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Clock signal distribution in telecommunication commercial systems usually adopts a
master-slave architecture, with a precise time basis generator as a master and
phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs
are adopted due to their simplicity and stability. Nevertheless, in some applications
better transient responses are necessary and, consequently, greater order PLLs need
to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a
master-slave network with third-order PLLs is analyzed and conditions for the stability
of the synchronous state are derived, providing design constraints for the node param-
eters, in order to guarantee stability and reachability of the synchronous state for the
whole network. Numerical simulations are carried out in order to confirm the analyt-
ical results.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Synchronization networks assure the correct temporal order of information processing in communication systems, com-
putation and control [1,2]. Many commercial systems adopt the One-way Master-slave (OWMS) synchronization strategy
due to its reliable behavior, construction facility and low cost [1–3].

In this kind of arrangement, the master node (node 1) generates a precise clock signal. This signal is sent to the first slave
node (node 2) which extracts the time basis and sends it to the following node. This process is repeated up to the last node
(node N) [2].

Each slave node is built with a PLL that is a closed loop composed of a phase-detector (PD), a low-pass filter (F) and a
voltage controlled oscillator (VCO). The PLLs are described by a differential equation of order P þ 1, considering that the order
of the filter is P [2,4].

Therefore, the PLL plays an important role in the performance of the whole distribution network as the individual node
errors can be accumulated and transmitted to the sequential nodes [5].

Stable operation with a second-order PLL is simple and reliable because its linearized model presents open loop trans-
fer function with two poles and one zero [6]. A pole creates a phase shift of �90� at the higher frequencies, and the zero
creates a phase shift of +90�. If the poles and zeros are properly located, the overall phase shift never comes close to
�180�.
. All rights reserved.
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In spite of second-order PLL qualities, there are some situations in which their performance is spoiled by double-fre-
quency distortions due to the nonlinear operation of the PD [7,8]. This effect appears as an oscillation around the synchro-
nous state in the slave nodes of a OWMS clock distribution system [9,10]. Additionally, the sensitivity to drifts in the master
clock limits the network quality figures [11]. Another important point is that the frequency jumps inherent to the second-
order loop usually cannot be accepted and additional filtering is necessary [12].

To minimize these double-frequency oscillations, drifts and jumps, third-order PLLs are used to improve the reachability
of the synchronous state. Most actual PLLs contain additional poles at higher frequency deliberately inserted to suppress
higher-frequency disturbances emanating from the phase detector [6] (p. 25).

In spite of the relevance of the problem, it does not appear a lot in the literature [12]. An important paper about third-
order PLLs is [13], developing a model to be applied to complex systems that can be composed of interconnected PLLs is
being used as a good reference.

Another seminal work about higher-order PLLs is [14] with an extensive analysis of stability and reachability of the syn-
chronous state in the single node case, for practical PLL integrated circuits and it is shown that they can provide lesser acqui-
sition times [15]. On the other hand, bifurcations appear implying that filter parameters need to be chosen in a very accurate
way [16–18].

Here, a model for an OWMS clock distribution system is developed, considering third-order PLLs, equipped with second-
order filters, as implemented in the most commercial components [19]. By using this model, a condition for stability of the
synchronous state relating the filter parameters is derived, being a necessary condition for the lock-in range of the network.
Numerical simulations are carried out in order to confirm the analytical results and to provide a better understanding of the
network behavior.

In Section 2, an analytical model for one-way master-slave networks, following the work presented in [18] and extending
it for third-order nodes. In Section 3, conditions for the synchronous stability of the whole network modeled in Section 2 are
derived.

Results of Section 3 are the core of this contribution, with Eqs. (27) and (28) providing a design criterion for the node
parameters, allowing how to choose them, in order to guarantee the stability of the synchronous state of the whole network,
complementing the results presented in [15–17] for isolated nodes.

Section 4 presents numerical simulations confirming the analytical reasoning presented in Section 3. Section 5 touches
the reachability problem showing that, under conditions of Eqs. (27) and (28), the synchronous state in always reachable,
even if some cycle-slip occurs. A summary of conclusions is presented in Section 6.

2. One-Way Master-Slave architecture model

In this section, an analytical model for the OWMS architecture is developed, based on the model of a single PLL. The mas-
ter node (1) is considered to be a precise time basis generator and the slave nodes (2 to N) are third-order PLLs [2,6].

In each slave node, the VCO local phase, ho, is controlled by the input phase, hi, that comes from the master for node 2 and
from node n� 1 for each node n > 2.

The master clock (node 1) is supposed to be a stable and accurate oscillator given by:
v ð1Þo ðtÞ ¼ v ð1Þo cosðxMt þ hð1Þo ðtÞÞ; ð1Þ
where vo is the amplitude of the master node output, xM is the free-running angular frequency, and hð1Þo ðtÞ is the reference
phase signal.

At a slave n-node ðn P 2Þ, the input signal v ðnÞi ðtÞ and the VCO output v ðnÞo ðtÞ are supposed to have the same free running
frequency xM and their expressions, as each node generates a phase shift of ðn� 1Þ p2 [2,3,6,19], are given by:
v ðnÞi ðtÞ ¼ v ðn�1Þ
o sin xMt þ hðn�1Þ

o ðtÞ þ ðn� 1Þp
2

� �
; ð2Þ

v ðnÞo ðtÞ ¼ v ðnÞo cos xMt þ hðnÞo ðtÞ þ ðn� 1Þp
2

� �
; ð3Þ
with vo representing the amplitude of the signals.
The filter is considered to be stable linear low-pass, with transfer function FðsÞ, as used in the main commercial integrated

PLL [19], given by:
FðnÞðsÞ ¼ aðnÞ1 sþ aðnÞ0

bðnÞ2 s2 þ bðnÞ1 sþ bðnÞ0

: ð4Þ
Defining local phase error:
uðnÞðtÞ � hðn�1Þ
0 ðtÞ � hðnÞo ðtÞ; ð5Þ
the output of the PD is:
v ðnÞd ðtÞ ¼ v ðn�1Þ
o ðtÞv ðnÞo ðtÞ: ð6Þ
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After replacing Eqs. (2) and (3) into (6) and doing some algebra, the output of the PD is:
v ðnÞd ðtÞ ¼
GðnÞ

kðnÞo

sinðuðnÞðtÞÞ: ð7Þ
The global gain G of the node is given by:
GðnÞ ¼ kðnÞm kðnÞo v ðn�1Þ
o v ðnÞo

2
; ð8Þ
where km is the PD gain and ko, the VCO gain.
In Eq. (7), the double-frequency term was neglected because it is supposed to be filtered [6,9,10,19].
The output phase hðnÞo of the VCO is controlled according to the relation:
_hðnÞo ðtÞ ¼ kðnÞo v ðnÞc ðtÞ; ð9Þ
where v ðnÞc is given by:
v ðnÞc ðtÞ ¼
Z t

0
f ðnÞðt � sÞv ðnÞd ðsÞds; ð10Þ
resulting, after replacing (10) into (9):
_hðnÞo ðtÞ ¼ kðnÞo

Z t

0
f ðnÞðt � sÞv ðnÞd ðsÞds: ð11Þ
Considering the former relations and applying the convolution theorem [20] in Eq. (11), the dynamics of the slave nodes is
according to:
bðnÞ2 uv ðnÞðtÞ þ bðnÞ1 €uðnÞðtÞ þ bðnÞ0 _uðnÞðtÞ þ aðnÞ1 GðnÞ _uðnÞðtÞ cosðuðnÞðtÞÞ þ aðnÞ0 GðnÞ sin uðnÞðtÞ
� �

¼ bðnÞ2 h
v
ðn�1Þ
o ðtÞ þ bðnÞ1

€hðn�1Þ
o ðtÞ þ bðnÞ0

_hðn�1Þ
o ðtÞ; ð12Þ
for n ¼ 2; . . . ;N.
Eq. (12) relates the phase error uðnÞðtÞ to the phase of the input signal hðn�1Þ

o ðtÞ, for any node n P 2 of the network and can
be transformed in state equations defining:
xðmÞ1 ¼ uðnÞðtÞ; ð13Þ
xðmÞ2 ¼ _uðnÞðtÞ; ð14Þ
xðmÞ3 ¼ €uðnÞðtÞ; ð15Þ
therefore,
_xðmÞ1 ¼ xðmÞ2

_xðmÞ2 ¼ xðmÞ3

_xðmÞ3 ¼ �lðmÞb1 xðmÞ3 � lðmÞb0 xðmÞ2 � lðmÞa1 xðmÞ2 cos xðmÞ1

� �

� lðmÞa0 sinðxðmÞ1 Þ

ð16Þ
for m ¼ n� 1, and
lðmÞa0 ¼
aðnÞ0 GðnÞ

bðnÞ2

; ð17Þ

lðmÞa1 ¼
aðnÞ1 GðnÞ

bðnÞ2

; ð18Þ

lðmÞb0 ¼
bðnÞ0

bðnÞ2

; ð19Þ

lðmÞb1 ¼
bðnÞ1

bðnÞ2

: ð20Þ
Expression (16) describes the dynamics of the phase adjustments for a slave n-node in a OWMS network, depending on the
parameters of the filter and on the global gain of the node.
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Defining that the network reaches a synchronous state when all local phase errors, uðnÞðtÞ, reach constant values, these
synchronous states correspond to the equilibrium states of Eq. (16). In the next section, synchronous states and conditions
for their stability are presented.
3. OWMS network synchronous state stability

In this section, the stability of the synchronous state is studied, i.e., if the reachable synchronous state is robust under
small perturbations. The analysis is performed considering the first term in the Taylor’s series around the equilibrium points,
which are hyperbolic [21].

The equilibrium points of the state equations in (16) are:
x�ðmÞ ¼ kp 0 0½ �T ð21Þ
where k ¼ 0;�1;�2; . . ., and m ¼ 1;2; . . . ;N � 1, then:
x� ¼ x�ð1ÞT x�ð2ÞT . . . x�ðN�1ÞT
� �T

: ð22Þ
The equilibrium points for k ¼ 1;3;5; . . . are unstable for any parameter combination [16,17,15].
Consequently, the reachable synchronous states correspond to even values of k and their stability conditions can be stud-

ied by determining the eigenvalues of the Jacobian matrix of Eq. (23), A, calculated at the equilibrium point x�, with k ¼ 0.
Therefore,
A ¼

Að1Þ 0 � � � 0
0 Að2Þ � � � 0
..
. ..

. . .
. ..

.

0 0 . . . AðN�1Þ

2
66664

3
77775; ð23Þ
where
AðmÞ ¼
0 1 0
0 0 1
�lðmÞa0 � lðmÞb0 þ lðmÞa1

� �
�lðmÞb1

2
64

3
75: ð24Þ
The characteristic polynomial of the matrix A is the product:
PðkÞ ¼
YN�1

m¼1

PðmÞðkÞ; ð25Þ
with
PðmÞðkÞ ¼ k3 þ lðmÞb1 k2 þ lðmÞb0 þ lðmÞa1

� �
kþ lðmÞa0 : ð26Þ
Eqs. (25) and (26) imply that the reachable synchronous states of the OWMS network are locally asymptotically stable if, and
only if, the synchronous states of each node are locally asymptotically stable.

The signals of the real parts of the roots of Eqs. (25) and (26) can be determined applying the Routh–Hurwitz criterion
[22] as follows:
As all the coefficients of the characteristic equation are positive real numbers in possible physical situations, all the roots
have negative real parts if:
lðmÞb1 lðmÞb0 þ lðmÞa1

� �
> lðmÞa0 : ð27Þ
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Replacing Eqs. (17)–(20) into (27) and doing some algebra:
GðnÞ <
bðnÞ0 bðnÞ1

aðnÞ0 bðnÞ2 � aðnÞ1 bðnÞ1

; ð28Þ
for n ¼ 2;3; . . . ;N, giving a superior limit to each node gain GðnÞ, depending on the filter transfer function coefficients.
Consequently, if the inequality in expression (28) is satisfied, the network reaches an asymptotically stable synchronous
state.

The conclusion concerning the loop gain is different if a particular case of the loop filter (Eq. (4)) is used. Considering, for
instance, aðnÞ0 ¼ 1; bðnÞ0 ¼ 0 and bðnÞ1 ¼ 1, the filter transfer function in Eq. (4) is then given by:
FðnÞðsÞ ¼ aðnÞ1 sþ 1

sðbðnÞ2 sþ 1Þ
; ð29Þ
combining a first order lead-lag with a pure integration.
Replacing the coefficients of Eq. (29) into the coefficients (Eqs. (17)–(20)) of the state space model (Eq. (16)), result:
lðmÞa0 ¼
GðnÞ

bðnÞ2

; ð30Þ

lðmÞa1 ¼
aðnÞ1 GðnÞ

bðnÞ2

; ð31Þ

lðmÞb0 ¼ 0; ð32Þ

lðmÞb1 ¼
1

bðnÞ2

: ð33Þ
By following the previous steps and replacing Eqs. (30)–(33) into (27), the roots of the characteristic polynomial (Eq. (26))
have negative real parts if:
aðnÞ1 > bðnÞ2 : ð34Þ
Consequently, if the filter of the loop combines a fist order lead-lag with a pure integration and expression (34) is satisfied,
the network reaches an asymptotically stable synchronous state. In this case, however, there is no superior limit for the loop
gain GðnÞ.
4. Numerical simulations

In order to confirm the analytical results, OWMS networks with a master and four slaves are simulated with built in Sim-
ulink blocks, using the ‘‘Ode45 Dormand-Prince” integration method [23]. The central angular frequency is normalized to
xM ¼ 1 rad=s.

Three different filters are considered:
FðnÞ1 ðsÞ ¼
sþ 2

s2 þ sþ 1
; ð35Þ

FðnÞ2 ðsÞ ¼
1:5sþ 1
sðsþ 1Þ ; ð36Þ
and
FðnÞ3 ðsÞ ¼
0:9sþ 1
sðsþ 1Þ : ð37Þ
According to expression (28), the network with filter F1 (Eq. (35)) reaches an asymptotically stable synchronous state if GðnÞ < 1.
The results for simulations with GðnÞ ¼ 0:5 and GðnÞ ¼ 2 are shown in Figs. 1 and 2, respectively. As expected, all the slave nodes
reach the synchronous state for GðnÞ ¼ 0:5 and, for GðnÞ ¼ 2, the synchronous states are unreachable for any node.

Results considering the filters described by (36) and (37) (with GðnÞ ¼ 0:5 in both cases) are shown in Figs. 3 and 4,
respectively.

In Fig. 3, the network nodes reach synchronous states, as expected, since the parameters of F2 satisfy inequality (34). For
F3, inequality (34) is not satisfied, and the synchronous states are unreachable in the state space.

For the same loop gain ðGðnÞ ¼ 0:5Þ and cut-off frequency of the filters ðxc ¼ 2 rad=sÞ, the network presents better tran-
sient response with filter F1 than with filter F2 (see Figs. 1 and 3).

However, as shown in the last section, using filters combining pure integration with a first order lead-lag imposes no
upper limit on the loop gain. This can be used to improve the transient response.
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Fig. 2. OWMS network simulation with F1 and GðnÞ ¼ 2.
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5. Reachability of the synchronous states

In Section 3, the problem of determining the local stability conditions of the synchronous state for OWMS networks with
third order PLLs was addressed. However, the search for global stability conditions is also important, since they are related to
the reachability of the synchronous states [24].

The study of the global stability conditions requires the explicit knowledge of a Lyapunov function [25,26]. Since there is
no straightforward method, the search for a Lyapunov function is frequently cumbersome.

A simpler goal is to observe how the trajectories behave in a bounded region of the state space, i.e., all the observed tra-
jectories having their origins in a fixed (thus arbitrarily large) bounded region. Here, this problem is approached numerically.

Since the equilibrium points of Eq. (16) are repeated periodically in the state space, with the same structural character-
istics [15–17], the region in the state space is chosen so as to include the origin. Then, the region is defined by the set:
RðmÞ ¼ xðmÞ1 xðmÞ2 xðmÞ3

h iT
j � 3p < xðmÞ1 < 3p;�3p < xðmÞ2 < 3p;�3p < xðmÞ3 < 3p

� 	
; ð38Þ
including three stable ð½�2p 0 0�T ; ½0 0 0�T ; ½2p 0 0�TÞ and two unstable ð½�p 0 0�T ; ½p 0 0�TÞ equilibrium points.
In Figs. 5 and 6, the state space plots of a single node, considering filters F1 (Eq. (35)) and F2 (Eq. (36)), respectively, are

shown. In both cases, the trajectories represented by the thicker black lines start near a stable equilibrium point and, over
time, the trajectories reach the synchronous states.
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Observing trajectories T1; T2 and T3 in Fig. 5, it can be seen that, although all of them start within R; T2 leaves R and does
not return (see Fig. 5(a)–(c)). The same occurs with trajectory T1 in Figs. 6(a)–(c).

However, it can be observed in trajectories T2 (Fig. 5(d)) and T1 (Fig. 6(d)) that the amplitude of the state variables x2 and
x3 decay with time. Then, the tajectories that leave R also reach the synchronous state, i.e., a stable equilibrium point; but, in
this case, outside R.

Only the two behaviors described above were observed in all the numerical simulations, which suggests that all the tra-
jectories within R reach a synchronous state. Moreover, since the equilibrium points of Eq. (16) are repeated periodically in
the state space, with the same structural characteristics, it also suggests that defining R so as to include all the possible val-
ues of x1 would not affect the conclusions.

6. Conclusion

In an OWMS clock distribution system with third order PLLs, if the filter has the transfer function given by Eq. (4), then
expression (28) states that there is a superior limit to the loop gain. On the other hand, if the loop filter combines a first order
lead-lag with a pure integration, as in Eq. (29), the loop gain has no superior limit. Moreover, expressions (28) and (34) deter-
mine the conditions for the existence of synchronous states in OWMS networks. Consequently, designing conditions for this
kind of clock distribution networks are well established, allowing how to choose node parameters, in order to have stable
and reachable synchronous state for the whole system.
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The numerical simulations presented in Section 5 suggest that all the trajectories within a bounded region R reach a syn-
chronous state, which give insights on the study of the synchronous state reachability.
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