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a b s t r a c t

An entropy-based image segmentation approach is introduced and applied to color
images obtained from Google Earth. Segmentation refers to the process of partitioning a
digital image in order to locate different objects and regions of interest. The application
to satellite images paves the way to automated monitoring of ecological catastrophes,
urban growth, agricultural activity, maritime pollution, climate changing and general
surveillance. Regions representing aquatic, rural and urban areas are identified and the
accuracy of the proposed segmentation methodology is evaluated. The comparison with
gray level images revealed that the color information is fundamental to obtain an accurate
segmentation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Medical, biological and astronomical experiments, as well as satellite prospection, have generated terabytes of image
data, making automatic analysis a fundamental resource for knowledge discovery. Image analysis is based on the extraction
of meaningful information and can involve many steps, such as pre-processing (e.g. noise removing), segmentation and
characterization of the identified objects [1]. Particularly, the identification of the types of objects – a task called segmentation
– constitutes an essential issue in pattern recognition [1] due to its practical importance, such as in the treatment of images
obtained from satellite prospection. In fact, image segmentation can be understood as the process of assigning a label to
every pixel in an image, such that pixels with the same label represent the same object, or its parts.

In the current work, we propose an entropy-based segmentation of images. The methodology is evaluated with respect
to satellite images obtained from Google Earth, in order to identify aquatic, urban and rural regions. The rate of updating of
Google Earth images depends on the country. It is higher in the US, Australia and Europe. However, updates can occasionally
occur when drastic changes take place in the landscape, for example the changes in New Orleans following Hurricane
Katrina. The importance of using Google Earth images can be observed in a growing number of investigations, such as the
analysis of magnetic alignment of cattle and deer during grazing and resting [2] or mapping of disaster zones for identifying
priorities, planning logistics and definition of access routes for relief operations [3]. In addition, Google Earth has revealed
a new resource for geological education [4]. In fact, satellite images are critically important for the monitoring of ecological
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catastrophes, urban growth, agricultural activity, maritime pollution, climate changing as well as general surveillance.
Moreover, the segmentation of Google Earth images is particularly important for automaticmapping of urban and rural areas
while monitoring dynamical human activities, such as city growth that can affect regions of environmental preservation.
Another application involves monitoring of rural activities, which can also lead to different textures, such as those observed
in the cultivation of sugarcane or wheat. The identification of aquatic areas allows the monitoring of pollution, which can
be potentially inferred from changes in the water texture, as well as the formation of deserts or marshes, i.e. it provides an
indication about possible climate changes. In addition, the analysis of satellite images can help inmonitoring of deforestation
and in finding focuses of fires in forests.

Images are composed by a set of pixels whose values encode different colors or gray levels. Image segmentation
methods have been used to find regions of interest (e.g. objects) in images. The importance of image segmentation can
be illustrated in diverse practical applications, such as in medical imaging (e.g. diagnosis [5]), satellite images [6], face
recognition [7], traffic control system [8] and machine vision [9]. Different algorithms have been proposed for image
segmentation such as those founded on image thresholding (e.g. by means of histograms of gray levels [10]); clustering
methods (e.g. neural networks [11]); region growing methods (e.g. Ref. [12]); graph partitioning methods (e.g. Ref. [13]);
multi-scale segmentation (e.g. Ref. [14]), and semi-automated segmentation (e.g. Ref. [15]). Methods related to physics
concepts have also beenmore andmore applied for image segmentation, such as those based onMarkov random fields [16]
and entropy [17]. The segmentation approach proposed in the current work is based on the concept of entropy. Although
there are many methods for image segmentation, the proposed approach has two main advantages: (i) it is of easy
implementation, since it is necessary to calculate only the entropy of the color components of an image and apply a
statistical classifier; (ii) it is based on an intuitive concept, i.e. the entropy of the texture of an image. Moreover, the observed
performance on satellite images is better than some traditional segmentation methods.

In the next sections, the concepts of information entropy, dimensionality reduction and supervised classification are
presented. Afterwards, the proposed image segmentation methodology is applied to the Google Earth images and the
classification results are evaluated. The influence of the parameters involved in the segmentation is discussed. Venues for
future research and conclusions are identified.

2. Materials and methods

In information theory, the concept of entropy is used to quantify the amount of information necessary to describe the
macrostate of a system [18]. The entropy is related to the concept of Kolmogorov complexity, which reflects the information
content of a sequence of symbols independent of any particular probabilitymodel [19,20].More specifically, the Kolmogorov
complexity of an object is a measure of the computational resources needed to specify the object. Then, if a system presents
a high value of entropy, it means that much information is necessary to describe its states. Depending on the specific
application, the entropy can be defined in different ways [21,22]. Here we take the concept of entropy in the sense of
information theory (Shannon entropy), where entropy is used to quantify theminimum descriptive complexity of a random
variable [18]. The Shannon entropy of a discrete random distribution p(x) is defined as

H(p) = −

−
x

p(x) log p(x), (1)

where the logarithm is taken on base 2.
In image analysis, p(x) can refer to the distribution of gray levels or to the intensity of different color components of

an image. The histograms p(x) of a color image are obtained by counting the number of pixels with a given color intensity
(red (R), green (G) or blue (B)), which can vary from 0 to 255. In this way, this procedure generates a set of three different
histograms {hc(x)}, where c = {R, G, B}. Due to its particular nature, as discussed above, the entropy can provide a good
level of information to describe a given image. In this case, if all pixels in an image have the same gray level or the same
intensity of color components, this image will present the minimal entropy value. On the other hand, when each pixel of
an image presents a specific gray level or a color intensity, it this image will exhibit maximum entropy. Thus, since the
pixel intensities are related to texture, because different textures tend to result in different distribution of gray level or color
intensity, the Shannon entropy can be used for texture characterization [1]. Our texture approach is based on this assumption
about texture analysis. The application to satellite images is justified because these images are formed by objects presenting
different textures. In fact, different regions in these images, such as aquatic and urban areas, tend to present specific textures
which are possibly characterized by different entropy values. For instance, while urban areas tend to exhibit high color
variations (higher entropy), aquatic regions tend to be more homogeneous (lower entropy).

Our proposed methodology for segmentation of satellite images is performed as follows. Images are divided into square
windows with a fixed size L, the entropy is calculated for each window, and then a classification methodology is applied
for the identification of the category of the respective windows (e.g. aquatic, rural, urban, etc.). The classification approach
can be supervised or non-supervised. Supervised classification needs a training set composed by windows whose classes
are previously known (prototypes), such as rural and urban areas. Here, we focus on a segmentation methodology based
on supervised classification. Initially, the training is done by selecting samples (windows) of the three types of regions
(i.e. aquatic, rural and urban areas). Observe that each of these samplewindows should be selected in order to present pixels
of only one class. Next, the entropy is calculated for each color component (R, G and B) of these windows. Therefore, these
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Fig. 1. The scatterplot of the entropies of the windowswith sizes (a) 16×16, (b) 30×30 and (c) 46×46. Each point corresponds to a window, represented
by the three coordinates associated with the entropies of each of the three color components (R, G and B). Windows corresponding to water, rural and
urban regions are represented by blue triangle, green circles and red squares, respectively. Thesewindows correspond to the training step of the supervised
classification.

windows are represented in a three-dimensional space defined by the entropy of the color components, i.e. each window is
represented by a vector with three elements. Then, due to the high correlation between the entropy of color components,
these windows are projected into a one-dimensional space by considering principal component analysis [23]. Note that the
projection into one dimension by principal component analysis allows one to optimally remove the redundancy present in
the data. Finally, the classification of the training set is performed.

The classification is done by maximum likelihood decision theory, which considers the density functions estimated
for each class [24]. This estimation is obtained by the Parzen windows approach [24], which adds a normalized Gaussian
function at each observation point, so that the interpolated densities correspond to the sum of these functions, performed
separately for each class. These densities are used in the maximum likelihood approach. If the probability density is known,
it can be showed that this classification approach is optimal in the sense of minimizing misclassification [24]. The second
step in the supervised classification is performed by classifying unknown windows. In this way, it is possible to evaluate
the accuracy of the classifier by comparing the resulting classification and the original regions. In fact, the evaluation of
the precision of the classification approach is given by the confusion matrix C , whose elements cij provide the number of
windows of class j which were classified as being of class i [1]. The percentage of correct classification is obtained by the
sum of the confusion matrix diagonal divided by the total sum of the matrix.

3. Results and discussion

In order to segment the Google Earth images, we took into account square windows of dimensions 16 × 16, 30 × 30 and
46×46pixels.Weobtained100windowsof each class and calculated the entropydistribution for each color component from
the respective histograms. Fig. 1 presents the windows in the space defined by the entropy of the three color components.
Note that the urban and rural regions present a small intersecting region, because urban areas can exhibit trees and parks,
which present textures similar to those present in rural areas. Since thesewindows are approximately organized as a straight
line in the three-dimensional scatterplot, which indicates a strong correlation between the entropies of color components,
we projected the entropies into a one-dimensional space by applying principal component analysis [23]. The variances of
this type of projection corroborate the one-dimensional organization of the points, i.e. the normalized first eigenvalue is
equal to λ1/

∑3
i=1 λi = 0.99 for all windows’ sizes. In other words, the projected data accounts for 99% of the variance of

the original observations. To obtain the density function, we considered the Parzen windows approach, as described before.
Fig. 2 illustrates the obtained probability densities. After estimation, we performed the classification by maximum

likelihood decision theory, which uses the Bayes rule, associating each image window to the class that results in the largest
probability [24]. Fig. 2 shows that the larger the windows sizes, the larger are the intersections between the curves.

In addition, urban and rural areas present the largest intersecting region, because some urban areas contain different
morphological zones (e.g. trees, woods and parks). In order to evaluate the precision of our methodology, we segmented 10
images manually and compared these original segmentations with those obtained from our classification methodology.
The regions were extracted from cities from different worldwide zones, such as Berlin, Hong Kong, New York, Buenos
Aires, Washington, Warsaw, Madrid, and Baghdad. The images were obtained at the same altitude (2000 m), in order to
incorporate the same level of details in each sample. Tables 1–3 present the confusion matrices. Notice that these matrices
were calculated by taking into account each pixel on the image, and not eachwindow, because somewindows are composed
by more than one class of pixels. The adoption of small windows, i.e. 16 × 16 and 30 × 30, accounted to a more accurate
classification than the larger one (46 × 46). This happens because small windows tend to include regions with more
homogeneous classes, while more heterogeneous regions tend to be included within larger windows. Nevertheless, the
precision obtained with smaller windows is achieved at the expense of higher computational cost, due to the larger number
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Fig. 2. Probability densities estimated for windows of size (a) 16, (b) 30 and (c) 46. The projections were obtained from the scatterplots of Fig. 1. The
windows correspond to water, rural and urban regions are represented by blue triangle, green circles and red squares, respectively.

Table 1
Confusion matrix for 10 segmented images taking into account windows of size 16 × 16. The overall accuracy in this case is equal to α16 = 0.85 ± 0.04.

Confusion Urban Rural Aquatic

Urban 0.83 ± 0.07 0.17 ± 0.07 0.00 ± 0.00
Rural 0.17 ± 0.09 0.82 ± 0.09 0.01 ± 0.03
Aquatic 0.00 ± 0.00 0.10 ± 0.06 0.90 ± 0.06

Table 2
Confusion matrix for 10 segmented images taking into account windows of size 30 × 30. The overall accuracy in this case is equal to α30 = 0.85 ± 0.03.

Confusion Urban Rural Aquatic

Urban 0.87 ± 0.05 0.13 ± 0.05 0.00 ± 0.00
Rural 0.13 ± 0.07 0.86 ± 0.06 0.01 ± 0.02
Aquatic 0.01 ± 0.01 0.17 ± 0.10 0.82 ± 0.11

Table 3
Confusion matrix for 10 segmented images taking into account windows of size 46 × 46. The overall accuracy in this case is equal to α46 = 0.79 ± 0.07.

Confusion Urban Rural Aquatic

Urban 0.88 ± 0.06 0.11 ± 0.06 0.01 ± 0.01
Rural 0.24 ± 0.12 0.75 ± 0.11 0.01 ± 0.02
Aquatic 0.02 ± 0.02 0.24 ± 0.16 0.74 ± 0.17

of required windows to be processed. Comparing the percentage of correct classification given in each confusion matrix,
we conclude that the highest errors occur for the aquatic and rural regions with respect to windows of size 46 × 46, where
24% of aquatic regions were classified as rural regions, and 24% of rural regions were classified as urban. In the former case,
the error has been verified to be a consequence of texture similarities between some rivers that present a high level of
green algae and some types of plantations, which are predominantly based on green vegetables. In the latter case, urban
and rural regions tend to share similar green areas. The highest score (90%) was obtained by aquatic regions taking into
account windows of size 16 × 16. The accuracy of our classification methodology can be summarized in terms of the sum
of the confusion matrix diagonal divided by the total sum of the matrix. We indicate this ratio by αL, where L is the window
size. The obtained values are equal to α46 = 0.79 ± 0.07 for windows of size 46 × 46, α30 = 0.85 ± 0.03 for windows of
size 30× 30 and α16 = 0.85± 0.04 for windows of size 16× 16. Therefore, the smallest windows provide the most precise
segmentation.

An additional analysis of our classification methodology was performed with respect to the segmentations of a region of
London (obtained at 2000 m of altitude), as presented in Fig. 3 for windows of dimensions 16 × 16, 30 × 30 and 46 × 46.
The smallest windows (16 × 16) provide the most accurate segmentation, mainly with respect to the boundaries of the
rural, aquatic and urban regions. Nevertheless, at the same time, due to the small size of the windows, some parts of urban
areas are classified as rural as a consequence of the presence of trees, woods and parks. In fact, due to the level of details
of the image, some windows corresponding to urban areas can be completely formed by trees — windows composed by
green areas typically correspond to rural regions. As we increase the size of the windows, the observed misclassification
is reduced, but the boundaries of each region tend to become less defined. This effect can be observed along the boundary
of the aquatic area. Indeed, the effect of the green regions in urban area segmentation can be verified by the comparison
of the confusion matrices obtained for windows of size 16 × 16 and 30 × 30, Tables 1 and 2. These tables show that the
former case results in a larger error in classification of urban regions, mainly due to the classification of urban trees as
rural areas. These misclassifications implied in similar scores for windows of dimensions 16 × 16 and 30 × 30. Indeed, the
more accurate segmentation of the boundary of the regions are compensated by the wrong classification of urban green
areas. Despite the wrong segmentation of these areas, we can observe that more accurate classifications can be obtained for
smaller windows. Larger windows tend to provide worse classification because many of these windows in the segmented
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Fig. 3. A region of London and its respective segmentation by taking into account windows of size (a) 16, (b) 30 and (c) 46.

image can be composed by more than one class of regions. In fact, most of the misclassifications occur with respect to these
windows.

In order to compare our obtained results with amore traditional approach, we took into account gray level versions of the
considered images.Weadopted the samemethodologyused for color images to obtain the segmentation, but each imagewas
now represented by a vector with only one element (the entropy of gray level histograms). Note that for color images, three
color componentswere used and the imageswere represented by a vector composed by three elements. Tables 4–6 show the
obtained confusion matrices for windows of dimensions 16× 16, 30× 30 and 46× 46, respectively. In these cases, the sum
of the confusionmatrix diagonal divided by the total sum of thematrix are equal to α16 = 0.74±0.10, α30 = 0.75±10 and
α46 = 0.73±0.10. It is interesting to observe that the differentwindow sizes resulted in similar classification performances.
Comparing with the results obtained for color images, the gray level resulted in worse classification. Therefore, the spectral
color information is critically important for achieving accurate segmentation.

We also compared our methodology with two popular methods for image segmentation, namely the colorMRF and
the trainable segmentation method. The colorMRF method is based on Markov random field (MRF) pixel classification
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Table 4
Confusionmatrix for 10 segmented gray images taking into account windows of size 16×16. The overall accuracy in this case is equal to α16 = 0.74±0.10.

Confusion Urban Rural Aquatic

Urban 0.74 ± 0.20 0.26 ± 0.20 0.00 ± 0.00
Rural 0.11 ± 0.09 0.89 ± 0.09 0.00 ± 0.01
Aquatic 0.02 ± 0.05 0.38 ± 0.28 0.60 ± 0.27

Table 5
Confusionmatrix for 10 segmented gray images taking into account windows of size 30×30. The overall accuracy in this case is equal to α30 = 0.75±0.10.

Confusion Urban Rural Aquatic

Urban 0.74 ± 0.22 0.26 ± 0.22 0.00 ± 0.00
Rural 0.09 ± 0.09 0.91 ± 0.08 0.01 ± 0.01
Aquatic 0.01 ± 0.02 0.39 ± 0.26 0.59 ± 0.26

Table 6
Confusionmatrix for 10 segmented gray images taking into account windows of size 46×46. The overall accuracy in this case is equal to α46 = 0.73±0.10.

Confusion Urban Rural Aquatic

Urban 0.75 ± 0.22 0.24 ± 0.22 0.01 ± 0.01
Rural 0.10 ± 0.10 0.89 ± 0.10 0.01 ± 0.01
Aquatic 0.02 ± 0.04 0.39 ± 0.26 0.59 ± 0.25

model [25]. Trainable segmentation is available at the Fiji software, which is an image processing package based on ImageJ.
Considering the same set of images we evaluated the precision of our method, and verified that while colorMRF resulted in
an accuracy of 81%, Fiji yielded 82% correct classifications. Therefore, both approaches are less precise than our proposed
method, whose obtained precision is about 85%. In addition, we verified that our approach is faster than the other two
methods. Therefore, the simplicity and accuracy of our method based on entropy justify its use.

4. Conclusion

Despite its simplicity, the described methodology revealed to be particularly accurate and effective for the classification
of geographical regions. Indeed, we have shown that the entropy of the color distribution in images of geographical regions
conveys enough information about the respective type of terrain so as to ensure a particularly high number of correct
classifications, making of the proposed methodology an operational approach to be used in several related problems.
Although the best classification rate obtained was equal to 0.90, more accurate classification could be obtained by taking
into account windows of smaller sizes than those we used here.

Moreover, a combination of small and high resolution (large and small windows) analyses can be employed for better
characterizing of urban areas, since small windows can be misinterpreted as rural or aquatic regions. Other statistical
measurements, such as statistical moments, can also be used to complement the characterization of the texture of
geographical regions. The extension of the current methodology to other types of regions, such as different types of forest
or agricultural activities, is straightforward. In addition, the classification methodology can be improved by considering
smaller windows combined with image pre-processing techniques, such as color equalization or noise removal. Other types
of classifiers, such as support vector machine or neural networks [26] can also be used.

Acknowledgements

Luciano da F. Costa is grateful to FAPESP (proc. 05/00587-5), CNPq (proc. 301303/06-1) for financial support. Francisco
A. Rodrigues acknowledges FAPESP sponsorship (proc. 07/50633-9). Odemir M. Bruno acknowledges support from CNPq
(306628/2007-4 and 484474/2007-3).

References

[1] L. da F. Costa, R. Cesar, Shape Analysis and Classification: Theory and Practice, CRC, 2001.
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