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The relaxation to equilibrium of two long-range-interacting Fermi–Pasta–Ulam-like models (β type) in 
thermal contact is numerically studied. These systems, with different sizes and energy densities, are 
coupled to each other by a few thermal contacts which are short-range harmonic springs. By using the 
kinetic definition of temperature, we compute the time evolution of temperature and energy density of 
the two systems. Eventually, for some time t > teq , the temperature and energy density of the coupled 
system equilibrate to values consistent with standard Boltzmann–Gibbs thermostatistics. The equilibration 
time teq depends on the system size N as teq ∼ Nγ where γ ≃ 1.8. We compute the velocity distribution 
P (v) of the oscillators of the two systems during the relaxation process. We find that P (v) is non-
Gaussian and is remarkably close to a q-Gaussian distribution for all times before thermal equilibrium 
is reached. During the relaxation process we observe q > 1 while close to t = teq the value of q
converges to unity and P (v) approaches a Gaussian. Thus the relaxation phenomenon in long-ranged 
systems connected by a thermal contact can be generically described as a crossover from q-statistics to 
Boltzmann–Gibbs statistics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that gravitation strongly challenges the ther-
mostatistical theory developed by Boltzmann and Gibbs: Gibbs 
himself pointed this out in his celebrated 1902 book [1]. Since 
then, a large literature has addressed this type of difficulty, es-
pecially in what concerns long-range-interacting systems (see, for 
instance, [2–16]). In fact, macroscopic physical systems with long-
range interactions are ubiquitous in nature, some examples be-
ing (in addition to self-gravitating systems) granular matter, bio-
logical systems, vortices in superconductors, hot plasma, dipolar 
ferroelectrics and ferromagnets [11,13]. These systems have in-
duced a flurry of research activities in recent times primarily be-
cause of two reasons. Firstly, from the theoretical perspective, it 
is found that long-ranged systems have very rich, and often pecu-
liar, thermo-statistical properties such as breakdown of ergodicity, 
ensemble inequivalence, weak chaos, thermodynamical nonexten-
sivity for the total energy, metastable states, negative specific heat, 
phase transitions even in one dimension – all of which are not 
always describable in the conventional framework of Boltzmann–
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Gibbs (BG) statistical mechanics [7,11,12]. Thus one needs to pro-
pose new theoretical concepts and principles in order to have a 
satisfactory understanding of the underlying physics of these sys-
tems; one such approach being the non-extensive thermostatistics 
[12,17]. Secondly, besides the purely theoretical interest, many ex-
perimental and computational works [18–33] are also being per-
formed these days on a variety of systems that exhibit one or 
more of the above-mentioned features and, as such, the theoret-
ical predictions can be tested and verified in controlled laboratory 
experiments.

In physics, relaxation processes of various kinds are routinely 
studied; theoretically [34–36] and also in large number of exper-
iments in magnetism, glassy systems, polymers, superconductors, 
liquid crystals [37] to name a few. This gives us valuable infor-
mation about the dynamical properties of the system under inves-
tigation. For long-range-interacting systems, it is known that the 
order of the limits N → ∞ and t → ∞ (where N, t are system 
size and time respectively) is crucial and generally these two lim-
its do not commute [34]. Depending on the order in which the 
limit is executed, one can have a Gaussian or a non-Gaussian ve-
locity distribution function at late times. Such a problem is not 
usual for a short-ranged system and so one needs to be more cau-
tious while investigating relaxation processes in many-body sys-
tems with long-range interactions.
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In this paper we study theoretically, using extensive numeri-
cal simulation, such a relaxation process of two classical nonlinear 
lattices with long-range interaction and coupled by a thermal con-
tact. This is also partly inspired by recent theoretical works on 
superconductors [25,38] concerning the over-damped motion of in-
teracting vortices in type-II superconductors within the framework 
of non-extensive statistical mechanics. In [38] a type-II supercon-
ductor with vortices is coupled to a “vortex reservoir” which is 
a system with a much larger number of vortices and the relax-
ation process is studied in terms of an effective temperature that 
depends on the vortex density and interaction among vortices. 
Pluchino et al. studied relaxation to equilibrium in the Hamiltonian 
Mean Field (HMF) model with a particular class of initial con-
ditions [39]. Through numerical simulations they observed quasi-
stationary states that became stable if the thermodynamic limit is 
reached faster than the infinite time limit as was mentioned previ-
ously [34]. These quasi-stationary states exhibit interesting anoma-
lies such as anomalous diffusion, non-Gaussian velocity distribu-
tions, weak chaos, ergodicity breakdown, aging, quite similarly to 
what is observed in glassy systems. In another work [40], the dy-
namics of a small long-range interacting system in contact with a 
large long-range thermal bath, both being HMF models, is studied 
in terms of the kinetic temperature and various anomalous prop-
erties of the relaxation process in the quasi-stationary states were 
reported. Very recently another work [41] studied chaos properties 
and relaxation to equilibrium of two coupled HMF models and dis-
covered, quite surprisingly, that weak chaos in some cases favors 
faster relaxation than strong chaos.

Motivated by these novel ideas and results, we study here 
a thermal relaxation process of two coupled Fermi–Pasta–Ulam 
(FPU) oscillator lattices with long-range interactions via a ther-
mal contact. Using direct (first principles) integration of the equa-
tions of motion of the particles we study the time evolution of 
this coupled system by studying the time series for energy den-
sity and temperature, and by computing velocity distribution of 
the oscillators. The velocity distribution function provides valu-
able knowledge about how the underlying physics of such coupled 
long-range systems evolves with time. The specific questions that 
we wish to examine are broadly: (a) Is there an equilibration of 
the two nonlinear long-ranged systems similar to that of ordinary 
short-ranged systems via the thermal contact? (b) Nature of the 
relaxation process and the final equilibrium state: is the velocity 
distribution function a Gaussian (q = 1) or a non-Gaussian, for in-
stance a q-Gaussian with q ̸= 1?

In the following we demonstrate that this relaxation pro-
cess is a crossover from non-extensive statistical mechanics to 
Boltzmann–Gibbs’ statistical mechanics at late times. The remain-
der of the paper is arranged as follows. In Sec. 2, we describe the 
notations and formulae involved, the numerical scheme employed 
and the numerical experiment performed. We present our results 
in Sec. 3 and conclude with a discussion in Sec. 4.

2. Model and numerical approach

As already mentioned, we numerically investigate the relaxation 
to equilibrium of two long-ranged (β type) Fermi–Pasta–Ulam sys-
tems that are connected to each other by a thermal contact. The 
thermal contact is a short ranged interaction of the harmonic type. 
Each of the systems has the Hamiltonian [15]

H =
∑

i

pi
2

2mi
+ a

2

∑

i

(xi+1 − xi)
2 + b

4Ñ

∑

i

∑

j≠i

(xi − x j)
4

d α
i j

, (1)

where xi and pi are the displacement and momentum of the i-th 
particle with mass mi (all mi set to unity); a ≥ 0, b > 0, and α ≥ 0. 
Here dij is the shortest Euclidean distance between the i-th and 

Fig. 1. (Color online.) Time series of (a) energy density and (b) temperature for 
the two systems for different values of the size N . The system sizes are cho-
sen as N1, N2 = N, rN with r = 2 here. The parameters used here are a = b = 1, 
α = 0.9; energy densities are u1 = 2 and u2 = 6. The thermal contact is connected 
at t = tc = 104. Therefore kc = 0 for t < tc and kc = 1 for t > tc . The dotted horizon-
tal lines in (a) and (b) represent ueq and Teq respectively (Eqs. (6)). Note that, in (a) 
the individual energy densities u1 and u2 do not converge to ueq but in (b) the in-
dividual temperatures T1 and T2 do converge to Teq for t > teq , thus implying that 
the two systems are in thermal equilibrium with each other (see text).

j-th lattice sites (1 ≤ i, j ≤ N); we use periodic boundary con-
ditions. If α > 1 (0 ≤ α ≤ 1) we have short-range (long-range) 
interactions in the sense that the potential energy per particle con-
verges (diverges) as N → ∞; in particular, the limit α → ∞ cor-
responds to only first-neighbor interactions, and the α = 0 value 
corresponds to typical mean field scenario. The Hamiltonian is 
made extensive for all values of α by adopting the scaling factor Ñ
[15,14]

Ñ ≡
N∑

i=1

1
d α

i j
; (2)

hence Ñ depends on α, N , and the boundary conditions used. Note 
that for α = 0 we have Ñ = N , which recovers the rescaling usu-
ally introduced in mean field approaches known as the Kac pre-
scription factor. In the thermodynamic limit, N → ∞, Ñ remains 
constant for α > 1, whereas Ñ ∼ N1−α

1−α for 0 ≤ α < 1 (Ñ ∼ ln N for 
α = 1).

In the following, we outline the numerical experiment that we 
perform and establish the notations and formulae used in the com-
putation. We choose two systems S1 and S2 with N1 and N2
oscillators respectively. Since the long-range interaction part of the 
Hamiltonian Eq. (1) depends on the number of oscillators in the 
system via Ñ Eq. (2), so essentially the two systems have asym-
metric interaction strength among the oscillators for N1 ≠ N2. We 
start from random initial displacements xi drawn from a uniform 
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Fig. 2. (Color online.) (a) Log-log plot of the variation of teq with N . For larger system sizes, teq ∼ Nγ with γ = 1.8 for α = 0.9 and (u1, u2) = (2, 6). We show, for different 
system size N , the temperature time series as a function of rescaled time t/Nγ : (b) for α = 0.6 and (u1, u2) = (2, 4) we have γ = 1.8; (c) for α = 0.9 and (u1, u2) = (2, 4)

we have γ = 1.85; all other parameters remaining the same as in (a).

distribution centered around zero, and momenta pi from a Gaus-
sian distribution with zero mean and unit variance. The velocities 
are re-scaled so that the two systems have energy per particle 
u1,2 = U1,2/N1,2 (where U =< H >) at time t = 0. Thereafter, we 
evolve the two systems independently without the thermal con-
tact. The time evolution of the systems is numerically performed 
by integrating the equations of motion (Newton’s law) using a 
symplectic velocity Verlet algorithm with time-step $t = 0.05 (for 
more details of the integration scheme see [16]).

Since the energy density of the systems is set to different val-
ues u1 ≠ u2, after the transients, the two systems settle down to 
distinct steady states with a constant (within statistical accuracy) 
temperatures T1 and T2. The temperature here is the conventional 
kinetic temperature that one derives from the equipartition of en-
ergy i.e., T = p2/m (the Boltzmann constant kB is set to unity) for 
a one dimensional system.

Once such a steady state is reached, we connect these two long-
ranged systems via n thermal contacts which are of the harmonic 
type Hc = 1

2 kc(xk − xl)
2, where k and l are oscillator indices be-

longing to the S1 and S2 respectively; kc is the coupling constant 
which we set to unity without loss of generality, unless specified 
otherwise. Thus the Hamiltonian for the combined system is ex-
pressed as

H12 = H1 +
∑

n

H(n)
c + H2, (3)

where, H(n)
c is the energy function for the n contacts between 

the two systems H1 and H2. If the number of thermal contacts 
n << N1, N2, the second term on the right hand side of the above 
equation is negligibly small compared to the other two terms and 
hence the coupled system S12 will have energy U1 + U2 approxi-
mately. For all our results presented in this paper we choose n = 2. 
Thus two contact sites for each system are chosen arbitrarily and 
are kept fixed after the contact is established.

Next, we compute the velocity distribution P (v) of the oscilla-
tors when the two systems are going through the entire process 
mentioned above. The velocity distribution at different times is 
computed by plotting a histogram of the velocities of all the os-
cillators collected over a small time window (typically ∼ 50 time-
steps) and repeat this for many realizations of the initial conditions 
(typically ∼ 103) in order to obtain good statistics. From these his-
tograms we can also compute the q-kurtosis κq of the distribution 
which is defined as [14,15,42]

κq =
∫ ∞
−∞ dv v4[P (v)]2q−1/

∫ ∞
−∞ dv[P (v)]2q−1

3
[∫ ∞

−∞ dv v2[P (v)]q/
∫ ∞
−∞ dv[P (v)]q

]2 ; (4)

the value of q is obtained by fitting as we shall show in the 
next section. Using Eq. (4) the q-kurtosis of any histogram can 
be computed. It can be verified that κq = (3 − q)/(1 + q) for any 
q-Gaussian function velocity distribution

Gq(v) = A
[

1 − β(1 − q)v2
]1/(1−q)

(A > 0; β > 0) . (5)

Note that, for q → 1, we recover the well known kurtosis κ1 =
⟨x4⟩/3⟨x2⟩2 = 1 corresponding to Gaussian distributions.

3. Simulation results

Let us now present the results of our numerical analysis. 
We start by fixing the energy densities of the two systems to 
(u1, u2) = (2, 6) and the number of oscillators (N1, N2) = (N, rN)
where we choose N to be an integer (for our simulations we al-
ways choose N1 < N2 i.e. r > 1, and u1 < u2). All other parameters, 
apart from the long-range parameter α, of the two systems are set 
to unity. As is usually the case, all quantities are measured in di-
mensionless units. We perform the numerical experiment as has 
been outlined in the previous Sec. 2.

In Fig. 1 we present the time evolution of the energy density 
and temperature of the two systems for N = 100, 200, 500, 1000
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Fig. 3. (Color online.) (a) The time series of temperature T1, T2 of the two systems (N1, N2) = (N, rN) with N = 500. Along the time axis we choose four t values t = t1, t2, t3, 
and t4 where we compute the velocity distributions of the oscillators in the two systems. The four histograms are shown in (b1)–(b4). We fit the data for the velocity 
histograms to q-Gaussian distributions (shown by continuous lines) and plot them along with the data from simulation.

with r = 2. The energy densities u1, u2 remain steady since u
is a constant of motion – the systems are micro-canonical ones. 
At small t , the temperatures (T1, T2) oscillate wildly but attain a 
steady value for t > 102 in both the systems. Once the stationary 
temperatures are attained at t = 104, the two systems are coupled 
to each other by n = 2 thermal contacts. Thereafter both energy 
density and temperature of the two systems approach each other 
and at t = teq equilibrate to a final energy and temperature. Re-
markably, we find that the coupled system attains a final energy 
density and temperature same as that for conventional statistical 
mechanics namely

ueq = u1 + ru2

1 + r
Teq = T1 + rT2

1 + r
, (6)

and therefore independent of the nature of the interaction i.e., the 
value of α chosen for the two long-ranged FPU systems. Eqs. (6), 
which are expected in presence of short-range interactions, hold 
even for our long-range model because of the factor Ñ which 
makes the long-range system extensive for all values of α. Note 
that T1, T2 in Eq. (6) are the temperatures after the transients 
have died out (t > 102). Since the two systems are asymmetric in 

their parameters, the individual energy densities do not coincide 
(u1(t) ̸= u2(t) for t > teq as shown in Fig. 1a, or more precisely, 
⟨H1⟩/N1 ≠ ⟨H2⟩/N2 ≠ (⟨H1⟩ + ⟨H2⟩)/(N1 + N2) ≡ ueq for t > teq , 
where ueq is defined in Eqs. (6). The individual temperatures how-
ever coincide and thermal equilibrium is achieved between the 
two systems (Fig. 1b).

Note that the relaxation time teq , at which the two systems 
have the same temperature, depends on the system size N . Thus 
the larger the systems, the longer it takes for the coupled system 
to attain thermal equilibrium. We have estimated the dependence 
of teq on N . This is numerically done in the following manner. We 
scan through the time series of temperature and calculate the dif-
ference |T1(t) − T2(t)|. For t ≥ teq we expect,

|T1(t) − T2(t)| ≤ ϵ, (7)

where ϵ ∼ N−1 is a small preset tolerance and the value of teq
is estimated using the equality condition in Eq. (7). The depen-
dence of teq vs N is shown in Fig. 2. From the figure it is seen 
that teq ∝ Nγ for large N; the exponent γ ≈ 1.8. We estimated the 
value of the exponent γ for different values of the parameter α
and energy per particle (u1, u2). We plot the time series of tem-
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Fig. 4. (Color online.) Plot of the q values (q1, q2) and q-kurtosis (κq1
, κq2

), as obtained from the velocity histograms of the two systems as a function of time t: (a) without 
thermal contact kc = 0 and (b) with thermal contact kc = 1. (c) Plot for κq

(3−q)/(1+q) with time t: square (circle) data-points represent system S1(S2), and open (filled) 
data-points represent kc = 0 (kc = 1) respectively. Here N = 500 as in Fig. 3.

peratures (T1, T2) with rescaled time t → t/Nγ and estimate the 
value of the exponent γ by the collapse of the time when the two 
systems have practically the same temperature for all the curves. 
This is shown in Fig. 2b for α = 0.6 and (u1, u2) = (2, 4) and in 
Fig. 2c for α = 0.9 and (u1, u2) = (2, 4). We find that γ changes 
nominally with the change of these parameters. We also checked 
that increasing the number of contacts n, say from n = 2 to n = 10, 
the equilibration for fixed N is approached faster, as intuitively ex-
pected. Interestingly, the scaling teq ∼ Nγ still holds and with the 
same value γ (we obtain γ ≈ 1.85 for n = 10 with the other pa-
rameters being the same as in Fig. 2c) independent of the value 
of n. However, we prefer to keep a small value n << N , so as to 
have the total energy of the combined system after contact virtu-
ally equal to the sum of their individual energies before contact.

Next, we compute the velocity distribution of the two sys-
tems for multiple instances of time before and after the thermal 
contact is made. We choose N = 500 and for this value of N
teq ≈ 1.51 ×106 as can be seen from Fig. 2. Therefore, from t = 104

(when the thermal contact is established) to t ≈ 1.51 × 106 the 
coupled system is in transition to the final equilibrium state. The 
normalized velocity distributions are shown above in Fig. 3 for dif-
ferent instants of time. We find that the distribution of velocities is 
numerically close to a q-Gaussian and is also known from previous 
studies for the long-ranged FPU model in one dimension [15]. As 
such we fit the normalized histograms to a q-Gaussian distribution 
Eq. (5).

In Fig. 3 we have fit the data down to a range where P (v) ∼
1/N , the larger N being 103 in this case. Remarkably enough, we 
find that the data fit is quite satisfactory for over two decades 
of magnitude for both the decoupled and coupled systems. Thus 
one can see that for small t , q > 1 whereas q → 1 as t be-
comes large. In other words, the velocity distribution is similar to 
a q-Gaussian at small times and eventually becomes a Gaussian. 
Note that the velocity distribution is a key signature of the un-

derlying statistics and this is what justifies the title of the present 
manuscript: indeed, there is a crossover from q-statistics, marked 
by q-Gaussian velocity distributions, to Boltzmann–Gibbs statistics 
(with the usual Gaussian velocity distributions) at late times.

We perform this exercise for many time instances and extract 
the q values from the velocity distributions. Using this q, we also 
compute the q-kurtosis κq using Eq. (4) with the value of q ob-
tained from fitting the velocity histograms to q-Gaussian distri-
bution. These two quantities are shown in Fig. 4 for N1, N2 =
500, 1000 as a function of time both in absence (kc = 0) and pres-
ence (kc = 1) of the thermal contact respectively.

For kc = 0 (Fig. 4a) the q-values for S1 (filled squares) remain
roughly constant till they become q1 ≈ 1 at t > 107 whereas the 
other system S2 (filled circles) has a sharper variation and q2 ≈ 1
for t > 105. This is because of the fact that S2 has a higher temper-
ature (since, u1 < u2) and therefore has a faster approach to unity 
as compared to S1. Note that for two systems at the same temper-
ature, the one with larger size would approach q = 1 slower. Thus, 
the approach to q = 1 is an interplay of the system size and the 
temperature, all other parameters remaining the same.

In presence of thermal contact kc = 1 (Fig. 4b), S1 also has q
values close to unity at t > 105 similar to S2. Thus S2 forces S1 to 
have q = 1 since now the two systems are coupled to each other 
via the thermal contact. Thus at large times t > 106 both systems 
become essentially Boltzmann–Gibbs with q = 1 and κq = 1. The 
effect of the thermal contact therefore is to accelerate the attain-
ment of BG behavior for the two coupled systems.

In order to show that the velocity histograms are indeed nu-
merically close to q-Gaussian distributions, we compare κq ob-
tained using Eq. (4) to the analytical value of (3 −q)/(1 +q) i.e., the 
expression of κq obtained by substituting P (v) in Eq. (4) by Gq(v)
from Eq. (5). In Figs. 4a and b, to obtain the value of q and κq we 
have used velocity distribution data up to P (v) ≥ 10−5. In Fig. 4c 
we show the ratio the kurtosis values obtained numerically and 
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theoretically as κq
(3−q)/(1+q) . It is found that the maximum discrep-

ancy with regard to unity is always less than ∼ 4%, which indicates 
that the velocity distribution is well represented by a q-Gaussian.

4. Conclusion

To summarize, we coupled two long-range-interacting Fermi–
Pasta–Ulam lattices (under periodic boundary conditions) via a 
short ranged harmonic thermal contact and studied the relaxation 
process numerically. Before the contact is established the two long-
ranged systems exhibit non-Gaussian velocity distributions that fit 
very well to q-Gaussians. However, as soon as the thermal con-
tact is established both systems start to approach equilibration to 
a unique final temperature consistent with conventional thermo-
statistics. The equilibration time teq is found to increase as a 
power-law with the number of oscillators in the system; this is 
also true for short range interactions albeit with a different ex-
ponent. We compute the value of q and q-kurtosis from the his-
tograms of velocities. We find that the relaxation to equilibrium 
happens only if both systems satisfy Boltzmann–Gibbs statistical 
mechanics (hence, q = 1 and κq = 1) whereas, for all times before 
equilibration, the systems possibly satisfy q-statistics (with q > 1
and κq < 1). However, if we compare this work with Ref. [38], in 
the latter the two systems that exchange concentrations of vortices 
between them without a physical thermal contact of the usual 
kind (like the present one), maintain their non-Gaussian veloc-
ity distributions all the way long, including the final equilibrium 
states. We speculate that this could be attributed to the manner 
in which the energy exchange process happens here mediated by 
the thermal contact. The two systems even for α < 1 (in one di-
mension) no longer remain weakly chaotic (i.e., Lyapunov exponent 
λ → 0 for N → ∞ as a power-law [15,16]) and possibly any hier-
archical structure of the phase space is lost – the coupled system 
becomes well-mixed and exhibits Gaussian velocity distributions. 
An important question at this point is to address possible cou-
pling mechanisms that preserve the non-Gaussian behavior even at 
late times when the two long-ranged systems achieve equal kinetic 
and/or effective temperatures. We intend to explore these aspects 
in future works.

We acknowledge fruitful discussions with P. Rapcan and G. Si-
curo, as well as partial financial support from CNPq and FAPERJ
(Brazilian agencies) and the John Templeton Foundation (USA).
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