g(Ω) =
M

J(Ω)

(
Ω2 + Ω Imγ̂(iΩ)

)
, (2.93)

as obtained in [14].

2.4.2 Series Expansion for the General Bath

The shift in the eigen-frequency density appears in equations (2.35) and (2.36). It is

possible to write the bath density using the spacing between consecutive frequencies ∆:

ρB(ω) =
1

∆
. (2.94)
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The continuous version of (2.37) can be written as:

ρS+B(ω)− ρB(ω) =
1

∆ + ε(ω)
− 1

∆
, (2.95)

where ε(ω) represents the actual the shift of the eigen-frequencies caused by the coupling.

The term ∆ + ε(ω) becomes the new spacing between to consecutive frequencies.

Given that Ω is a solution for (2.91), the next frequency, Ω + ∆ + ε(Ω) is also a

solution. Since G(ω) is a well-behaved continuous function, we can expand it as series

around Ω:

G(Ω + ∆ + ε(Ω)) ≈ G(Ω) +G′(Ω)(∆ + ε(Ω)) +O(∆ + ε(Ω)), (2.96)

the left hand side can be expanded in the same way. Taking the difference from two

consecutive frequencies and then solving for ε(ω) we obtain:

ε(Ω) = − 1

π

G′ (Ω)

1 +G2(Ω)
∆2 +O

(
∆3
)
. (2.97)

That information allows us to rewrite the expression for the change in spectral density

as:

ρS+B − ρB =
1

∆ + ε(Ω)
− 1

∆
=

1

π

G′ (Ω)

1 +G2(Ω)
, (2.98)

as ∆→ 0. Using the same calculations we can obtain this result for g(ω).

Using our last result in equation (2.36) we obtain

C2

kB
=

∫ ∞
0

1

π

G′ (ω)

1 +G2(ω)

(
~βω

2 sinh ~βω
2

)2

dω, (2.99)

where we use C2 since the capital G(ω) means we are dealing with the harmonic oscil-

lator. We wish to expand last expression as a series of T for low temperatures, however

the only function of T is the hyperbolic sine term, which has all its derivatives equal to

zero for T = 0. First, we need need to change the variables to

x =
~kBω

2T
, (2.100)

so that we may have

C2

kB
=

2

π

∫ ∞
0

G′(2kBTx
~ )

1 +G2(2kBTx
~ )

( x

sinhx

)2
(
kBT

~

)
dx. (2.101)
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where we now can expand the first term as a series

G′(y)

1 +G2(y)
=

G′(0)

1 +G2(0)
+O(y2), (2.102)

for low temperatures. We know that G′(ω) is an even function from its definition (2.92)

(it easier to see if we take Imγ̂(iy) = {γ̂(iy)− γ̂(−iy)} /2i, where y = 2kBTx/~).

The specific heat expansion for the harmonic oscillator reads:

C2

kB
=

π

3

G′(0)

1 +G2(0)

(
kBT

~

)
+O(T 3). (2.103)

All previous calculations are true for g(ω), allowing us to obtain the expansion for the

free particle

C1

kB
=

π

3

g′(0)

1 + g2(0)

(
kBT

~

)
+O(T 3). (2.104)

Calculating the leading terms in T :

G′(0)

1 +G2(0)
= lim

y→0

MΩ2
0
J ′(y)
J2(y)

M2Ω4
0

J2(y)

=
1

Ω2
0

J ′(0)

M
=
γ(0)

Ω2
0

, (2.105)

and

g′(0)

1 + g2(0)
=

1 + γ′(0)

γ(0)
, (2.106)

leading to the final results:

C1

kB
=

π

3

1 + γ̂′(0)

γ̂(0)

(
kBT

~

)
+O(T 3), (2.107)

C2

kB
=

π

3

γ̂(0)

Ω2
0

(
kBT

~

)
+O(T 3), (2.108)

as obtained in previous the previous section and [9].

2.4.3 Exact Solution for the Drude Bath

Considering the Drude bath and the free particle potential, we can evaluate:

g′(ω)

1 + g2(ω)
=

γω2
D(3ω2 − ωD(γ − ωD))

(ω2 + ω2
D)(ω4 + +ω2ωD(ωD − γ) + γ2ω2

D)
=

=
ωD(x2 + γωD)

ω4 + +ω2ωD(ωD − γ) + γ2ω2
D)
− ωD
ω2 + ω2

D

. (2.109)
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To further simplify the expression we are going to solve the biquadratic equation on the

denominator:

x2 + xωD(ωD − γ) + γ2ω2
D) = (x− x1)(x− x2), (2.110)

1

2

(
2γωD − ω2

D ± ω2
D

√
1− 4γ

ωD

)
= x1,2. (2.111)

Using the definitions of ω1 and ω2 in (2.55) we obtain that:

x1 = −ω2
1 ; x2 = −ω2

2. (2.112)

Also note that the numerator can be written as:

ωDx
2 + γω2

D = (ω1 + ω2)x2 + ω1ω2(ω1 + ω2), (2.113)

therefore we can write ∆ρ as a sum of Lorentzians:

ρS+B − ρB =
1

π

{
ω1

x2 + ω2
1

+
ω2

x2 + ω2
2

− ωD
x2 + ω2

D

}
(2.114)

For the range of values ωD < 4γ, the frequencies ω1 and ω2 become complex. We

have mentioned in section 2.3.2. Since they are also necessarily complex conjugate,

ω1,2 = Re(ω) ± iIm(ω), expression (2.114) will remain real, the only difference being

that the Lorentzians will no longer be centred at the origin,

ω1

x2 + ω2
1

+
ω2

x2 + ω2
2

=
Re(ω)

Re(ω)2 + (x+ Im(ω))2
+

Re(ω)

Re(ω)2 + (x− Im(ω))2
. (2.115)

Replacing (2.114) in (2.36), we obtain the expression:

C1(T ) =

∫ ∞
0

1

π

{
ω1

x2 + ω2
1

+
ω2

x2 + ω2
2

− ωD
x2 + ω2

D

}(
~ωβ

2 sinh (~ωβ/2)

)
dω, (2.116)

whose calculation is very extensive and does not provide any additional physical insight

on the problem. The final result is:

C1

kB
=

(
~βω1

2π

)2

ψ′
(
~βω1

2π

)
+

(
~βω2

2π

)2

ψ′
(
~βω2

2π

)
−

−
(
~βωD

2π

)2

ψ′
(
~βωD

2π

)
− 1

2
, (2.117)

which is same result obtained in section 2.3. The complete calculation can be found in

Appendix A.3.
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Considering now the harmonic oscillator,

ρS+B − ρB =
1

π

{
num(ω)

den(ω)
− ωD
ω2 + ω2

D

}
, (2.118)

where we have defined:

num(x) = ωDx
4 + (γω2

D − 2Ω2
0ωD) + ωDΩ4

0 + γΩ2
0ω

2
D, (2.119)

den(x) = x6 + (ω2
D − 2γωD − 2Ω2

0)x4 +

+ (Ω4
0 + 2γΩ2

0ωD − 2ω2
DΩ2

0 + γ2ω2
D)x2 + ω2

DΩ4
0, (2.120)

for simplicity. We are once again faced with a logistic problem: the expressions for the

roots are too lengthy and algebraical manipulation would take an excessive amount of

space to demonstrate any propriety by directly using them.

Our denominator can be written as:

den(x) = (x− x1)(x− x2)(x− x3), (2.121)

We now need to demonstrate that:

x1 = −ω2
1 ; x2 = −ω2

2 ; x3 = −ω2
3, (2.122)

and:

num(x)

den(x)
=

ω1

x2 + ω2
1

+
ω2

x2 + ω2
2

+
ω3

x2 + ω2
3

. (2.123)

These results are demonstrated using alternative methods in Appendix A.1 and Ap-

pendix A.2 since, as we said before, the expressions are to lengthy and this calculation

does not provide any additional physical insight on the problem. Using again the result

in appendix A.3, we can directly write the specific heat for the harmonic oscillator:

C2

kB
=

(
~βω1

2π

)2

ψ′
(
~βω1

2π

)
+

(
~βω2

2π

)2

ψ′
(
~βω2

2π

)
+

+

(
~βω3

2π

)2

ψ′
(
~βω3

2π

)
−
(
~βωD

2π

)2

ψ′
(
~βωD

2π

)
− 1. (2.124)

which is the same result obtained in section 2.3.2.
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2.5 Thermodynamic Proprieties of the Drude Bath

The shift in the density of eigenfrequencies represents a powerful tool for analyse the

system thermodynamic proprieties. Having defined a specific bath, we can have a clear

picture on how the coupling affects the distribution of frequencies. Note that the shift

in the density is not a density itself, therefore it can assume negative values.

From equation (2.36), we can interpret Cho as a function that, for a given value of

temperature, weights the contributions of the shift in the density. Figure 2.3 illustrates

the behaviour of Cho for different values of T . For low values of T , Cho takes contribution

only for a small range of frequencies around the origin, becoming suppressed quickly. As

we increase the temperature, the range of frequencies increases as well to a point that,

when T →∞, all frequencies of ∆ρ give an equal contribution to the final result.

Within the Drude bath, ∆ρ can be written as a sum of Lorentzians in the form

a/π(a2 + x2) (as in (2.114) and (2.118) with (2.123)), such that when we integrate for

all positive x we obtain 1/2 - the area does not depend on a. This means that the

maximum contribution that each Lorentzian can give is equal 1/2. In the case of the

free particle, where we have two positive and one negative Lorentzians, we know that

for very high values of T , the specific heat becomes kB/2 and for the harmonic oscillator

that has three positive frequencies it becomes kB, as in [9, 11].
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Figure 2.3: Behaviour of CHO as a function of ω̂ = ω/γ and T̂ = kBT/~γ.
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Figure 2.4: Lorentzians in the form f(x) = a/(a2 + x2), for different values of a.
The area of the functions is always the same.

2.5.1 Negative Specific Heat for the Free Particle

If we take the series expansion for the general specific heat that we obtained before

((2.52),(2.107)), its very clear that if:

γ̂′(0) < −1 (2.125)

the specific heat becomes negative for low temperatures. For the Drude bath the re-

striction reads:

ωD < γ. (2.126)

If the damping kernel is greater than ωD, which is our cut-off frequency, the specific heat

may become negative. Since we know that without the damping we would only observe

positive specific heat, it is coherent to expect that high values of the damping strength

make it more likely to become negative.

In the specific case of the Drude bath we can go further and add that it is only

possible to have a negative specific heat in that region (ωD < γ). We prove this using

(2.6), the only term that may assume negative values is the shift in the eigen-frequencies

since Cho > 0. Having ρS+B − ρB negative is necessary, but not sufficient. This holds
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for any Ohmic bath:

1

π

g′(ω)

1 + g2(ω)
< 0→ g′(ω) < 0. (2.127)

in the case of the Drude bath we obtain the expression:

3ω2 − (γ − ωD)ωD < 0 (2.128)

which clearly can only yield negative values if γ > ωD.

We can have an additional insight on how the coupling affects the frequency distri-

bution using ∆ρ. While the negative Lorentzian is always centred at the origin, the two

positive ones can be shifted if the frequencies ω1 and ω2 become imaginary, following

expression (2.115). Recalling the definition of (2.55), we see that the discriminant in

the square root can become negative for ωD < 4γ, dislocating the Lorentzians by the

imaginary values

Im (ω1,2) = ±
√

4γ

ωD
− 1. (2.129)

And for very high values of γ:√
4γ

ωD
− 1 =

√
γ

4ωD

√
1− 4ωD

γ
≈
√

γ

4ωD

(
1 +

2ωD
γ

)
+ ≈ 1

2

√
γ

ωD
. (2.130)

As we increase the damping, the Lorentzians get shifted further and further ahead while

the negative Lorentzian remains centred at the origin. This creates a window where

the negative Lorentzian contribution, or the contribution of the isolated bath, becomes

dominant for low values of frequencies since the damping is shifting the coupled system

frequencies further ahead. When we integrate for low temperatures, Cho will take the

heavy contributions from the negative Lorentzian, and only for higher values of T the

overall contribution becomes dominantly positive. We have illustrated this behaviour in

figure 2.5, with its relative specific heat in figure 2.6.

2.5.2 Negative Specific Heat for the Harmonic Oscillator

Using the same reasoning with the Harmonic Oscillator, equations (2.53) and (2.108)

indicate that for low temperatures it is impossible to have negative values for the specific

heat since:

γ(0)

Ω2
0

> 0 always, (2.131)
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Figure 2.5: Change in Spectral Density for the free particle for different values of
ωD in relation to γ. We can see very clearly the lorentzians associated with ω1 and ω2,
now complex valued, begin to displace from the origin as we decrease the value of ωD

in relation to γ.

however, continuing with the chain of thought, if there is a combination of ωD and

Ω0 that allows: G′(ω) < 0, for a given ω, we cannot immediately discard the possible

existence of negative specific heat. Within the Drude bath, the restriction for obtaining

G′(ω) < 0 can be found at appendix A.5, figure 2.7 illustrates possible combinations

that allow for negative G′(ω).

Unlike the free particle, the Harmonic Oscillator always has the positive contribution

of a real frequency, ω3; therefore, even in the case where ω1 and ω2 become imaginary

and are shifted from the origin, we still have a positive factor centred around the origin.

We can also evaluate the value of ∆ρ at the origin

ρS+B − ρB =
1

π

G′(0)

1 +G2(0)
=

γ

πΩ2
0

, (2.132)

and conclude that it is always positive. This leaves a very narrow window of frequencies

in which ∆ρ can become negative. We must have that ω1 and ω2 are imaginary and

where shifted from the origin and have the parameters ωD, γ and Ω0 defined in such

way that between the contribution of the ω3 Lorentzian and the next shifted one, the

negative Lorentzian becomes dominant.

Since the window is so narrow, see figure 2.7, it seems that we could never obtain

negative specific heat, in fact it is simple to demonstrate that, for the case of the Drude
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Figure 2.6: Specific heat of the free particle for different values of ωD in relation to
γ.

bath, the Harmonic Oscillator has always positive specific heat (Appendix A.4). The

negative values of G′(ω) cause the specific heat to present a dip, in which the value of the

specific shows a small decrease but never to a point where it becomes negative. Figure

2.8 illustrates that behaviour.
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Chapter 3

Several Degrees of Freedom for a

Finite Bath - The Effects of

Potential Renormalization

In this chapter we start considering systems consisting of several interacting degrees of

freedom, which will lead us to a system of Langevin equations. One of the simplest

possible situation will be when we are capable of uncoupling the Langevin equations. In

that case, our partition function will be written as a product of the uncoupled partition

functions

Z =

NS∏
i=1

Zi, (3.1)

where NS stands for the number of system degrees of freedom and Zi the partition

function of the i-th degree of freedom.

The first half of this chapter will de dedicated to analysing the model introduced by

H. Hasegawa [13], which we are going to label NS +NB model, where we take the bath

to be finite with NB degrees of freedom. Our interest to analyse such model comes from

the fact that, unlike what we have obtained in chapter 2, even for systems of harmonic

oscillators it is still possible to have negative specific heat.

This model has a finite number of bath frequencies, because of that we have to

be concerned with Poincaré recurrence time. Since we wish our system to describe

dissipation, we must have that the number of bath frequencies (NB) is much greater

32
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than the number of system frequencies (NS), this will make the Poincaré recurrence

time to be sufficiently large [2].

It is important to note that there are differences between the model we are going to

analyse here and the model analysed in chapter 2 (Caldeira-Leggett),

• the Caldeira-Leggett model has only one system degree of freedom while the NS +

NB has several interacting degrees of freedom,

• the interaction Hamiltonian is different for both models.

Our main objective in this chapter is to identify the essential source of the different

results in these models. After rederiving the results found at [13], we are able to obtain,

through the analysis of a minimal model with only one system degree of freedom, that

the specific heat of the harmonic oscillator can become negative. We thus conclude that

the interaction Hamiltonian is the main responsible for the thermodynamic differences.

That is not the same to say that the extra degrees of freedom do not contribute to the

negative values, chapter 4 will be dedicated to investigate their influence.

3.1 The NS + NB Model

Our system can be understood as a ring of NS particles where the k-th particle is

connected to its neighbours, (k + 1) and (k − 1), by a harmonic potential. The most

general Hamiltonian that can describe such system is

HS =

NS∑
k=1

{
P 2
k

2Mk
+
MkΩ

2
k

2
q2
k +

Kk

2
(qk+1 − qk)2

}
, (3.2)

being represented by figure 3.1, where Ki stands for the interaction between the i-th

and the (i+ 1)-th particle. The bath remains mostly the same of previous chapter

HB =

NB∑
i=1

{
p2
i

2mi
+
miω

2
i

2
x2
i

}
, (3.3)

with the only difference being that, in this chapter, we are going to analyse finite baths

(NB will always be a finite number).

Each system particle is connected to all NB bath oscillators by the Hamiltonian

HSB =

NS∑
k=1

NB∑
i=1

{cki
2

(xi − qk)2
}
, (3.4)
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Figure 3.1: The harmonic oscillator ring describing the Hamiltonian of the system
(3.2). Classical springs represent both the internal interactions and the interaction with

an external potential.

represented in figure 3.2 together with HS and HB.

This formulation is very intuitive, the coupling can be seen as simply adding another

”spring” to connect the system and the bath, as opposed to figure 2.2 where the coupling

causes a change in the dependency of the bath potential from the absolute coordinates to

the relative position between system and bath. Note that we are missing an equivalent

quantity for the renormalizing term
∑∞

n=1 c
2
n/2mnω

2
n. This will be discussed on section

3.2, when we start to analyse the effects of the potential renormalization. We are also

imposing periodic boundary conditions on all the coordinates:

qk = qk+NS ; xi = xi+NB (3.5)

Pk = Pk+NS ; pi = pi+NB (3.6)
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(b) Coupled system.

Figure 3.2: A simple representation of the NS +NB model using a classical springs to
represent the effects the interactions between particles and bath. The difference from the
Caldeira-Leggett is very clear; unlike what we had in figure 2.2(b), where the coupling
would make HSB + HB change dependency from the absolute bath coordinates to
the relative position between system and bath (translational invariant) here we simply

introduce a ”new spring” connecting system and bath.
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3.1.1 Solving for the Eigenfrequencies

Since we are dealing with finite degrees of freedom, we can use expression (2.30) to

directly obtain the specific heat. For that we need to obtain the eigenfrequencies for the

coupled system. Let us simplify our problem by assuming that we have the same masses

(Mk = M , mi = m), system frequencies (Ωk = Ω0) and internal couplings (Kk = K0)

[13]

HS =

NS∑
k=1

{
P 2
k

2M
+
MΩ2

0

2
q2
k +

K

2
(qk+1 − qk)

}
, (3.7)

we also assume that the coupling with the bath is the same for every system degree of

freedom (cik = ci)

HSB =

NB∑
i=1

NS∑
k=1

ci
2

(xn − qk)2. (3.8)

Using the discrete Fourier transform it is possible to diagonalize the system:

qk =
1√
NS

NS∑
s=1

Qs e
−2πi ks

NS ; Pk =
1√
NS

NS−1∑
s=0

P̄s e
−2πi ks

NS (3.9)

Qs =
1√
NS

NS∑
k=1

qk e
2πi ks

NS ; P̄s =
1√
NS

NS∑
k=1

Pk e
2πi ks

NS . (3.10)

The spatial part of the system Hamiltonian is proportional to

NS∑
k=1

(qk+1 − qk)2 =

NS∑
k=1

(
q2
k+1 + q2

k − 2qk+1qk
)
, (3.11)

and since

NS∑
k=1

q2
k =

NS∑
k=1

q2
k+1, (3.12)

we can rewrite

NS∑
k=1

(qk+1 − qk)2 =

NS∑
k=1

2
(
q2
k − qk+1qk

)
. (3.13)
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Introducing the discrete Fourier transform:

NS∑
k=1

q2
k =

1

NS

NS∑
k=1

(
NS∑
s=1

Qse
−2πiks
NS

)(
NS∑
s′=1

Qs′e
−2πiks′
NS

)
=

=

NS∑
s=1

NS∑
s′=1

QsQs′

(
1

NS

NS∑
k=1

e
−2πik(s+s′)

NS

)
, (3.14)

and using the identity:

δl,l′ =
1

N

N∑
n=1

e
2πin(l−l′)

N , (3.15)

we can obtain that

NS∑
k=1

q2
k =

NS∑
s=1

NS∑
s′=1

QsQs′

(
1

NS

NS∑
k=1

e
−2πik(s+s′)

NS

)
=

NS∑
s=1

QsQ
∗
s, (3.16)

where we have used that Q−s = QNS−s = Q∗s, since qk are hermitian.

We can also use (3.15) to rewrite:

NS∑
k=1

qkqk+1 =

NS∑
s=1

QsQ
∗
se
−2πi

(
−s
NS

)
=

NS∑
s=1

QsQ−s cos

(
2πs

NS

)
. (3.17)

This allows us to express the system Hamiltonian in the basis of the transformed coor-

dinates

HS =

NS∑
s=1

{
P̄sP̄

∗
s

2M
+

1

2

(
MΩ2

0 + 4K sin2

(
πs

NS

))
QsQ

∗
s

}
, (3.18)

where we have used the trigonometric identity 1− cosx = 2 sin2 x.

With our transformation, the system Hamiltonian became a simple collection of

non-interacting harmonic oscillator, which eigenfrequencies we are going to represent

using Ω̄s defined as:

M Ω̄2
s = MΩ2

0 + 4K sin2

(
πs

NS

)
. (3.19)

Before proceeding to the interaction Hamiltonian, we would like to point out that

QNS is proportional to the center of mass,

QNS =
1√
NS

NS∑
k=1

qk =
√
NS qCM . (3.20)
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Applying the transformation to the interaction Hamiltonian we obtain

HSB =

NB∑
i=1

{
NS

ci
2
x2
i +

NS∑
k=1

(ci
2
q2
k − cixiqk

)}

=

NB∑
i=1

ci
2

NS∑
s=1

QsQ
∗
s −

√
NSQNS

NB∑
i=1

cixi +
NS

2

NB∑
i=1

ciq
2
i . (3.21)

As it was obvious by looking at (3.3), we are only coupling the center of mass coordinate

with the bath coordinates. Once we introduce the coupling, the system frequencies are

shifted to the new frequencies Ω̃s:

M Ω̃2
s = M Ω̄2

s +

NB∑
i=1

ci, (3.22)

this means that there is still a potential renormalization, represented by the shift in the

frequencies, caused by the coupling in the uncoupled coordinates.

It is possible to write the coupled Hamiltonian in a matrix form using the vectors:

P =



P̄0

...

P̄NS−1

p1

...

pNB


; Q =



Q1

...

QNS

q1

...

qNB


. (3.23)

We have:

H =
1

2
P†
(

1
M INS 0

0 1
mINB

)
P+

+
1

2
Q†



M Ω̃2
1 0 . . . 0 −c1

√
NS . . . −cNB

√
NS

0 M Ω̃2
2 . . . 0 0 0 0

...
...

. . .
...

...
...

...

0 0 . . . M Ω̃2
NS

0 0 0

0 0 . . . −c1

√
NS mω̃2

1 . . . 0
... 0 . . . 0

...
. . .

...

0 0 . . . −cNB
√
NS 0 . . . mω̃2

NB


Q, (3.24)
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were the new frequencies are:

mω̃2
n = mω2

n +NScn. (3.25)

Using the cofactor expansion on:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M(Ω̃2
1 − λ2) 0 . . . 0 −c1

√
NS . . . −cNB

√
NS

0 M(Ω̃2
2 − λ2) . . . 0 0 0 0

...
...

. . .
...

...
...

...

0 0 . . . M(Ω̃2
NS
− λ2) 0 . . . 0

0 0 . . . −c1
√
NS m(ω̃2

1 − λ2) . . . 0

...
... . . .

...
...

. . .
...

0 0 . . . −cNB

√
NS 0 . . . m(ω̃2

NB
− λ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.26)

we obtain the expression for the eigen-frequencies λ:

NS−1∏
s=1

(
Ω̃2
s − λ2

) NB∏
n=1

(
ω̃2
n − λ2

){
M
(

Ω̃2
NS
− λ2

)
−

NB∑
n=1

c2
nNS

m (ω̃2
n − λ2)

}
= 0. (3.27)

3.1.2 Solving for an Identical-Frequency Bath

From the first product in (3.27), i. e.
∏NS−1
s=1

(
Ω̃2
s − λ2

)
= 0, we can easily obtain NS−1

frequencies, all equal to Ω̃s from s = 1 to s = NS−1, as eigenfrequencies of the complete

system. The other NB + 1 frequencies, however, cannot be found that easily. Removing

the first product will still give us a (NB + 1)-th order polynomial of λ2.

In order solve this problem analytically we will follow Hasegawa [13] and consider

the identical-frequency bath

ωn = ω0 ; cn = c0. (3.28)

For this bath, (3.27) is solvable

(
ω̃2

0 − λ2
)NB−1

{
mM

(
Ω̃2

0 − λ2
) (
ω̃2

0 − λ2
)
− c2

0NSNB

}
= 0. (3.29)

We obtain directly that NB − 1 solutions are in fact ω̃0, such that
(
ω̃2

0 − λ2
)NB−1

= 0.

The last two frequencies are obtained by solving the biquadratic equation:

λ4 −
(

Ω̃2
0 + ω̃2

0

)
λ2 + Ω̃2

0ω̃
2
0 − c2

0

NSNB

mM
= 0, (3.30)
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whose solutions are:

λ2
± =

1

2

((
Ω̃2

0 + ω̃2
0

)
±
√(

Ω̃2
0 − ω̃2

0

)2
+ 4c2

0

NSNB

mM

)
. (3.31)

Now that we have all the coupled system frequencies for any choice of parameters,

it is possible to obtain the thermodynamic proprieties.

3.1.3 Thermodynamic Proprieties for the Identical Frequency Bath

From our demonstration in appendix A.4 we have concluded that if we have ωi ≤ ω̃i the

terms in equation (2.30) obey:

(β~ω̃i/2)2

sinh2 (β~ω̃i/2)
− (β~ωi/2)2

sinh2 (β~ωi/2)
≤ 0. (3.32)

From the form of the function x2/ sinh2(x), we can conclude that increasing the frequency

also increases a suppression effect for low temperatures. Increasing the values of NS ,

NB, c0 shifts the coupled system frequencies for even higher values, as we can clearly

see from:

ω̃0 =

√
ω2

0 +
NSc0

m
≥ ω0, (3.33)

Ω̃k = Ω̄k +
NBc0

M
(3.34)

λ2
± =

1

2

((
Ω̃2

0 + ω̃2
0

)
±
√(

Ω̃2
0 − ω̃2

0

)2
+ 4c2

0

NSNB

mM

)
. (3.35)

Either by increasing the values of these parameters or by increasing the value of Ω0,

we can make CS+B become heavily suppressed for low temperatures, creating a window

where the negative contribution of CB becomes dominant. The collection of figures 3.3

serves to exemplify this effect.

3.1.4 Qualitative Analysis of the General Case

Although we cannot obtain a quantitative solution for any given (3.2) and (3.4), it is

possible to provide a qualitative analysis of the results using a theorem found in the

chapter about oscillations from V.I. Arnold’s book [30].
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Figure 3.3: Specific Heat for the NS + NB in the identical frequency model as we
change different parameters isolated to see its influence.
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Considering two systems, S and S′, with N particles, identical kinetic energy T = T ′

and different potential energy U(x1, ..., xn) and U ′(x1, ..., xn), written as:

U =
1

2
~x A ~x ; U ′ =

1

2
~x B ~x, (3.36)

where: ~x = (x1, ..., xN ). We will list the eigenvalues of both matrices as {an} and {bn}
so that:

a1 ≤ a2 ≤ ... ≤ aN and b1 ≤ b2 ≤ ... ≤ bN . (3.37)

The theorem states that if, for any value of ~x, we have that:

~x B ~x ≥ ~x A ~x, (3.38)

then:

a1 ≤ b1 , a2 ≤ b2 , ... , aN ≤ bN . (3.39)

We are going to read this statement as: when comparing two systems S and S′ of

harmonic oscillators with identical kinetic energy energy T = T ′ and N degrees of

freedom; if U ′(x1, ..., xN ) ≥ U(x1, ..., xN ), then for every eigen-frequency ωi of U there

is an eigen-frequency ω′i of U ′ so that ωi ≤ ω′i.

Going back to the NS + NB model, S is going to be the uncoupled system and

bath and S′ the coupled version. When we ”turn on” the coupling, we introduce the

interaction Hamiltonian where it is obvious that for any value of {qk} and {xi} we have:

HSB =

NS∑
k=1

NB∑
i=1

cki
2

(qk − xi)2 ≥ 0, (3.40)

since cik ≥ 0 for any value of i and k. This allows us to write the relation between the

eigen-frequencies:

Ωk ≤ Ω̃k and ωi ≤ ω̃i. (3.41)

We can write the specific heat using (2.30):

C

kB
=

NS−1∑
k=1

(
β~Ω̃k/2

)2

sinh2
(
β~Ω̃k/2

) +

NB∑
k=1

{
(β~ω̃i/2)2

sinh2 (β~ω̃i/2)
− (β~ωi/2)2

sinh2 (β~ωi/2)

}
. (3.42)
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We have already demonstrated in appendix A.4 that if we have ωi ≤ ω̃i then:

(β~ω̃i/2)2

sinh2 (β~ω̃i/2)
− (β~ωi/2)2

sinh2 (β~ωi/2)
= δi ≤ 0. (3.43)

This means that for every bath oscillator we get a negative contribution on the specific

heat. The specific heat becomes negative when the positive contribution of the shifted

system frequencies Ω̃k is inferior to negative one from the bath. By increasing the

coupling we are also increasing the difference (3.43). Similarly, if we increase the value

of bath oscillators, NB, we are going to increase the amount of δi. This is in accordance

with our findings for the identical frequency bath.

These results are, of course, purely qualitative and do not allow for a clear picture

of how the frequencies are shifted but does allow us to conclude that the coupling

mechanism pushes the frequencies to higher values.

3.2 The Effects of Potential Renormalization

Figure 3.3(c) depicts a behaviour that greatly differs from anything we expect from the

Caldeira-Leggett model. In previous chapter we have obtained that for the Drude bath

the specific heat could never be inferior to −kB/2, while in figure 3.3(c) the difference

is of the order −7kB. This result served as a motivation to analyse more generally the

effects of the potential renormalization.

3.2.1 Comparing Both Models

We start our analysis by comparing the simplest case of one system oscillator coupled

to one bath oscillator within both the Caldeira-Leggett and the NS +NB models:

H =
P 2

2M
+
MΩ2

0

2
q2 +

p2

2m
+
mω2

0

2
x2 + c0(x− q)2, (3.44)

H ′ =
P 2

2M
+
MΩ2

0

2
q2 +

p2

2m
+
mω2

0

2
x2 − c0qx+

c2
0

2mω2
0

q2, (3.45)

where we use ′ to represent the Caldeira-Leggett model. Writing the spatial part of

the Hamiltonian H as a vectorial product while also scaling out the masses (
√
Mq = q̃,

√
mx = x̃) we obtain:

H → 1

2

(
q̃ x̃

)Ω2
0 + c0

M − c√
mM

− c√
mM

ω2
0 + c0

m

(q̃
x̃

)
, (3.46)
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which gives us the eigenvalue equation:

λ4 − λ2
(

Ω2
0 + ω2

0 +
c0

m
+
c0

M

)
+
(

Ω2
0 +

c0

M

)(
ω2

0 +
c0

m

)
− c2

0

mM
=

=
(
λ2 − ω2

+

) (
λ2 − ω2

−
)

= 0, (3.47)

where:

ω2
± =

1

2

{(
Ω2

0 + ω2
0 +

c0

M
+
c0

m

)
±
√(

Ω2
0 − ω2

0 +
c0

M
− c0

m

)2
+

4c2
0

mM

}
. (3.48)

To simplify the treatment of the solution we are going to define dimension-less parame-

ters:

Ω̃ =
Ω0

ω0
; c̃(m) =

c0

mω2
0

; c̃(M) =
c0

Mω2
; λ± =

ω±
ω0
, (3.49)

λ2
± =

1

2

{
Ω̃2 + c̃(M) + 1 + c̃(m) ±

√(
Ω̃2 − 1 + c̃(M) − c̃(m)

)2
+ 4c̃(m)c̃(M)

}
, (3.50)

they are defined to use ω0 as the primary parameter of comparison. Using (2.30) we

obtain the specific heat:

C

kB
=

(
~ω0

2kBT
λ+

)2

sinh2
(

~ω0
2kBT

λ+

) +

(
~ω0

2kBT
λ−
)2

sinh2
(

~ω0
2kBT

λ−
) −

(
~ω0

2kBT

)2

sinh2
(

~ω0
2kBT

) . (3.51)

Doing the same for the spatial part of H ′:

H ′ → 1

2

(
q̃ x̃

)Ω2
0 +

c20
Mmω2

0
− c0√

mM

− c0√
mM

ω2
0

(q̃
x̃

)
, (3.52)

we obtain the eigenvalue equation:

λ4 − λ2

(
Ω2

0 + ω2
0 +

c2
0

mMω2
0

)
+ ω2

0Ω2
0 =

=
(
λ2 − ω′−

2
)(

λ2 − ω′+
2
)

= 0, (3.53)

that can be easily solved. The solutions, expressed using the same dimension-less pa-

rameters as before:

λ′±
2

=
1

2

{
Ω̃2 + 1 + c̃(m)c̃(M) ±

√
(Ω̃2 − 1)2 + c̃(m)c̃(M)

(
2Ω̃2 + 2 + c̃(m)c̃(M)

)}
. (3.54)

Note that the terms c̃(m) and c̃(M) only appear together as c̃(m)c̃(M). Because of that,

we could avoid redundancy by easily redefining the parameters in such way that the
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Figure 3.4: As we can see, for our choice of values for c̃(m) and c̃(M) we have that the
product c̃(m)c̃(M) remains the same, meaning that the standard Caldeira-Leggett version

of the specific heat, in red - omitted from the top caption - stays the same. Also, Ω̃ = 2
for all graphs.

product becomes our new parameter. However, we will maintain the answer in these

terms to allow for a direct comparison between both cases. In figure 3.4 you can see an

example where we have different combinations of c̃(m) and c̃(M) and the specific heat of

the standard Caldeira-Leggett model does not change.The specific heat associated with

H ′:

C ′

kB
=

(
~ω0

2kBT
λ′+
)2

sinh2
(

~ω0
2kBT

λ′+
) +

(
~ω0

2kBT
λ′−
)2

sinh2
(

~ω0
2kBT

λ′−
) −

(
~ω0

2kBT

)2

sinh2
(

~ω0
2kBT

) , (3.55)

The demonstration used in Appendix A.4 to prove that the integration could never

become negative applies here. All we have to do is demonstrate that at least one of the

eigen-frequencies, in this case ω′− since it is the smallest, will always be smaller than ω0.

If we replace λ for 0 and ω0 in expression (3.53) we get:

λ = 0 → ω2
0Ω2

0, (3.56)

λ = ω0 → −c2
0/mM. (3.57)

Therefore, one of the solutions has to be smaller than ω0. Because of that the spe-

cific heat calculated using the Caldeira-Leggett model is always positive for harmonic

oscillators.
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Figure 3.5: We illustrate here how for a fixed coupling, c̃(m) = 2 and c̃(M) = 3, it is

possible to obtain negative values by increasing the value of Ω̃.

Applying the same rationale for the specific heat within the NS +NB model, using

(3.47):

λ = 0 → ω2
0Ω2

0 +
c0Ω2

0

m
+
c0ω

2
0

M
, (3.58)

λ = ω0 → c0

m

(
Ω2

0 − ω2
0

)
. (3.59)

Therefore, by the same reasoning as before, if we have that Ω0 < ω0, one root must

be smaller than ω0, making it impossible for the specific heat to become negative. On

the other hand, if we have that Ω0 > ω0, we can no longer make such assertion.This

restriction is not sufficient to ensure negative specific heat, it is however, necessary.

Figure 3.5 serves as an example of how changing the frequency Ω0 can cause negative

specific heat for a fixed coupling c0.

It is very simple to understand such restriction. Using the theorem at section 3.1.4

we can conclude that:

ω− ≥ ω0, ω+ ≥ Ω0. (3.60)

Therefore, if we wish to have both frequencies ω± greater than ω0, we need to have

Ω0 > ω0.
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3.2.2 Minimal Model for a General Potential Renormalization

The main difference between both models is how it renormalizes the potentials. To

understand how the potential renormalization affects the results, let us assume a general

system renormalization

HSB =
1

2

(
M∆S +

c2
0

mω2
0

)
q2 − c0xq. (3.61)

It becomes clear why we have decided to use this potential renormalization when we

calculate the Langevin equation as we did in chapter 2 to obtain

q̈ +

∫ t

0
dsγ(t− s)q̇(s) + (Ω2

0 + ∆S)q = ξ(t), (3.62)

where the damping kernel and the fluctuating force are defined as (2.13). We obtain

from last equation that the effective potential on the Langevin equation is MΩ2
0 +M∆S .

Note that we have to impose that ∆S > −Ω2
0, otherwise we would switch the sign of the

potential.

The spatial part of the Hamiltonian, assuming that HS and HB are written as (3.44),

can be written as the matrix

1

2

(
q̃ x̃

)Ω2
0 + ∆S +

c20
Mmω2 − c0√

mM

− c0√
mM

ω2
0

(q̃
x̃

)
, (3.63)

with eigenvalue equation:

λ4 − λ2

(
Ω2

0 + ω2
0 + ∆S +

c2
0

mMω2
0

)
+ ω2

0Ω2
0 + ∆Sω

2
0 = 0, (3.64)

where we can employ the same technique to discover if one of the frequencies is smaller

than ω0:

λ = 0 → ω2
0(Ω2

0 + ∆S) ≥ 0, (3.65)

λ = ω0 → − c2
0

mM
≤ 0. (3.66)

Using our restriction that ∆S ≥ −Ω2
0 we obtain that ω2

0(Ω2
0 + ∆S) is either null or

positive. For positive values we conclude that one of the coupled system eigenfrequencies

is smaller than ω0, meaning that the specific heat for the harmonic oscillator is always

positive [11].
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If we have that ∆S = −Ω2
0, the Langevin equation will describe a free damped

particle. The Hamiltonian will read

H =
P 2

2M
+

p2

2m
+
mω2

0

2
x2 − c0qx+

c2
0

2mω2
0

, (3.67)

which can yield negative specific heat, as demonstrated in [11].

Despite allowing for any sort of potential renormalization for the system, imposing

that the potential does not become negative, we obtained the same results as [11]. This

leads us to believe that the different results of the Caldeira-Leggett and the NS + NB

model must be caused by the potential renormalization on the bath oscillators.

Motivated by this, let us define a new interaction Hamiltonian:

HSB =
m∆B

2
x2 +

1

2

(
M∆S +

c2
0

m
(
ω2

0 + ∆B

)) q2 − c0xq. (3.68)

Note that we needed to incorporate the shifted frequency, ω2
0 +∆B, in the renormalizing

term in previous equation in order to ensure that the system potential in the Langevin

equation be MΩ2
0 +M∆S . The equations of motion of the bath coordinates are written

as:

ẍ+ (ω2
0 + ∆B)x =

c0

m
q, (3.69)

forcing us to impose that ∆B > −ω2
0.

The spatial part of the coupled Hamiltonian can be written as the matrix:

1

2

(
q̃ x̃

)Ω2
0 + ∆S +

c20
Mmω2 − c0√

mM

− c0√
mM

ω2
0 + ∆B

(q̃
x̃

)
, (3.70)

with eigenvalue equation:

λ4 − λ2

(
Ω2

0 + ω2
0 + ∆B + ∆S +

c2
0

mM(ω2
0 + ∆B)

)
+ (ω2

0 + ∆B)(Ω2
0 + ∆S) = 0. (3.71)

Using the same technique as before:

λ = 0 → (ω2
0 + ∆B)(Ω2

0 + ∆S) ≥ 0, (3.72)

λ = ω0 → ∆B(Ω2
0 − ω2

0)− c2
0ω

2
0

mM(ω2
0 + ∆B)

+ ∆S∆B. (3.73)

We can be certain that it is possible to obtain negative specific heat for the harmonic

oscillator, since the NS +NB model is a particular case of our more general expression.
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3.3 Final Remarks

In the Caldeira-Leggett model, the choice of ∆B = ∆S = 0 is not made for the sake

of simplicity alone. We are interested in being able to compare the coupling a system

under the influence of a potential V to a heat bath for different coupling strengths.

Because of that our choice cannot describe every system, there are some situations, like

the Lamb Shift [15], where the coupling with the environment does cause a potential

renormalization.

If we take a look at the Langevin equation for the center of mass in the basis of the

discrete Fourier transform [13]1

M ¨̃QNS +M

∫ t

0
dsγ(t− s) ˙̃QNS +M

(
Ω̄2

0 +

NB∑
i=1

{
ci −

c2
i

mω̃2
i

})
Q̃NS = ξ(t), (3.74)

where we have the damping kernel is defined as

γ(t) =
NS

M

NB∑
i=1

c2
i

mω̃2
i

cos(ω̃it). (3.75)

From Langevin equation it becomes clear that the coupling causes the effective

potential of the system to change. Also, the damping kernel is written with the shifted

frequencies and not the uncoupled bath frequencies.

We can conclude that using this type of coupling causes us to loose comparability: for

different coupling strengths we have a system with different effective potentials coupled

to different heat baths. Further analysis on this type of model is required since based

only in our findings with the minimal model we cannot understand exactly how the

potential renormalization of the bath potential will affect our results, specially when

considering more general models 2. We can be certain that the potential renormalization

plays a central role on the specific heat anomalies. It seems to be the origin of the

difference between the results of [11] and [13] and it cannot be glanced over.

1We have adapted to our notation.
2The interpretation of these results where made with the collaboration of professor Gert-Ludwig

Ingold of Augsburg University, Germany, through several email exchanges.



Chapter 4

System with Several Degrees of

Freedom

At the beginning of chapter 3 we have raised to possibilities two explain the differences

between the results of Ingold et al. [9, 11] and Hasegawa [13] (see the introduction of

chapter 3). Having already studied the effects of the different potential renormalizations

caused by the interaction Hamiltonian, we will now focus on the effects caused by the

interacting system degrees of freedom. In order to isolate the effects caused by the

interaction we must define new interaction Hamiltonians. They will have to preserve

the bath frequency distribution and the effective potential of the Langevin equation on

the system perspective.

Our calculations start by defining the system Hamiltonian as

HS =
P 2

1

2M1
+

P 2
2

2M2
+
M1Ω2

1

2
q2

1 +
M2Ω2

2

2
q2

2 +
K

2
(q1 − q2)2, (4.1)

for a system with two oscillators. The parameter K represents the internal coupling

between the system particles. We choose to analyse this Hamiltonian for its simplicity

and will latter use the results to pave the way for a system with NS oscillators.

Our objective is to define a model that is simple enough to be analytically tractable,

but not to the point where it becomes unusable to describe realistic situations.

50
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The equations of motion for the system coordinates alone are:

M1q̈1 = −{(M1Ω1 +K)q1 −Kq2} ,
M2q̈2 = −{(M2Ω2 +K)q2 −Kq1} . (4.2)

We must ensure that the potentials in the Langevin equation are the same as in equation

above in order to retain comparability for different values of coupling strength.

The extra oscillator allow us to define different ways of coupling to a bath. We

could have that both degrees of freedom are connected to the same bath 4.1, which is

the same type of coupling that we did in chapter 3. There is also the possibility that

each degree is connected to its own independent bath 4.3. We analyse both couplings 1.

4.1 System Coupled to One Bath

Let us define the interaction Hamiltonian as

HSB =

∞∑
n=1

(
c2
n

2mnω2
n

q2
1 +

d2
n

2mnω2
n

q2
2 +

cndn
mnω2

n

q1q2 − cnxnq1 − dnxnq2

)
, (4.3)

which makes:

HSB +HB =

∞∑
n=1

p2
n

2mn
+
mnω

2
n

2

(
xn −

cn
mnω2

n

q1 −
dn

mnω2
n

q2

)2

. (4.4)

It will become clear that this choice satisfies our restrictions when we obtain the Langevin

equations. Figure 4.1 represents this model schematically.

4.1.1 The System perspective

Before we proceed to calculate the Langevin equations, let us first scale out the masses

using the canonical transformation:

q1 =
√
M1q̃1 ; q2 =

√
M2q̃2, (4.5)√

M1P1 = P̃1 ;
√
M2P2 = P̃2. (4.6)

1These models where proposed by during by professor Gert-Ludwig Ingold of Augsburg University,
Germany, during a one month visit I made to his institution. I acknowledge the fruitful conversations
we had during this period.
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M1 M2

K Ω2Ω1

{ci} {di}

{ωi,mi}

Bath

Figure 4.1: Representation of a model consisting of two system degrees of freedom
coupled to each other, via the spring K, and coupled to a single bath. The collections

of different couplings are represented by {ci} and {di}.

To further simplify the problem we shall define the new constants:

K̃1 = Ω2
1 +

K1

M1
; K̃2 = Ω2

2 +
K2

M2
; K̃0 =

K0√
M1M2

, (4.7)

and:

√
M1 cn = c̃n ;

√
M2 dn = d̃n. (4.8)

we can rewrite our Hamiltonians as:

HS =
1

2

{
P̃ 2

1 + P̃ 2
2 + K̃1q̃

2
1 + K̃2q̃

2
2

}
− K̃0q̃1q̃2 (4.9)

HSB +HB =
∞∑
n=1

p2
n

2mn
+
mnω

2
n

2

(
xn −

c̃n
mnω2

n

q̃1 −
d̃n

mnω2
n

q̃2

)2

. (4.10)

Now we can proceed to write the Langevin equations for the system oscillators. We

start, as we did in chapter 2, using the Green’s function for the harmonic oscillator to

solve xn:

ẍn + ω2
nxn =

c̃n
mn

q̃1 +
d̃n
mn

q̃2, (4.11)
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with solutions:

xn(t) = xn(0) cos(ωnt) +
pn(0)

mnωn
sin(ωnt) + (4.12)

+

∫ t

0

c̃nq̃1(s) + d̃nq̃2(s)

ωn
sin(ωn(t− s))ds. (4.13)

Using (2.12) in last equation we obtain that:

∞∑
n=1

c̃nxn =
∞∑
n=1

c̃n

{(
xn(0)− (c̃nq̃1(0) + d̃nq̃2(0))

mnω2
n

)
cos(ωnt) +

pn(0)

mnωn
sin(ωnt)

+
c̃nq̃1 + d̃nq̃2

mnω2
n

−
∫ t

0

c̃n ˙̃q1(s) + d̃n ˙̃q2(s)

mnω2
n

cos(ωn(t− s))ds
}
, (4.14)

∞∑
n=1

d̃nxn =
∞∑
n=1

d̃n

{(
xn(0)− (c̃nq̃1(0) + d̃nq̃2(0))

mnω2
n

)
cos(ωnt) +

pn(0)

mnωn
sin(ωnt)

+
c̃nq̃1 + d̃nq̃2

mnω2
n

−
∫ t

0

c̃n ˙̃q1(s) + d̃n ˙̃q2(s)

mnω2
n

cos(ωn(t− s))ds
}
. (4.15)

Defining the damping kernels:

γ1(t) =
1

M1

∞∑
n=1

c2
n

mnω2
n

cos (ωnt) =
∞∑
n=1

c̃2
n

mnω2
n

cos (ωnt) , (4.16)

γ2(t) =
1

M2

∞∑
n=1

d2
n

mnω2
n

cos (ωnt) =

∞∑
n=1

d̃2
n

mnω2
n

cos (ωnt) , (4.17)

γ0(t) =
1√

M1M2

∞∑
n=1

cndn
mnω2

n

cos (ωnt) =
∞∑
n=1

c̃nd̃n
mnω2

n

cos (ωnt) , (4.18)

where the subscript 0 stands for crossed term that couples q̃1 and q̃2:

ξ̃1(t) =
∞∑
n=1

c̃n

{(
xn(0)− (c̃nq̃1(0) + c̃nq̃2(0))

mnω2
n

)
cos(ωnt) +

+
pn(0)

mnωn
sin(ωnt)

}
, (4.19)

ξ̃2(t) =

∞∑
n=1

d̃n

{(
xn(0)− (c̃nq̃1(0) + d̃nq̃2(0))

mnω2
n

)
cos(ωnt) +

+
pn(0)

mnωn
sin(ωnt)

}
. (4.20)
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Note that we can re-write:

∞∑
n=1

c̃nxn = ξ̃1(t)−
∫ t

0

(
γ1(t− s) ˙̃q1(s) + γ0(t− s) ˙̃q2(s)

)
ds+

+

∞∑
n=1

(
c̃2
n

mnω2
n

q̃1 +
c̃nd̃n
mnω2

n

q̃2

)
, (4.21)

∞∑
n=1

d̃nxn = ξ̃1(t)−
∫ t

0

(
γ2(t− s) ˙̃q2(s) + γ0(t− s) ˙̃q1(s)

)
ds+

+

∞∑
n=1

(
d̃2
n

mnω2
n

q2 +
c̃nd̃n
mnω2

n

q̃1

)
. (4.22)

We can finally remove the bath from the equations of motion:

¨̃q1 + K̃1q1 − K̃0q̃2 =
∞∑
n=1

{
c̃nxn −

c̃nd̃n
mnω2

n

q̃2 −
c̃2
n

mnω2
n

q̃1

}
, (4.23)

¨̃q2 + K̃2q̃2 − K̃0q̃1 =

∞∑
n=1

{
d̃nxn −

c̃nd̃n
mnω2

n

q̃1 −
d̃2
n

mnω2
n

q̃2

}
, (4.24)

giving us the Langevin equations:

¨̃q1 +

∫ t

0

[
γ1(t− s) ˙̃q1(s) + γ0(t− s) ˙̃q2(s)

]
ds+ K̃1q̃1 − K̃0q̃2 = ξ̃1(t), (4.25)

¨̃q2 +

∫ t

0

[
γ0(t− s) ˙̃q1(s) + γ2(t− s) ˙̃q2(s)

]
ds+ K̃2q̃2 − K̃0q̃1 = ξ̃2(t). (4.26)

It is important to note that even if we had no internal coupling, K = 0, we would still

have that the crossed damping kernel, γ0(t), couples the system oscillators, acting as a

new internal coupling. This happens because the bath oscillators serve as ”mediators”,

transmitting the perturbation from one system oscillator to the other. We will call this

term the indirect interaction term. Within our model, we cannot remove the indirect

interaction by redefining our parameters. We would need to add an extra term that is

time dependent in order to compensate the effect of γ0(t).

4.1.2 The Vectorial Equation

At this point it is convenient to introduce a vectorial notation that will simplify the

treatment of our equations. Having removed the bath variables, we will represent our

system of differential equations using linear operators2.

2It is common to see these type of operators referred to as super-operators since they act on other
operators, in this case the position operator.
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We start by defining the position vector:

q̃ =

(
q̃1

q̃2

)
, (4.27)

and the system interaction operator:

K̂ =

(
K̃1 −K̃0

−K̃0 K̃2

)
. (4.28)

We are going to use the hat (̂ ) to mean linear operator throughout this chapter.3

Continuing with our definitions, the fluctuating force vector:

ξ =

(
ξ1

ξ2

)
. (4.29)

Lastly, we define the operator representing the damping kernel in two equivalent forms:

Γ̂f(t) =

∫ t

0
ds

∞∑
n=1

cos (ωn(t− s))
mnω2

n

(
c̃2
n c̃nd̃n

c̃nd̃n d̃2
n

)
f(s)

=

∫ t

0
ds

(
γ1(t− s) γ0(t− s)
γ0(t− s) γ2(t− s)

)
f(s). (4.30)

The Langevin equation, in a vectorial notation, becomes:[
d2

dt2
+ Γ̂

d

dt
+ K̂

]
q̃(t) = ξ(t). (4.31)

Within the vectorial notation it becomes clear that if our system of equations can be

uncoupled, then (4.31) can be diagonalized and solved analytically. That is certainly

not the case for any given K̂ or Γ̂. There is no doubt that K̂ can be diagonalized but

we must ensure that both operators can be diagonalized simultaneously.

Note that Γ̂ is composed of a sum of matrices, all of which, for any coupling, can

be individually diagonalized, but to have that all matrices can be simultaneously diag-

onalized we must have that the commutator of any pair of matrices equals zero. In the

summation form of (4.30),(
c̃2
n c̃nd̃n

c̃nd̃n d̃2
n

)(
c̃2
m c̃md̃m

c̃md̃m d̃2
m

)
−
(

c̃2
m c̃md̃m

c̃md̃m d̃2
m

)(
c̃2
n c̃nd̃n

c̃nd̃n d̃2
n

)
= 0. (4.32)

3Not to be confused with the hat used to represent the Laplace transform of the damping kernel γ̂(z).
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From last expression we can obtain a restriction for c̃n and d̃n:

−c̃nc̃2
md̃n + c̃2

nc̃md̃m − c̃md̃2
nd̃m + c̃nd̃nd̃

2
m = 0. (4.33)

Let us further assume that c̃n = c̃0 and d̃n = d̃0. In this situation all the matrices would

be the same, (
c̃2

0 c̃0d̃0

c̃0d̃0 d̃2
0

)
→
(
c̃2

0 + d̃2
0 0

0 0

)
, (4.34)

with eigenvectors:

|c̃2
0 + d̃2

0〉 =
1√

c̃2
0 + d̃2

0

(
c̃0

d̃0

)
; |0〉 =

1√
c̃2

0 + d̃2
0

(
d̃0

−c̃0

)
. (4.35)

The problem it is that the basis of eigenvectors depends on the couplings. Since we

wish to find a basis that also diagonalizes K̂, having the eigenvectors depending on the

couplings will force us to choose our internal coupling based on the coupling to the bath.

Probably the simplest way to bypass this problem is to impose that the scaled

couplings are the same for all system particles, that is c̃n = d̃n, which is equivalent to

say that the ratio of coupling strengths must be the same as the inverse of the square

root of the ratio of masses cn/dn =
√
M2/M1. Because of that we can conclude that the

simplest possible situation would be where the coupling strengths are identical to both

system oscillators (cn = dn) and that the system masses are the same (M1 = M2 = M).

The damping kernel operator becomes

Γ̂f(t) =

∫ t

0
ds

(
1 1

1 1

)
γ(t− s)f(s), (4.36)

leaving us to diagonalize (
1 1

1 1

)
→
(

2 0

0 0

)
. (4.37)

The eigenvector basis is composed of the center of mass and the relative motion:

|M〉 =
1√
2

(
1

1

)
; |µ〉 =

1√
2

(
1

−1

)
. (4.38)

Within this restrictions we are free to define any spectral density J(ω) but must also

have that K̂ can be diagonalized on the coordinates of the center of mass and the relative
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motion so it is possible to uncouple the degrees of freedom.

4.1.3 Extension for NS Degrees of Freedom

Using the vectorial notation we can extend our calculation from 2 to NS system oscilla-

tors. We start by redefining the coordinate vectors:

q̃ =


q̃1

q̃2

...

q̃NS

 ; p̃ =


P̃1

P̃2

...

P̃NS

 . (4.39)

The internal coupling between system degrees of freedom can be expressed generically

using the matrix K̃ as:
1√
M1

0 . . . 0

0 1√
M2

. . . 0

.

.

.

.

.

.
.
. .

.

.

.

0 0 . . . 1√
MNS



M1Ω2

1 +K1 −K12 ... −K1NS

−K12 M2Ω2
2 +K2 ... −K2NS

.

.

.

.

.

.
. .

.
.
.
.

−K1NS
−K2NS

... MNS
Ω2

NS
+KNS




1√
M1

0 . . . 0

0 1√
M2

. . . 0

.

.

.

.

.

.
.
. .

.

.

.

0 0 . . . 1√
MNS

 . (4.40)

It is convenient to define a new vector with NS components that represents the coupling

between the system and bath variables:

cn =


c

(1)
n

c
(2)
n

...

c
(NS)
n

 ; c̃n =


√
M1c

(1)
n√

M2c
(2)
n

...√
MNSc

(NS)
n

 =


c̃

(1)
n

c̃
(2)
n

...

c̃
(NS)
n

 , (4.41)

with the scaled version obeying:

cnq = c̃nq̃. (4.42)

We are taking c
(m)
n to represent the coupling between the n-th bath oscillator and the

m-th system oscillator.

Using these definitions allows us to write the Hamiltonians as:

HS =
1

2

{
P̃P̃ + q̃K̂q̃

}
, (4.43)

HSB +HB =
∞∑
n=1

{
p2
n

2mn
+
mnω

2
n

2
(xn − c̃nq̃)2

}
. (4.44)
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Previously we decided to introduce the vectorial notation to simplify the work with

the Langevin equations, here we use the vectorial notation to rewrite the Hamiltonian,

and then proceed to obtain the Langevin equations already in vector form. Using this

notation, the calculations are very similar to the ones in chapter 2. We start from the

bath equations of motion:

ẍn + ω2
nxn =

c̃nq̃

mn
, (4.45)

solved as:

xn(t) = xn(0) cos(ωnt) +
pn(0)

mnωn
sin(ωnt) +

∫ t

0

c̃nq̃(s)

ωn
sin(ωn(t− s))ds. (4.46)

Using (2.12) in last equation we obtain that:

∞∑
n=1

c̃nxn =
∞∑
n=1

c̃n

{(
xn(0)− c̃nq̃(0)

mnω2
n

)
cos(ωnt) +

pn(0)

mnωn
sin(ωnt) +

+
c̃nq̃

mnω2
n

−
∫ t

0

c̃n ˙̃q(s)

mnω2
n

cos(ωn(t− s))ds
}
, (4.47)

defining also the vectorial expression for the fluctuating force:

ξ =


ξ1

ξ2

...

ξNS

 ; ξi(t) = c̃(i)
n

(
xn(0)− c̃nq̃(0)

mnω2
n

)
cos(ωnt) +

pn(0)

mnωn
sin(ωnt) (4.48)

and Γ̂:

Γ̂f(t) =

∫ t

0
ds

cos(t− s)
mnω2

n



(
c̃

(1)
n

)2
c̃

(1)
n c̃

(2)
n . . . c̃

(1)
n c̃

(NS)
n

c̃
(1)
n c̃

(2)
n

(
c̃

(2)
n

)2
. . . c̃

(2)
n c̃

(NS)
n

...
...

. . .
...

c̃
(1)
n c̃

(NS)
n c̃

(2)
n c̃

(NS)
n . . .

(
c̃

(NS)
n c̃

(NS)
n

)2


f(s). (4.49)

The vectorial equations of motion for the system become:{
d2

dt2
+ K̂

}
q̃ =

∞∑
n=1

c̃nxn (4.50){
d2

dt2
+ Γ̂

d

dt
+ K̂

}
q̃ = ξ. (4.51)

This is the same expression that we obtained before, only that now we are dealing with

higher dimensions.



Chapter 4. System with Several Degrees of Freedom 59

Returning to the configuration where all the coupling strengths are the same (c
(i)
n =

cn)) and all the system masses are the same (Mk = M), Γ̂ becomes:

Γ̂f(t) =

∫ t

0
ds

c̃2
n

mnω2
n

cos(t− s)


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 f(s). (4.52)

The center of mass is clearly an eigenvector with eigenvalue NS :
1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1




1

1
...

1

 = NS


1

1
...

1

 , (4.53)

and since all the lines are equal, its null space has a dimension of NS − 1. For instance,

the relative motion of consecutive components is a complete basis for the null space:

v1 =



1

−1

0
...

0

0


; v2 =



0

1

−1
...

0

0


; . . . ; vNS =



0

0

0
...

1

−1


. (4.54)

This is just an example. The most important information here is that it is necessary to

have at least one eigenvector of K̂ to be the center of mass. There is no restriction on

the other eigenvectors since the null space of Γ can be represented using any basis (we

use another one at 4.2).

4.2 A Few Examples

Without Internal Coupling (K̂ = 0)

The idea of solving for a system without any internal coupling may seem trivial, but it

will allow us to isolate the contribution of the indirect coupling.

Considering a system with two degrees and same mass, we have the Hamiltonian:

H =
P̃ 2

1

2
+
P̃ 2

1

2
+

∞∑
n=1

{
p2
n

2mn
+
mnω

2
n

2

(
x2
n −

c̃n
mnω2

n

(q̃1 + q̃2)

)2
}
. (4.55)
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We have already discovered in the previous section that for a case of NS = 2 and identical

coupling with the bath, the eigenvectors are the center of mass and the relative motion.

We transform our variables:

q̄M =
1√
2

(q̃1 + q̃2) ; q̄µ =
1√
2

(q̃1 − q̃2) . (4.56)

With this transformation we obtain that the degree of freedom associated with the

relative motion is a free particle uncoupled to the bath, while the degree of freedom

associated with the center of mass is a free particle coupled to the bath:

H =
P̂ 2
µ

2
+

 P̂ 2
M

2
+
∞∑
n=1

 p2
n

2mn
+
mnω

2
n

2

(
xn −

√
2cn

mnω2
n

q̄M

)2
 . (4.57)

Assuming our system is inside a box of length L, the partition function of the reduced

becomes the product of the uncoupled (subscript u) and the coupled (subscript c) free

particle:

Z =

(
L

~

√
2πM

β

){
L

~

√
2πM

β

∞∏
n=1

νn
νn + γ̂(νn)

}
= Zu Zc. (4.58)

The specific heat is calculated:

C

kB
= β2 d2

dβ2
ln (Zu Zc) = β2 d2

dβ2
(lnZu + lnZc) = Cu + Cc. (4.59)

We can obtain in textbooks the specific heat of the free quantum particle:

Cu
kB

=
1

2
, (4.60)

and we have already calculated for the case the free particle in chapter 2. Let us consider

the Drude bath:

2γ̂(z) = 2γ
ωD

z + ωD
= γ′

ωD
z + ωD

. (4.61)

The factor 2 appears naturally at (4.53) since NS = 2. That is no problem since we can

scale γ = γ′/2. Using the change in spectral density (2.114) and expression (2.36) we

conclude:

Cc
kB

=

∫ ∞
0

{
ω1

ω2
1 + ω2

+
ω2

ω2
2 + ω2

− ωD
ω2
D + ω2

}
Cho(ω)dω ≥

≥
∫ ∞

0

−ωD
ω2
D + ω2

dω = −1

2
. (4.62)
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With this restriction we obtain that the specific heat will always be positive:

Cu
kB

+
Cc
kB
≥ 0. (4.63)

Figure (4.2) aims to illustrate the behaviour of the specific heat in a few cases.
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Figure 4.2: A simple figure showing the behaviour of Cu/kB + Cc/kB for different
values of ωD. Note how the specific heat consists on the damped free particle translated

by +kB/2 by the influence of the uncoupled free particle.

Oscillator Ring

The Oscillator Ring is a model with the same internal coupling as the NS +NB model in

chapter 3. Because of that, most of the calculations have already been made so that we

only need to adjust them for our model. Let us show that the discrete Fourier transform

used at (3.10) is a basis of eigenvectors of Γ̂:

Q̃k =
1√
NS

NS∑
i=1

q̃ie
2πiki/NS ; q̃i =

1√
NS

NS∑
k=1

Q̃ke
−2πiki/NS . (4.64)

In vectorial form the transformation becomes:

Q̃ = Âq̃ ;
(
Â
)
i,j

=
1√
NS

e2πiki/NS . (4.65)
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We can show that the transformation is also a basis of Γ̂ since:

Â∗


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 Â =


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . NS

 . (4.66)

The system matrix will be the same as (3.18) with the coupling and bath Hamiltonians

becoming:

∞∑
n=1

{
p2
n

2mn
+
mnω

2
n

2

(
xn −

√
NScn
mnω2

n

Q̃NS

)2
}
, (4.67)

we need to scale the damping kernel like we did in previous example:

γ′(t) = NS γ(t). (4.68)

Only the degree of freedom of the center of mass is coupled to the bath, all others are

uncoupled harmonic oscillators. Unlike in chapter 3, the uncoupled harmonic oscilla-

tors do not have their potentials renormalized. The partition function of an uncoupled

harmonic oscillator can be obtained in textbooks of statistical mechanics:

Zu(ω) =
1

2 sinh (~βω/2)
. (4.69)

Our reduced partition function will be composed of a product of the uncoupled harmonic

oscillators with the coupled one ((2.40)):

Z =

NS−1∏
i=1

Zu (Ωi)

{
1

~βΩNS

∞∏
n=1

ν2
n

ν2
n + νnγ̂(νn) + Ω2

NS

}
. (4.70)

We remind the reader that Ωi is defined by expression (3.19). Note that this definition

for the reduced partition function is only true if ΩNS 6= 0. In the case of the Drude bath,

the specific heat becomes:

C

kB
=

NS−1∑
i=1

Cho(Ωi) +
C2

kB
(4.71)

where C2 is defined at (2.124) and is always positive, as we have demonstrated in chapter

2. We conclude then that the specific heat is positive for ΩNS 6= 0 in the Drude bath,

Figure 4.3 has a few examples.
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Figure 4.3: A figure showing the behaviour of C when ΩNS
= 0.5γ′ and ωD = 0.1γ′.

Here we have that NS = 4 and we define ωL =
√
K/M . The plot is made for different

values of internal coupling. Note that it is possible to obtain more than one temperature
window where the specific heat decreases (dip) or increases at a lesser rate.

If we’ve had that ΩNS = 0, the partition function would need to be re-written with

the coupled harmonic oscillator replaced with the coupled free particle:

Z =

NS−1∏
i=1

Zu (Ωi)

{
L

~

√
2πM

β

∞∏
n=1

νn
νn + γ̂(νn)

}
. (4.72)

Like for the harmonic oscillator, the resulting specific heat will be composed of the sum

of each individual specific heat:

C

kB
=

NS−1∑
i=1

Cho(Ωi) +
C1

kB
. (4.73)

We know from Chapter 2 that the specific heat of the damping free particle is negative

for low values of temperature, therefore let us use definition (2.107) of C1 to calculate:

d

dT

(
C1

kB

)∣∣∣∣
T=0

=
πkB
3~

1 + γ̂′(0)

γ̂(0)
, (4.74)

and using (2.32) we can also calculate:

d

dT
Cho

∣∣∣∣
T=0

= 0. (4.75)
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Figure 4.4: A figure showing the behaviour of C when ΩNS
= 0.5γ′ and ωD = 0.1γ′.

Here we have that NS = 4 and we define ωL =
√
K/M . The plot is made for different

values of internal coupling. Note that the influence of the specific heat of the damped
particle is dominant for low values of temperature.

For the entire specific heat, we can obtain the behaviour for low temperatures:

C

kB
≈ π

3

1 + γ̂′(0)

γ̂(0)

(
kBT

~

)
+O(T 3), (4.76)

therefore, if the specific heat associated with the coupled free particle is negative, the

complete specific heat will also be negative, since for lower values of T it has dominant

values over Cho. Figure 4.4 has a few examples.

4.3 System Coupled to Independent Baths

Another possibility when dealing with systems with several degrees of freedom is to

couple each degree of freedom to independent baths. For instance for a system with two

degrees of freedom, the bath and coupling Hamiltonians are going to be written as:

HB +HSB =
∞∑
n=1

{
p2
n

2mn
+
mnω

2
n

2

(
xn −

c̃n
mnω2

n

q̃1

)2

+
k2
n

2µ2
n

+

+
µnν

2
n

2

(
yn −

d̃n
µnν2

n

q̃2

)2
 (4.77)
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M1 M2

K Ω2Ω1

{ci} {di}

{ωi,mi}

Bath − 1

{νi, µi}

Bath − 2

Figure 4.5: We aim to represent a model consisting of two system degrees of freedom
coupled to each other, represented by the spring K, and and each coupled to its own
independent bath. The collections of different couplings are represented by {ci} and

{di}

where we have already scaled out the masses M1 and M2. We are taking {xn, pn} and

{yn, kn} as the coordinates of the two baths, their respective couplings are: c̃n = cn/
√
M1

and d̃n = dn/
√
M2. Figure 4.5 represents this model.

4.3.1 The System Perspective

We now proceed with eliminating the baths dependency. Starting from the equations of

motion:

ẍn + ω2
nxn =

c̃n
mn

q1, (4.78)

ÿ + ν2
nyn =

d̃n
µn
q2, (4.79)
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with solutions:

xn(t) =

(
xn(0)− c̃2

n

mnω2
n

q̃1(0)

)
cos (ωnt) +

pn(0)

mnωn
sin(ωnt) +

+
c̃n

mnω2
n

−
∫ t

0

c̃n
mnω2

n

cos(ωn(t− s))q̇1(s)ds, (4.80)

yn(t) =

(
yn(0)− d̃2

n

µnν2
n

q̃2(0)

)
cos(νnt) +

kn(0)

µnνn
sin(νnt) (4.81)

+
d̃n
µnν2

n

q̃2 −
∫ t

0

d̃n
µnν2

n

sin(νn(t− s))q̇2(s)ds (4.82)

where we have already used (2.12). Replacing in the equations of motion for the system

coordinates

¨̃q1 + K̃1q̃1 − K̃0q̃2 =

∞∑
n=1

c̃nxn (4.83)

¨̃q2 + K̃2q̃2 − K̃0q̃1 =

∞∑
n=1

d̃nyn (4.84)

we obtain the Langevin equations:

¨̃q1 +

∫ t

0
ds γ1(t− s) ˙̃q1(s) + K̃1q̃1 − K̃0q̃2 = ξ1(t), (4.85)

¨̃q2 +

∫ t

0
ds γ2(t− s) ˙̃q2(s) + K̃2q̃2 − K̃0q̃1 = ξ2(t). (4.86)

where:

γ1(t) =

∞∑
n=1

c̃2
n

mnω2
n

cos (ωnt) ; γ2(t) =

∞∑
n=1

d̃2
n

µnν2
n

cos (νnt) , (4.87)

and:

ξ1(t) =

(
xn(0)− c̃2

n

mnω2
n

q̃1(0)

)
cos (ωnt) +

pn(0)

mnωn
sin(ωnt), (4.88)

ξ2(t) =

(
yn(0)− d̃2

n

µnν2
n

q̃2(0)

)
cos(νnt) +

kn(0)

µnνn
sin(νnt). (4.89)

Note that, if we turn off the internal coupling (K = 0), the two equations will become

completely independent, the term of ”indirect” interaction is lost when we choose to

consider more than one bath.
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4.3.2 The Vectorial Equation

It is once again possible to express both equations using a vectorial notation. The

coordinate vector q̃, the internal coupling matrix K̂ and the fluctuating force vector ξ

are defined at (4.27), (4.28) and (4.29) respectively.

The vectorial equation will be the almost identical to (4.31), with the only difference

being the definition of the damping operator. It will no longer couple indirectly the

system coordinates, meaning that Γ̂ is diagonal in the basis of q:

Γ̂ f(t) =

∫ t

0
ds

∞∑
n=1

 c̃2n
mnω2

n
cos(ωn(t− s)) 0

0 d̃2
n

µnν2
n

cos(νn(t− s))

 f(s). (4.90)

We can simplify the expression further by introducing the spectral density of eigenstates

for each bath:

J1(ω) =
∞∑
n=1

c2
n

mnωn
δ(ω − ωn) ; J2(ω) =

∞∑
n=1

d2
n

µnνn
δ(ω − νn). (4.91)

Because we wish the spectral density of eigenstates to be independent of the system, we

have to reverse our transformation to re-introduce the system masses. The alternative

version of Γ̂ becomes:

Γ̂ f(t) =

∫ t

0
ds

∫ ∞
0

dω
2

πω

(
J1(ω)
M1

0

0 J2(ω)
M2

)
cos(ωt)f(s). (4.92)

Despite being much simpler than the operator Γ̂ that we used when there was only

one bath, we still need to make severe restrictions to ensure that in the final problem

the degrees of freedom can be uncoupled. We have to, once again, consider that the

parameters are the same for both baths: c̃n = d̃n, ωn = νn and mn = µn, this makes Γ̂

proportional to the identity,Î,

Γ̂f(t) =

∫ t

0
ds
∞∑
n=1

c̃2
n

mnω2
n

cos(ωn(t− s))
(

1 0

0 1

)
f(s) =

∫ t

0
dsγ(t− s) Î f(s), (4.93)

allowing us to perform any transformation in order to diagonalize K̂:{(
d2

dt2
+ Γ

d

dt

)
Î + K̂

}
q = ξ. (4.94)
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The extension for systems with NS degrees of freedom is very intuitive, the definition

on equation (4.92) can be easily extended to

Γ̂f(t) =

∫ t

0
ds

∫ ∞
0

dω
2

πω


J1(ω)
M1

0 . . . 0

0 J2(ω)
M2

. . . 0
...

...
. . .

...

0 0 . . .
JNS (ω)

MNS

 f(s) (4.95)

while K̂ goes from a 2× 2 symmetrical matrix to a NS ×NS symmetrical matrix where

the component Kij represents the internal interaction between the i-th and the j-th

component.

4.4 A Few Examples

General Harmonic Coupling

Considering a system with NS degrees of freedom with same masses (M1 = M2 = ... =

MNS = M), whose coupling with each other and the ”ground” can be represented by K̂,

all of which are also equally coupled to an individual bath, also with identical frequencies,

the Langevin vectorial equation would read{(
d2

dt2
+ Γ

d

dt

)
Î + K̂

}
q = ξ. (4.96)

We have the freedom to perform any sort of linear transformation in q in order to

diagonalize K̂. Consider the eigenvector basis vi where

K̂vi = kivi, (4.97)

were ki is the eigenvalue associated with the eigenvector vi. The Langevin equation,

expressed in this basis becomes the system{
d2

dt2
+ Γ

d

dt
+ ki

}
q = ξ, (4.98)

with NS independent equations, the eigenvector basis uncouples the Langevin equations.

Noting that k̂ represents the harmonic interactions between the system particles,

we can conclude that ki ≥ 0. Let us consider the possibility that some eigenvalues can

be zero, thus describing free particles, and define the degeneracy of the the eigenvalue

as NF .
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In this basis we can write the complete Hamiltonian as a sum of NS independent

Hamiltonians:

H =

NS∑
m=1

H(m) (4.99)

H(m) =
∞∑
n

p(m)
n

2

2mn
+
mnω

2
n

2

(
x(m)
n − cn

mnω2
n

v2
m

)2
+

P (m)2

2M
+
km
2
v2
m,(4.100)

where we use m and (m) to label the m-th degree of system freedom. Using this expres-

sion for the Hamiltonian, we obtain that the partition functions

ZS+B = Tr exp(−βH) = Tr exp(−β
NS∑
m=1

H(m)) = Tr

NS∏
m=1

exp(−βH(m)) =

=

NS∏
m=1

Tr(m) exp(−βH(m)), (4.101)

ZB = TrB exp(−βHB) =

NS∏
m=1

TrB,(m) exp(−βHB,(m)), (4.102)

which will lead, using (2.39) and (2.40), to the ratio:

Z =

NS∏
m=1

Z(m)

ZB,(m)
=

NF∏
m=1

{
L

~

√(
2πM

β

) ∞∏
n=1

νn
νn + γ̂(νn)

}
×

×
NS−NF∏
m=1

{
1

~βkm

∞∏
n=1

ν2
n

ν2
n + νnγ̂(νn) + k2

m

}
. (4.103)

As an example, let us look at a system with two degrees of freedom where M1 = M2

and Ω1 = Ω2 = 0 for the Drude bath. Considering K̃,

K̃ =

(
K −K
−K K

)
, (4.104)

the basis of eigenvectors is:

|0〉 =
1√
2

(
1

1

)
, |2K〉 =

1√
2

(
1

−1

)
, (4.105)

with their respective eigenvalues, the center of mass coordinate is a free particle (eigen-

value 0), and the relative motion coordinate is an harmonic oscillator of frequency
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Ω0 =
√

2KM (eigenvalue 2K). The partition function becomes:

Z =

{
L

~

√(
2πM

β

) ∞∏
n=1

νn
νn + γ̂(νn)

}
×

×
{

1

~βΩ0

∞∏
n=1

ν2
n

ν2
n + νnγ̂(νn) + Ω2

0

}
. (4.106)

Using our findings in chapter 2, we can obtain the specific heat as:

C

kB
=
C1

kB
+
C2

kB
, (4.107)

where C1(T ) and C2(T ) are defined as (2.62) and (2.68) respectively. Only for low values

of temperature we may have that C1 can become negative, there fore let us use the series

expansions in (2.52) and (2.107) to obtain that:

C

kB
≈ π

3γ̂(0)Ω2
0

(
γ̂2(0) + Ω2

0

(
1 + γ̂′(0)

))(kBT
~

)
+O(T 3), (4.108)

which in the Drude bath becomes

C

kB
≈ π

3γΩ2
0

(
γ2 + Ω2

0

(
1− γ/ωD

))(kBT
~

)
+O(T 3). (4.109)

In order to have negative specific heat, we must have that

γ + Ω2
0

(
1− γ

ωD

)
< 0→ ωDγ

2 + ωDΩ2
0 − Ω2

0γ < 0→ ωD <
Ω2

0γ

γ2 + Ω2
0

. (4.110)

Figure 4.6 illustrates a few examples.

The N-Dimensional Problem

Let us imagine a particle in an N dimensional space under the influence of a potential

V (~q), where ~q is the particles position. The system Hamiltonian is written as:

HS =
1

M
~P ~P + V (~q), (4.111)

which will lead us to the equations of motion:

~̈q = −~∇V (~q), (4.112)

where ~∇ is the gradient in N dimensions.
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Figure 4.6: A few examples of specific heat where we have fixed ωD = 0.1γ and
allowed Ω0 to vary.

In order to express dissipation, we will couple this system with a bath of oscillators

described by the Hamiltonian

HB =
∞∑
n=1

{
1

m
~pn~pn +

mω2
n

2
~xn~xn

}
, (4.113)

using the interaction Hamiltonian:

HSB =
∞∑
n=1

−cn~xn~q +

∞∑
n=1

c2
n

2mnω2
n

~q~q. (4.114)

The parallel becomes quite clear: the problem of a single degree of freedom in a N -

dimensional space is equivalent to N degrees of freedom in one dimensional. Also note

that this scenarios naturally satisfies all the restrictions imposed in this chapter (Mi =

M , ω
(i)
n = ωn,...).

A good example is to consider the Landau Diamagnetism [10, 12], where we an

electron of mass m placed in a magnetic field ~B = Bẑ with an additional two dimensional

harmonic oscillator of frequency ω0. The system Hamiltonian is written as:

HS =
1

m

[(
px −

e

2c
yB
)2

+
(
py +

e

2c
xB
)2
]

+mω2
0

(
x2 + y2

)
. (4.115)
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We know from textbooks that the magnetic part of the system Hamiltonian will lead to

the Lorentz force:

~̈q = −ω2
0~q −

e

mc

(
~̇q × ~B

)
, (4.116)

that we can expand to: (
q̈x

q̈y

)
+ ωc

(
q̇y

−q̇x

)
+ ω2

0

(
qx

qy

)
= 0, (4.117)

where ωc = eB/mc. This type of internal coupling is different than the one we analysed

before since it couples the velocities. The internal interaction is written as:(
ω2

0 ωc
d
dt

−ωc d
dt ω2

0

)
~q = K̂~q, (4.118)

we can replace K̂ in equation (4.96):{(
d2

dt2
+ Γ

d

dt

)
Î +

(
ω2

0 ωc
d
dt

−ωc d
dt ω2

0

)}
~q = ξ. (4.119)

Note that we are using the arrow to represent vectors instead of the bold notation we have

used throughout this chapter. We are doing this simply to differentiate when the vector

is simply an abstract quantity, the bold notation, and when it actually has a physical

representation, the arrow notation that here denotes the position of the electron.

It is possible to diagonalize K̂ in the basis:

q̄1 =
qy + iqx√

2
, q̄2 =

qy − iqx√
2

(4.120)

leading us to the equation:{(
1 0

0 1

)
d2

dt2
+

(
Γeff 0

0 Γ∗eff

)
+ ω2

0

(
1 0

0 1

)}(
q̄1

q̄2

)
= ξ, (4.121)

where:

Γefff(t) =

∫ t

0
dsγeff(t− s)f(s), (4.122)

and:

γ̂eff(z) = γ̂(z) + iωc. (4.123)
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Replacing these results in (4.106) we obtain the partition function ratio:

Z =

(
1

β~ω0

)2 ∞∏
n=1

ν2
n

ν2
n + νnγ̂eff(νn) + ω2

0

∞∏
n′=1

ν2
n′

ν2
n′ + νn′ γ̂

∗
eff(νn′) + ω2

0

= (4.124)

=

(
1

β~ω0

)2 ∞∏
n=1

ν4
n

(ν2
n + γ̂(νn)νn + ω2

0)2 + ω2
cν

2
n

, (4.125)

which is the same one obtained in [10, 12].

4.5 Final Remarks

One of our motivations for this chapter was to understand how the internal coupling

would affect the specific heat of our system. We managed to solve the oscillator ring

from Chapter 3, using our interaction Hamiltonian, to a wider range of couplings.

Another motivation was to provide an alternative model, where the system degrees

of freedom would be coupled to their own individual baths. And unlike in the single

bath model, here we don’t have to impose any sort of restrictions upon K̂, but are still

forced to impose all previous restrictions.

The coupled Langevin equations of systems with several interacting degrees of free-

dom, although being very compactly represented using vectorial notation, introduces us

to several new problems. Whether we decide to use a single bath or several bath, the

problem of diagonalizing (4.31) is not trivial. This doesn’t mean that the partition func-

tion ratio can only be obtained for the very restricted conditions we discussed here. To

obtain the reduced partition function would require a direct calculation using techniques

like the path integral, which would be out of the scope of this dissertation.
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Conclusions

Our main motivation in this dissertation was to understand the model presented by

H. Hasegawa [13](NS +NB), more specifically, understand how its coupling mechanism

works in order to explain the different results when compared to the Caldeira-Leggett

model, as implemented, for instance, by G.-L. Ingold et al.

The comparison using minimal models in Chapter 3 lead us to conclude that the

coupling with the environment in both models was intrinsically different, since the NS +

NB model would renormalize the potential of the system and bath. Even though using

the minimal model has helped clarify the results, we need more research to understand

exactly how the renormalizing terms in the NS +NB model would behave for a general

bath (nonidentical frequencies), and which physical reality it describes. We also need to

investigate if the definition of the partition function ratio (1.1) (the starting point of our

calculations) will leads us to results with physical meaning when we allow the coupling

to shift the bath frequencies.

It is also important to note that we are not claiming that having a potential renor-

malization is a ”problem” that could lead to wrong results. There are some occasions,

like the Lamb Shift [15] where the interaction with the environment does cause a po-

tential renormalization on the system potential. However, we must have our objectives

clear: the Caldeira-Leggett model, as we have defined, aims to analyse systems where

the environment does not renormalize the potential of (2.13). In the NS + NB model

the physical meaning of the potential renormalization is not clear.

In Chapter 4 we have proposed two new models for systems with interacting de-

grees of freedom. They where defined with a familiar coupling Hamiltonian, inspired

directly by the Caldeira-Legget model, in order to prevent problems with the potential

renormalization. Many new problems appeared, the Langevin equations (4.31) could be
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solved using methods like the Laplace transform or the Fourier transform. However, in

order to obtain the reduced partition function it would be necessary to perform all the

calculations, using path-integrals for instance. Since this was out of the scope of this

dissertation, we cannot be sure on the restrictions necessary for it to be analytically

solvable or even on how the final result would behave. This is an interesting direction

that could be researched in the future. We only solved for restricted systems such that

(4.31) could be diagonalized.

The applications of our single bath model are very intuitive since all we have done is

assume that the system is composed of several oscillators that interact in a non-negligible

way, a situation very simple to picture in nature. It can also be applied, for instance, to

systems with several particles where the interaction with the environment does not affect

the system potential. In the case of the several bath model, besides its instinctive use for

problems with more dimensions, could be used to express, for instance, the vibrations

of an internal degree of freedom between atoms in a molecule.1

Another route for research, besides the one we took for systems with interacting

oscillators, is to consider a general linear environment with spectral density like (2.21),

i.e.,

J(ω) = Mγωs
ω2p−s+1
c

(ω2
c + ω2)p

for s 6= 1. It has been discovered that the Ohmic damping stands as a the very particular

case where the specific heat vanishes for T = 0 [16]. Regarding the Caldeira-Leggett

model, it still stands as a useful tool for describing a variety of situations, e.g., ranging

from the Kondo superconductor [18] to transport in proteins [17]. This, combined with

the growing set of techniques, leads us to expect many other interesting results.

1G.-L Ingold, private conversations.



Appendix A

General Demonstrations

Several calculations that did not add to the physical interpretation of the problem but

where non-trivial and required demonstrations where moved here to avoid crowding the

main text.

A.1 Equivalent Roots

This section contains a demonstration that the roots of the polynomial obtained from

the partition function ratio:

p1(x) = x3 + ωDx
2 +

(
γωD + Ω2

0

)
x+ Ω2

0ωD = (x+ x1)(x+ x2)(x+ x3), (A.1)

and the polynomial obtained from the denominator of the change in density of eigen-

frequencies:

p2(x) = x6 +
(
ω2
D − 2γωD − 2Ω2

0

)
x4 +

(
γ2ω

2
D + 2γΩDΩ2

0 − 2Ω2
DΩ2

0 + Ω4
0

)
x2 +

+ ω2
DΩ4

0 = (x2 +X2
1 )(x2 +X2

2 )(x2 +X2
3 ), (A.2)

are equivalent to:

x1 = X1 = ω1,

x2 = X2 = ω2, (A.3)

x3 = X3 = ω3.

For simplicity, since the roots are quite big, given that this is a third degree polynomial,

we are going to take an alternative route. Assuming last affirmation to be true, let’s
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take:

p1(ix) = (ix+ ω1)(ix+ ω2)(ix+ ω3) = i3(x− iω1)(x− iω2)(x− iω3), (A.4)

p1(−ix) = (−ix+ ω1)(−ix+ ω2)(−ix+ ω3) = i−3(x+ iω1)(x+ iω2)(x+ iω3), (A.5)

and from that we obtain:

p1(ix)p1(−ix) = (x2 + ω2
1)(x2 + ω2

2)(x2 + ω2
3) = p2(x). (A.6)

Therefore, we can bypass the long algebraic calculations that would be required by

demonstrating that:

p1(ix)p1(−ix) = p2(x). (A.7)

With the latter being easly demonstraded using the definition for p1(x) and p2(x):

p1(ix) = − ix3 − ω2
Dx

2 +
(
ωD + Ω2

0

)
ix+ Ω2

0ωD, (A.8)

p1(−ix) = ix3 − ω2
Dx

2 +
(
ωD + Ω2

0

)
ix+ Ω2

0ωD, (A.9)

so that

p1(ix)p1(−ix) = x6 +
(
ω2
D − 2γωD − 2Ω2

0

)
x4 +

(
γ2ω

2
D + 2γΩDΩ2

0−
− 2Ω2

DΩ2
0 + Ω4

0

)
x2 + ω2

DΩ4
0 = p2(x). (A.10)

Q.E.D.

A.2 Describing the density as Lorentzians

Our objective is to prove that the change in the density of eigen-frequencies for the

Drude bath can be written as a sum of Lorentzians. For the free particle the calcula-

tions are very simple, but in the case of the harmonic potential becomes impractical to

demonstrate using the roots themselves, since their expressions are very long. What we

are going to do is use proprieties obtained in Appendix A.1 to demonstrate.

We also decided to take the backwards road and from the Lorentzians prove that

you will obtain the polynomials associated with the change in density:
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ω1

x2 + ω2
1

+
ω2

x2 + ω2
2

+
ω3

x2 + ω2
3

=

1

2

{
1

ω1 + ix
+

1

ω1 − ix
+

1

ω2 + ix
+

1

ω2 − ix
+

1

ω3 + ix
+

1

ω3 − ix

}
= (A.11)

1

2

{
1

ω1 + ix
+

1

ω2 + ix
+

1

ω3 + ix
+

1

ω1 − ix
+

1

ω2 − ix
+

1

ω3 − ix

}

1

ω1 + ix
+

1

ω2 + ix
+

1

ω3 + ix
=

(ω1 + ix)(ω2 + ix) + (ω1 + ix)(ω3 + ix) + (ω2 + ix)(ω3 + ix)

(ω1 + ix)(ω2 + ix)(ω3 + ix)
(A.12)

1

ω1 − ix
+

1

ω2 − ix
+

1

ω3 − ix
=

(ω1 − ix)(ω2 − ix) + (ω1 − ix)(ω3 − ix) + (ω2 − ix)(ω3 − ix)

(ω1 − ix)(ω2 − ix)(ω3 − ix)
(A.13)

Using:

p1(x) = (ω1 + x)(ω2 + x)(ω3 + x), (A.14)

p1(x) = x3 + (ω1 + ω2 + ω3)x2 + (ω1ω2 + ω1ω3 + ω2ω3)x+ (ω1ω2ω3), (A.15)

one arrives at:

g1(x) = (ω1 + x)(ω2 + x) + (ω1 + x)(ω3 + x) + (ω2 + x)(ω3 + x), (A.16)

q1(x) = 3x2 + 2(ω1 + ω2 + ω3)x+ (ω1ω2 + ω1ω3 + ω2ω3). (A.17)

Comparing p1(x) with its initial definition (A.1) in Appendix A.1 we obtain that:

ω1 + ω2 + ω3 = ωD, (A.18)

ω1ω2 + ω1ω3 + ω2ω3 = ωD + Ω2
0, (A.19)

ω1ω2ω3 = ωDΩ2
0, (A.20)

and replace on g1(x):

g1(x) = 3x2 + 2ωDx+ ωD + Ω2
0. (A.21)

The sum of Lorentzians becomes:

1

2

{
g1(ix)

p1(ix)
+
g1(−ix)

p1(−ix)

}
=

1

2

{
g1(ix)p1(−ix) + g1(−ix)p1(ix)

p1(ix)p1(−ix)

}
. (A.22)
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And since we have demonstrated in Appendix A.1 that p1(ix)p1(−ix) is the denominator,

we only need to prove that the numerators are the same:

g1(ix)p1(−ix) + g1(−ix)p1(ix)

2
= ωDx

4 + (ω2
D − 2ωDΩ2

0)x2 + ω2
DΩ2

0 + ωDΩ4
0. (A.23)

Q.E.D.

A.3 Calculating Equation (2.116)

We only need to solve for one Lorentzian:

C1 =

∫ ∞
0

ω1

ω2 + ω2
1

kB

(
~βω

2 sinh ~βω
2

)2

dω. (A.24)

To simplify the problem lets change the variables to:

y =
~βω

2
; dy =

~β
2

dω (A.25)

and also, since we are integrating an even function lets also change the limits to the

complete real line. That will allow us to use the residue theorem later on.

C1 =
kb
2

∫ ∞
−∞

1

1 +
(

2
~βω1

y
)2

(
2

~βω1

)(
y

sinh y

)2

dy, (A.26)

for simplicity:

C1 =
kb
2

∫ ∞
−∞

a

1 + a2y2

(
y

sinh y

)2

dy, (A.27)

a =

(
2

~βω1

)
. (A.28)

The expression to be integrated has poles of order one at:

1 + a2y2 0 → y = ± i

a
, (A.29)

(A.30)

and of order two at:

sinh(y) = 0 → y = iπn, (A.31)

where n is an integer number. Note that because of the term y2 on the numerator, n = 0

is not a pole.
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Figure A.1: A representation of the contours and the poles.

If we allow for our variable to become complex, y → z, we can use residue theorem

to calculate the integral, we define our contours as shown in figure A.1. The integral

∫
C1

f(z)dz +

∫
C2

f(z)dz = 2πi
∑
i

Res(f, zi), (A.32)

where C1 is the real line (−∞,∞) and C2 is a semi-circle of radius R, enclosing the

upper side of the complex plane (positive imaginary numbers). Taking the limit where

R→∞, the integral over C1 becomes our objective and over C2 is null,∫
C2

f(z)dz =

∫ π

0
lim
R→∞

f(Reiθ)iθReiθdθ = 0. (A.33)

Calculating the residues:

Res

(
f,

i

a

)
= lim

z→i/a
f(z)

(
z − i

a

)
= − i

2a2 sin2(1/a)
, (A.34)

Res (f, iπn) = lim
z→iπn

d

dz

(
f(z)(z − iπn)2

)
= 2i

aπn

(a2π2n2 − 1)2 , (A.35)

we rewrite the last expression as:

2iaπn

(a2π2n2 − 1)2 =
i

2

1

(aπn− 1)2
− i

2

1

(aπn+ 1)2
=

i

2a2π2

(
1

n− 1
aπ

− 1

n+ 1
aπ

)
.(A.36)

Making use of the Trigamma function:

ψ′(z) =
∞∑
n=0

1

(z + n)2
, (A.37)
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and noting that we are starting from n = 1 rather than n = 0 we get:

∞∑
n=1

1

n+ 1
aπ

= ψ′(1 + 1/aπ), (A.38)

∞∑
n=1

1

n− 1
aπ

= ψ′(1− 1/aπ). (A.39)

Replacing:

∞∑
n=1

Res(f, iπn) =
i(ψ′(1− 1/aπ)− ψ′(1 + 1/aπ))

2a2π2
. (A.40)

Using the recurrence:

ψ′(1 + z) = ψ′(z)− 1

z2
, (A.41)

and the reflection propriety:

ψ′(1− z) = − ψ′(z) +
π2

sin2(πz)
, (A.42)

for the Trigamma function, the sum becomes:

∞∑
n=1

Res(f, iπn) = i

{
1

2a2 sin2(1/a)
+

1

2
− ψ′(1/aπ)

a2π2

}
. (A.43)

We can conclude that:

∑
i

Res(f, zi) = 2πi

(
Res (f, i/a) +

∞∑
n=1

Res(f, iπn)

)
= 2

ψ′(1/aπ)

a2π2
− 1. (A.44)

Replacing in the original expression, remembering that we need to divide the result by

2 since we are taking only positive values of ω, and reversing the changes in variables

we obtain:

∫ ∞
0

ω1

ω2 + ω2
1

kB

(
~βω

2 sinh ~βω
2

)2

dω =

(
~βω1

2π

)2

ψ′
(
~βω1

2π

)
− 1

2
, (A.45)

therefore:

C

kb
=

∫ ∞
0

{
ω1

ω2 + ω2
1

+
ω2

ω2 + ω2
2

+
ω3

ω2 + ω2
3

− ωD
ω2 + ω2

D

}(
~βω

2 sinh ~βω
2

)2

dω =

=

(
~βω1

2π

)
ψ′
(
~βω1

2π

)
+

(
~βω2

2π

)
ψ′
(
~βω2

2π

)
+

(
~βω3

2π

)
ψ′
(
~βω3

2π

)
−

−
(
~βωD

2π

)
ψ′
(
~βωD

2π

)
− 1. (A.46)



Appendix A. General Demonstrations 82

A.4 Specific Heat of the Harmonic Oscillator

We wish to prove that C2 is always positive:

∫ ∞
0

{
ω̂1

ω̂2
1 + ω̂2

+
ω̂2

ω̂2
2 + ω̂2

+
ω̂3

ω̂2
3 + ω̂2

− ω̂D
ω̂2
D + ω̂2

} ω̂
2T̂

sinh
(
ω̂

2T̂

)
2

dω̂ > 0, (A.47)

where ω̂ = ω/γ and T̂ = kBT/~γ. Obviously, if we can show that:

∫ ∞
0

{
ω̂i

ω̂2
i + ω̂2

− ω̂D
ω̂2
D + ω̂2

} ω̂
2T̂

sinh
(
ω̂

2T̂

)
2

dω̂ > 0, (A.48)

its true, then (A.47) is also true. We choose ωi to be a real frequency; if ω1 and ω2 are

complex, ωi = ω3.

Changing the variables to xi = ω̂/ω̂i and yi = ω̂i/2T̂ , the integral becomes:

∫ ∞
0

ω̂i
ω̂2
i + ω̂2

 ω̂
2T̂

sinh
(
ω̂

2T̂

)
2

dω̂ =

∫ ∞
0

1

1 + x2
i

(
xiyi

sinh(xiyi)

)2

dxi, (A.49)

we can do the same for ωD term. Since the integration limits are the same, we can write

xi and xD as the same variable:

∫ ∞
0

{
ω̂i

ω̂2
i + ω̂2

− ω̂D
ω̂2
D + ω̂2

} ω̂
2T̂

sinh
(
ω̂

2T̂

)
2

dω̂ =

∫ ∞
0

1

1 + x2

{(
xyi

sinh(xyi)

)2

−(A.50)

−
(

xyD
sinh(xyD)

)2
}

dx. (A.51)

Note that the derivative of the function
(

xyi
sinh(xyi)

)2
,

d

dx

(
xyi

sinh(xyi)

)2

= yi

(
xyi

sinh(xyi)

)
(1− x coth(xyi)), (A.52)

is negative for all x > 0, meaning that the function values always decreases as x increases

for all positive x. We conclude that in order to make the integral always positive we

must have that: (
xyi

sinh(xyi)

)2

>

(
xyD

sinh(xyD)

)2

, (A.53)



Appendix A. General Demonstrations 83

which is true if, and only if:

xyi < xyD → yi < yD → ωi < ωD. (A.54)

We only need to prove that at least one real frequency is smaller than ωD to finish the

demonstration. Using (A.1):

p1(x) = x3 + ωDx
2 +

(
Ω2

0 + γωD
)
x+ ωDΩ2

0 = (x+ ω1)(x+ ω2)(x+ ω3), (A.55)

we have that:

p1(0) = ωDΩ2
0 and p1(−ωD) = −γω2

D. (A.56)

Since we switch values from negative to positive we conclude that in the interval (−ωD, 0)

there is a −ωi such that ωi < ωD.

Q.E.D.

A.5 Sign of G′(ω)

In this appendix we shall obtain the values of ωD and Ω0 that allow G′(ω) to be negative:

G′(ω) < 0→ 3ω4(ω2
D − ωDγ − Ω2

0)ω2ω2
DΩ2

0 < 0, (A.57)

changing the variables ω2 = x gives us the polynomial:

x2 + (ω2
D − Ω2

0 − γωD)x+ ω2
DΩ2

0 < 0, (A.58)

with roots:

x1,2 =
1

6

(
Ω2

0 + γωD − ω2
D ±

√
(Ω2

0 + γωD − ω2
D)2 − 12ω2

DΩ2
0

)
(A.59)

Since the concavity is upwards, the only way to obtain negative values for the specific

heat is to have two real roots. Also, since x = ω2, both roots must be positive. There

restrictions are written as:

(Ω2
0 + γωD − ω2

D)2 > 12ω2
DΩ2

0, (A.60)

Ω2
0 + γωD − ω2

D > 0. (A.61)
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Restriction (A.60) yields two equations:

Ω2
0 + γωD − ω2

D > 2
√

3ωDΩ0, (A.62)

ω2
D − Ω2

0 − γωD > 2
√

3ωDΩ0. (A.63)

We can use (A.61) to get rid of (A.63) leaving us with (A.62), a hyperbola centred at

ωD =
√

3/8 and Ω0 = 1/8. If translated to the origin and rotated 30 degrees anti-

clockwise on the plane ωDΩ0, the hyperbola becomes:

32Ω′0
2 − 32ωD

2 = 1. (A.64)
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Figure A.2: The coloured region represents the points that allows negative values of
G′(ω).The red line binding the grey region is given by: Ω2
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