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We investigate if theories yielding bouncing cosmological models also generate worm-
hole solutions. We show that two of them present sensible traversable static wormhole13

solutions, while for the third possibility such solutions are absent.
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1. Introduction

With the observation of the present acceleration of the Universe,1,2 it seems that19

fluids that violate the strong energy condition (SEC) must indeed exist in nature,3

and antigravitate. It is also speculated that such acceleration might also be driven21

by yet more exotic fluids, called phantom fields, which violate the weak energy

condition (WEC), and may cause a future Big-Rip singularity.4 These fluids can23

also be effectively obtained through nonminimal couplings between gravity and

other fields,5,6 quantum corrections,7–9 or nonstandard interactions among ordinary25

fields satisfying all the energy conditions.10

Such kind of fluids may also play a fundamental role in the early universe,27

either yielding an inflationary period,11–15 and avoiding the initial singularity as

in the bouncing models.16–20 Regarding the later possibility, it is also known that29

the violation of SEC may not be sufficient to produce a bounce in the past: some

period of WEC violation is also required if the spatial sections have no positive31

curvature.21

Fluids violating WEC are also necessary to obtain wormhole solutions,22 hence,33

in view of all those scenarios in which exotic sources are seriously taken into account

(the usual quantum instabilities which sometimes plague these sources are circum-35

vented by assuming that, in these cases, they should be considered as effective fluids,
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not fundamental fields), we can investigate in which of them traversable wormhole1

solutions can be obtained.

In the present paper we investigate the existence of wormhole solutions in theo-3

retical frameworks which produce bouncing cosmological models. The existence

and properties of these cosmological bounces have been studied in many papers5

(see Refs. 23–26), but it remains to be investigated if such theoretical frameworks

can produce wormhole solutions, which is a natural expectation to have due to the7

enormous parallel between bounces and wormholes (which are nothing but bounces

in space).9

Our work will be based in three models of bouncing universes. The first one con-

siders a nonminimal coupling between vector and gravitational fields. Such coupling11

leads to nonlinearities in the theory and, consequently, violations of the energy con-

ditions that enabled not only a bounce,23 but also a very nice traversable wormhole13

solution, as we will see in Sec. 2. One may associate this vector field with the vector

potential of electromagnetism. In this case, nonminimal couplings can be caused15

by quantum electrodynamics corrections to general relativity,23,27 which could be

the origin of the presence of magnetic fields observed in galaxies and intergalactic17

medium.28–30

The next one considers a model of universe in a Weyl integrable space–time24
19

(WIST), yielding an effective negative energy scalar field, which evolves from a

Minkowski configuration in the infinite past, goes through a bounce and finish in21

another asymptotic flat universe. This pure geometric model can also give rise to a

perfectly reasonable traversable wormhole.23

The last case treated involves nonlinear corrections to the electromagnetic field.

Such corrections are needed when very intense fields are considered, where the25

particle creation phenomenon occurs. These nonlinearities lead to the violation of

energy conditions and allow a bounce,26 but not a wormhole. We will show that27

whenever one imposes the boundary conditions that characterizes the wormhole

throat, the asymptotic behavior of the spacetime solution becomes unacceptable.29

Therefore, we have an example of a theoretically acceptable source that violates

WEC and do not lead to a wormhole, showing that this condition is necessary but31

not sufficient to obtain such type of geometries.

Finally, we conclude that, although we have explicitly shown examples of worm-33

holes solutions obtained using sources already present in other frameworks, this is

not enough to consider such type of configuration as real as long as they are static.35

This still depends on dynamical treatments, and investigations about their classical

and quantum instabilities, which are beyond the scope of this paper.37

2. Nonminimal Coupling between Vector and Gravitational Fields

Nonminimal coupling between electromagnetic and gravitational fields appears39

when one takes into account the vacuum polarization influence on the propaga-

tion of photons in a gravitational background using the one-loop approximation.2741
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If gauge invariance is not imposed, one may obtain a mass term for the photon1

proportional to the Ricci scalar, which should be important only in the presence of

large gravitational fields (see Refs. 31–33 for theoretical and observational discus-3

sions concerning the possibility of a massive photon). These nonminimal couplings

were used to study the production of primordial magnetic fields in the universe.28–305

One can also work with a vector field not necessarily identified with elecromagnetic

fields, where nonminimal couplings appear already at tree level. These kind of fields7

were used to obtain nonsingular cosmological models,23 to yield acceleration in the

past34,35 (inflation) and in the present35–37 (dark energy), and as models for the9

aether.38

In the present Section we will consider wormholes in the framework of an arbi-11

trary vector field nonminimally coupled to gravity as described by the Lagrangian

L =
√
−g

[

1

2k
(1 + λAµAµ)R − 1

4
FµνF µν

]

, (1)
13

where k = 8πG, G is the Newton’s constant, λ is the nonminimal coupling constant

and F µν is the usual Maxwell tensor constructed from Aµ. The variation of this15

Lagrangian with respect to gµν and Aµ yields the following equations:

(1 + λA2)Gµν + λ�A2gµν − λ∇ν∇µA2 + λRAµAν = kTµν , (2)17

and

F µν
||ν = −λ

k
RAµ , (3)19

where Gµν is the usual Einstein tensor, A2 ≡ AµAµ, and Tµν is the Maxwell stress–

energy tensor,21

Tµν = FµαF α
ν +

1

4
gµνFαβF αβ . (4)

We will look for solutions with the same source used in the cosmological solution

obtained in Ref. 23, which presents a bounce, where Aµ = w|µ. With this choice

for the vector potential, it follows from (3) that R = 0, and the set of equations

reduces to

Rµν =
Υ|µ||ν

Υ
, (5)

gµνΥ|µ||ν = 0 , (6)

in which the last one comes from the trace of (2) and we have introduced the new23

variable Υ ≡ 1 + λA2.

We are interested in a static spherical geometry, with metric given by25

ds2 = −e2φ(r)dt2 +
dr2

(

1 − b(r)
r

) + r2dΩ2 . (7)
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The field equations (5) and (6), in this case, reduce to

−
(

1 − b

r

)

φ′Υ′

Υ
=

b′

r
, (8)

1

Υ

√

1 − b

r

(

√

1 − b

r
Υ′

)′

= − b

r3
+ 2

(

1 − b

r

)

φ′

r
, (9)

(

1− b

r

)

Υ′

rΥ
=

(

1 − b

r

)[

φ′′ + φ′

(

φ′ +
1

r

)]

− (b′r − b)

2r2

(

φ′ +
1

r

)

, (10)

√

1 − b
r

r2eφ

(

r2eφ

√

1 − b

r
Υ′

)′

= 0 . (11)

This last one implies that1

r2eφ

√

1 − b

r
Υ′ = D , (12)

a constant, so that (9) can be rewritten as3

D

Υ

√

1 − b

r

(

1

r2eφ

)′

= − b

r3
+ 2

(

1 − b

r

)

φ′

r
. (13)

Note that if one turns off the nonminimal coupling, λ = 0 ⇒ Υ = 1, and as we are5

taking Aµ = w|µ (a pure gauge), the unique solution to the system above is the

Schwarzschild geometry (spherically symmetric solution in vaccum).7

A simple exact solution to this nonlinear system of differential equations reads

b(r) = r0 , (14)

φ(r) = φ0 , (15)

Υ(r) =
2D

r0eφ0

√

1 − r0

r
. (16)

Let us now examine the properties and traversability of this wormhole, following

the lines of Ref. 22. The embedding function z(r) reads9

z(r) = 2r0

(

r

r0
− 1

)1/2

, (17)

showing that it is a parabolic wormhole. The proper distance is given by11

l(r) =
√

r
√

r − r0 −
r0

2
ln

(√
r −

√
r − r0√

r +
√

r − r0

)

, (18)

which tends towards r when r is big.13
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As long as φ is constant, one can traverse the wormhole with constant speed,1

and the tidal radial acceleration is null. For the tidal lateral acceleration to be less

than one Earth gravity, one has the condition on the speed v:3

r0γ
2

2r3

v2

c2
.

1

(1010 cm)2
, (19)

where γ is the usual relativistic γ-factor, which we are assuming to be approximately5

equal to one, since we are considering nonrelativistic velocities. Its maximum value

is at the minimum of the throat at r0, which implies that7

v . 42 m/s
r0

10 m
. (20)

If the trip through the wormhole begins and ends in stations where the curvature9

of the wormhole is negligible, with deviations, say, of 0.01% from flatness, then they

must be located at coordinate distances of order r ≈ 104r0, yielding a total proper11

distance of ∆l ≈ 2 × 104r0. This gives a total time travel of

∆t =
∆l

v
& 1 h 19 min . (21)13

For a one year travel one needs

v ≈ 6.34r010−4/s . (22)15

Note that the standard vector field energy required to construct this wormhole

contained in Tµν is null because Fµν is null. Only the nonminimal interacting energy17

between the vector field and gravity is present in this scenario.

3. Effective Negative Energy Scalar Field19

As mentioned in the Introduction, cosmological bounces can also be induced by

negative energy fluids.25,39,40 We will consider in this Section a negative energy21

stiff matter fluid represented by a massless free scalar field, which can appear due

to interactions among positive energy fluids,10 or through a pure geometrical model23

where space–time is represented by a manifold with a geometric structure deter-

mined by the Weyl geometry.24 In this later case, the model is empty, it starts as25

a flat Minkowski space–time which, through instabilities, begin to collapse into a

homogeneous and isotropic Weyl geometry.27

The dynamics of the model is obtained from the action

S =

∫ √
−g
(

R̂ + ξ∇̂αW α
)

, (23)
29

where R̂ is the Ricci tensor in the Weyl geometry, W α is the Weyl vector satisfying

∇̂αgµν = Wαgµν , and ∇̂α is the covariant derivative with the Weyl affinity.31

Taking a Weyl integrable space–time, where the Weyl vector is a gradient given

by Wλ = ϕ|λ, and performing the variation of the action S with respect to the pair
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(gµν , ϕ) of independent variables yields the following equations of motion in terms

of Riemannian geometrical quantities (see Ref. 24 for details):

Gµν = −λ2

(

ϕ|µϕ|ν − 1

2
ϕ|αϕ|αgµν

)

≡ −λ2T ϕ
µν , (24)

�ϕ = 0 , (25)

in which λ2 = (4ξ − 3)/2. Note that if this constant is positive, one has an effective1

negative energy fluid, which gives rise to cosmological bounces.24,25,39,40

We are looking for the possibility of a static wormhole solution for the above

set of equations. Using the spherical geometry given by the metric (7), Eqs. (24)

and (25), after a simple manipulation, read

b′ = −λ2

2

(

1 − b

r

)

(ϕ′)2r2 , (26)

φ′ =
b − r3λ2

2

(

1 − b
r

)

(ϕ′)2

2r(r − b)
, (27)

[

1

2

(

1 − b

r

)

(ϕ′)2
]′

= −
(

1 − b

r

)

(ϕ′)2φ′ − 2

r

(

1 − b

r

)

(ϕ′)2 . (28)

This last one can be rewritten as3

[

(r2eφ)2
(

1− b

r

)

(ϕ′)2
]′

= 0 . (29)

Now it is easy to integrate the resulting system of equations. The solution is

ϕ(r) = −
√

2

λ
arctan

(

r0
√

r2 − r2
0

)

+
π
√

2

2λ
+ ϕ(r0) , (30)

b(r) =
r2
0

r
, (31)

φ(r) = φ0 . (32)

The space–time generated by this solution is represented by the geometry de-5

scribed by the following metric:

ds2 = −e2φ0 dt2 +
dr2

(

1 − r2

0

r2

) + r2dΩ2 . (33)

7

This solution was already studied in Refs. 41–43.

As it was done in the previous Section, let us examine the properties and9

traversability of this wormhole, again following the lines of Ref. 22. The embed-

ding function z(r) now reads11

z(r) = r0 arccosh

(

r

r0

)

, (34)
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showing that it is a hyperbolic wormhole. The proper distance is given by1

l(r) = r

√

1−
(

r0

r

)2

, (35)

which, again, tends towards r when r is big. Also, as long as φ is constant, one3

can traverse the wormhole with constant speed, and the tidal radial acceleration is

null. For the tidal lateral acceleration to be less than one Earth gravity, one has5

the condition on the maximum speed v at r = r0 inside the throat,

v . 30 m/s
r0

10 m
. (36)7

For a 0.01% departure from flatness at the stations, they must be located at

coordinate distances of order r ≈ 102r0, yielding a total proper distance of ∆l ≈9

2 × 102r0. This gives a total time travel of

∆t =
∆l

v
& 67 s . (37)11

For a one-year travel one needs

v ≈ 6.34r010−6/s . (38)13

In this case, some (negative) energy for the scalar field is required to construct

this wormhole as long as its energy momentum tensor T ϕ
µν is not null. The energy15

density is ρ = −r2
0/r4, which in the throat at r = r0 reaches its maximum value

ρ = −1/r2
0, and the total (negative) mass of the scalar field reads M = −2π2r0.17

Hence, smaller values of r0 requires less mass but bigger densities inside the throat.

Note that this wormhole has zero ADM mass.19

4. Nonlinear Electrodynamics

In Ref. 26 bouncing solutions where obtained considering a generalization of21

Maxwell electrodynamics, given by nonlinear local covariant and gauge-invariant

terms which depend on field invariants up to second order, as the source of clas-23

sical Einstein’s equations. This modification is expected to be relevant when the

fields reach large values, as occurs in the early universe. One expects that such25

modifications may also be important inside the hypothetical throat of a wormhole,

generated by this source.27

The generalization of Maxwell electrodynamics, up to second order, is deter-

mined by the following Lagrangian:2629

L = −1

4
F + αF 2 + βG2 , (39)

where31

F := FµνF µν ,

and33

G :=
1

2
ηαβµνF αβF µν ,
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where α and β are arbitrary constants and ηαβµν is a totally antisymmetric tensor.

According to that same reference, in the early universe, the source should be iden-

tified with a hot primordial plasma. The high temperature of the plasma suggest

we model the electromagnetic field as a statistically isotropic random field. In order

to do that, a spatial average should be taken into account. This average procedure

was introduced in Ref. 44 and used in many situations in cosmology.26,45–48 It can

be done by associating a reference frame adapted to the coordinates and defined by

the velocity vector field V µ = (g00)
−1/2δµ

0 . This reference frame defines the space

where the averaged procedure is done given the following mean values to the electric

(E) and magnetic (H) fields:44

Eµ = 0 , Hµ = 0 , EµHν = 0 , (40)

EµEν = −1

3
E2hµν , (41)

HiµHν = −1

3
H2hµν , (42)

The tensor hµν = gµν − VµVν is the metric on the hypersurface perpendicular to1

the vector field Vµ. The average is done according to the definition

C̄ ≡ lim
V →V0

1

V

∫

C
√
−hd3xi , (43)

3

to an arbitrary quantity C, in which V =
∫ √

−hd3xi and V0 represents a sufficiently

large three-volume in order to allow the average procedure but small compared to5

the other relevant length in the model.

The high temperature of the plasma led us to consider the situation where only

the squared magnetic field H2 survives and the electric field is put to E2 = 0. The

resulting averaged energy–momentum tensor is identified as a perfect fluid with

modified expressions for the energy density ρ and pressure p given by

ρ =
H2

2
(1 − 8αH2) , (44)

p =
H2

6
(1 − 40αH2) . (45)

This source violates the energy condition ρ+3p ≥ 0, as in the models presented

before. Nonetheless, it is worth to call attention that, in this case, the pressure is

isotropic. We will look for a static solution in a spherical geometry given by the

metric (7). The field equations become

b′ = ρr2 , (46)

φ′ =
b + pr3

2r2
(

1 − b
r

) , (47)

p′ = −(ρ + p)φ′ . (48)
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Eliminating φ′ from these equations we obtain

b′ = ρr2 , (49)

p′ = −(ρ + p)
(b + pr3)

2r2
(

1 − b
r

) . (50)

The boundary conditions at the wormhole’s throat, r0, are

b0 ≡ b(r0) = r0 , b′0 ≡ b′(r0) ≤ 1 , (51)

p0 ≡ p(r0) = −
1

r2
0

, p′0 ≡ p′(r0) =
b′0 − 3

r3
0

< 0 , (52)

which imply for X(r) ≡ H2(r):1

X0 ≡ X(r0) =
1 +

√
1 + γ

80α
≥ 1

16α
, X ′

0 ≡ X ′(r0) > 0 , (53)

where γ = 960α/r2
0.3

Equations (49) and (50) become

b′ =
X

2
(1 − 8αX)r2 , (54)

X ′ =
X(16αX − 1)

(

40αX2r − Xr − 6b
r2

)

(

1 − b
r

)

(80αX − 1)
, (55)

and any solution to it with the above boundary conditions has the property that

the radial coordinate possesses a minimum value at r0. However, for this case,

these boundary conditions turn the solution completely unacceptable as we move

away from the throat. We can see this by examining the behavior of X(r). This

function begins with a positive value and increases, so it must reach a maximum

value, Xm ≡ X(rm) > X0, at rm > r0 if we want the functions p(r), ρ(r), b(r) and

φ(r) to remain finite. Otherwise, the resulting space–time would not be acceptable.

Imposing that b(r)/r be finite (requirement of asymptotic flatness), we can see by

(55) that X(r) will only stop increasing if one of these equations holds true:

Xm = 0 , (56)

16αXm − 1 = 0 , (57)

40αX2
mrm − Xmrm − 6

bm

r2
m

= 0 , (58)

with bm ≡ b(rm).

It is clear that the first one cannot be true, for it would imply that Xm < X0.5

This same argument discards the second one, which states that Xm = 1/16α ≤ X0

and not greater. The last one gives7

Xm =
1 +

√

1 + 960α bm

r3
m

80α
=

1 +
√

1 + γ
r2

0
bm

r3
m

80α
, (59)
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which is also smaller than X0, since it is given by (53), and bm ≤ rm and r0 < rm1

implies that r2
0bm/r3

m < 1.

Therefore, X(r) diverges positively, leading the quantities p(r), ρ(r), b(r) and3

φ(r) to diverge negatively, which would imply in a infinitely negative mass and a

horizon for large values of r. The only case in which X(r) (and the other functions)5

can stop increasing is if b(r) increases in such a way that b(r)/r do also diverges

and makes X ′(r) = 0, which is not compatible with the requirement of asymptotic7

flatness. Hence we can conclude that any attempt to impose a minimum value for

the radial coordinate in this case results in a too much problematic space–time for9

it to be considered a satisfactory solution. This case does not allow a reasonable

wormhole solution.11

5. Conclusion

In this paper we have investigated the existence of wormhole solutions in theories13

which produce cosmological bounces. We have shown that in one of them, concern-

ing nonlinear electrodynamics, no wormhole solution is possible, showing that it15

is not mandatory that violation of WEC, or theories which produce cosmological

bounces, can also result in wormholes.17

In the other two theories we investigated, we were able to obtain simple,

traversable (in the sense of Ref. 22) wormhole solutions with very nice properties.19

Both depend on a parameter r0, which cannot be very big in order to not impose

unattainable speeds or a very long time to traverse the wormhole (see Eqs. (22)21

and (38)).

In the case of Sec. 2, nonminimal coupling between gravity and a vector field,23

one arrives at the nice situation that no vector field free energy (the one contained in

Eq. (4)) is required to produce the wormhole. The parameter r0 appears only in the25

denominator of the amplitude of the vector potential (see (16) and the definition of

Υ). However, as there is another arbitrary constant present in (16), one can adjust27

it to satisfy physical requirements while preserving values of r0 compatible with

traversability with reasonable speeds.29

In the case of Sec. 3, the parameter r0 appears in the energy density of the

field (in the denominator), and in its total mass (in the numerator). Hence, a small31

r0 would imply a small total quantity of scalar field, which is good, but a high

concentration of the field in the throat. However, if this field does not interact with33

matter and other fields, the traveler could pass through the throat without any

harm.35

Finally, we would like to point out that the solutions obtained here are all

static, as if those wormholes always existed. In order to see if they can really37

arise, it is necessary to consider a dynamical geometry. The resulting equations

and solutions should then show if some initial configuration could evolve into a39

wormhole, and if it will be classically and quantum mechanically stable. Situations

where stability is lost in different scenarios are presented in Ref. 49. It should also be41
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possible to investigate if during the bouncing period, where WEC is only preserved1

when spacial sections have positive curvature, wormholes would have time to arise

or not.3

We have shown that the existence of static wormholes is indeed a perfectly plau-

sible theoretical possibility, in reasonable theoretical frameworks. Their production5

in the history of the universe or even in the laboratory depends on dynamical

developments of the present investigation, which will be the subject of our future7

investigations.
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