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Texture is one of the most important visual attributes for image analysis. It has been widely used in

image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been

proposed as an approach for texture analysis with promising results. This approach uses walkers (called

tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to

generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody

important characteristics related to tourist transitivity in the image. Computed from these graphs, the

statistical position (degree mean) and dispersion (entropy of two vertices with the same degree)

measures are used as texture descriptors. A comparison with traditional texture analysis methods is

performed to illustrate the high performance of this novel approach.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Texture is a visual attribute widely used to describe patterns and
characteristics of images. In fact, it is one of the most important visual
attributes for image analysis and pattern recognition. Texture consists
of the repetition of a gray-scale or color pattern on an image, or even
the lack of repetition or pixel organization. On one hand, the
definition of the texture concept can become vague and abstract,
which leads to a lack of a formal definition in the literature [1]. On the
other hand, its characteristics are straight connected with physical
properties of an object surface [2–4], which make textures very
attractive for a wide range of applications, such as medical images
diagnose [5–7], remote sensing [8], geological images [9], microscope
images [10,11], etc.

Texture analysis is supported by a wide variety of different
descriptors proposed along the years. There are different approaches
to deal with texture, some examples are properties obtained from
spectral analysis (e.g., Fourier descriptors [12] and Gabor filters [13]),
statistical analysis of the pixels (e.g., co-occurrence matrices [14],
local binary pattern [15], feature-based interaction map [16]) and
complexity of pixels distribution (e.g., fractal dimension [4,17–18]).

Recently, a partially self-avoiding deterministic walk (deter-
ministic tourist walk, DTW) algorithm has emerged as a very
ll rights reserved.

x: +55 16 3373 9879.

es),

.usp.br (O.M. Bruno).
promising approach for texture analysis [20–23]. It considers
independent walkers leaving from each pixel to exploit an image
characteristics. Each walker moves from one pixel to another
according to a deterministic rule and a given memory. This results
in partially self-avoiding trajectories, which can be separated into
two parts: one, where the walker mainly explores new pixels and
the other, where the walker is trapped in an attractor, a cycle of
pixels from where the walker cannot escape. Image analysis using
the tourist walks is usually performed through statistical analysis
over the joint distribution of transient times and attractor
periods [20–22]. As a result, the trajectory produced by each
tourist is not taken into account during the image analysis step.
The attractor and transient lengths are used to build histo-
grams. Here, we present a new concept: instead of focusing on
attractor and transient length histograms, we use the generated
trajectories to build a graph. The generated graph is capable to
characterize the image texture patterns.

This paper starts presenting a review about the deterministic
partially self-avoiding walk in Section 2. In Section 3, we show
how to build a graph from the trajectories engendered by the
tourist, given a walking rule and memory. A signature capable to
represent these graph properties and, as a consequence, charac-
teristic from the original image is proposed in Section 4. Experi-
ments using images extracted from the Brodatz album [24] are
presented in Section 5. Section 6 presents the obtained results
and a discussion. Finally, in Section 7, we conclude and propose
future studies.
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2. Deterministic partially self-avoiding walk

The partially self-avoiding deterministic walk algorithm
[25–29] can be understood as a tourist wishing to visit N cities
distributed in a map of d dimension, where each city is visited at
each time step according to the rule of walking to the nearest city
which was not visited in the last m steps. This rule produces a
partially self-avoiding trajectory, which can be separated into two
parts: a transient part of length t and an attractor final part, which
ends in a cycle with period p, pZmþ1, and from where the tourist
cannot escape. From the distribution of transient times and cycle
periods one has been able to characterize thesaurus [30] and
perform cluster analysis [31]. Also, stochastic versions of this
algorithm have been addressed [32–34]. These walks have been
used in other contexts, such as the modeling of the searching
behavior of social monkeys [35], foraging of primates [36], emer-
ging of power-laws in deterministic walks [37] and exploration of
heterogeneous media by deterministic agents [38].

Recently, from these deterministic partially self-avoiding walks
algorithm has emerged as a very promising approach for texture
analysis [20–22]. Consider a digital image containing N pixels with a
gray-level scale ranging from 0 to 255 associated to each pixel. A
traveler walks from one pixel to another belonging to its 8-neighbor-
hood, according to the following rule: move to the nearest or furthest
neighbor pixel (i.e., the one which differs in minimum or maximum
gray-level, respectively, from current position) and that has not been
visited in the last m (mA ½1,N�) previous steps. This algorithm has been
adapted to deal with color images [39].

Considering each image pixel as a starting point of the tourist
walk, the joint distribution of transients t and attractors p, SðNÞm,2ðt,pÞ is
achieved (Fig. 1). Studies have been performed over this joint
distribution to provide a feasible signature for image textures [20–22].
It is also important to note that, once the walking rule is defined
(to move to minimum or maximum difference), the rule must be
considered for all pixel and cannot be changed along the trajectory.
3. Building graph from walks

Instead of considering the transient time and cycle period joint
distribution to achieve a texture signature, we propose a novel
approach to use the deterministic partially self-avoiding walk. We
focus now on the behavior of the trajectories produced by each
tourist during its walk on the texture image. Each trajectory
consists of a set of transitions between two pixels performed by
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Fig. 1. Example of the transient time and cycle period joint distribution computed

from the deterministic partially self-avoiding walk on a gray scale image.
the tourist, for a given memory m and walking rule. The motion
from one pixel to another can be interpreted as a connection
between these two pixels in the image. As a result, the trajectories
can be used to build a graph, which describes the tourist
transitivity and, as a consequence, the attractive regions in the
image (attractors). Therefore, we propose to use these walks on
gray scale images to generate a graph, which holds information
about the texture pattern.

Consider a graph Gm,rule ¼ ðV ,EÞ, where m is the memory and
rule is the walking rule (minimum or maximum difference) used
by the tourist to move over the image. Initially, each image pixel
corresponds to a vertex in the graph (i.e., N¼V) with no edges
connecting them (E¼{}). As the tourist moves from pixel i to pixel
j on the image (Fig. 2), a non-directed edge ei,j is added to E. Note
that this is performed only if ei,j=2E, so that, duplicated vertices are
not added to the graph.

Taking each image pixel as a starting point for the tourist walk,
a graph representing the deterministic self-avoiding trajectories
found by the traveler is built (Fig. 2c). None of the vertices is
disconnected from the graph. Once these trajectories depend on
the gray-level distribution in an image region, vertices connec-
tions are altered according to different texture patterns. Thus, the
graph comprehends important characteristics concerning the
transitivity and attractive image regions. Studying its properties,
a feasible signature for texture analysis is proposed as follows.
4. Proposed signature

The proposed approach performs texture characterization
through properties of the graph generated from the deterministic
partially self-avoiding walk. To accomplish this purpose, two
graph measurements are considered: the graph degree and joint

degree.
The degree of a vertex vi, d(vi), represents the connectivity of

that vertex in the graph. It is defined as the number of edges of
the graph bound to vi:

dðviÞ ¼ jfeAEjviAegj ¼ jfvjAV jfvi,vjgAEgj ¼ j@vij, ð1Þ

where @vi ¼ fvjASjðvi,vjÞAEg represents the set of neighbor of vi

and j � j denotes the cardinality of a set [40].
Joint degree is a measure of correlation between the degrees of two

vertices connected by an edge [41]. Here we consider the probability
of having a vertex vi connected to another vertex vj. Since both
Fig. 2. (a) Example of a deterministic partially self-avoiding walk on a gray scale

image using minimum contrast difference and the last visited pixel is not allowed

(m¼ 1) (transient time in black, attractor cycle in gray). A walker leaves from pixel

‘‘76’’ and goes to the one of minimum contrast in the neighborhood ‘‘64’’. From

this pixel, the walker repeats the search and find pixel ‘‘76’’, but this pixel is not

allowed since it is in the memory window, so that the walker goes to the second

minimum contrast pixel ‘‘89’’. The process is repeated, and the walker passes by

the pixels ‘‘92’’ and ‘‘45’’ before being trapped the cycle with pixels: ‘‘42’’, ‘‘45’’ and

‘‘61’’. (b) Each pixel in (a) corresponds to a vertex in (b). Edges are added into the

graph by following the walk. (c) The full graph is obtained with the tourist leaving

from all the pixels.



Fig. 3. Example of 111 Brodatz texture classes considered.

Table 1

Success rate (%) for the c signatures combining different m values in the Brodatz

database.

Memories used (m) cðminÞ
m ,...,m cðmaxÞ

m ,...,m ½cðminÞ
m ,...,m ,cðmaxÞ

m ,...,m �
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vertices present the same degree d(vi), this probability is

PðviÞ ¼
nðviÞ

dðviÞ
, ð2Þ

where

nðviÞ ¼ jfvjAV jfvi,vjgAE4dðviÞ ¼ dðvjÞgj ð3Þ

is the number of vertices connected to vi which present its same
degree value, deg(vi). Vertices with the same degree may indicate that
the tourist walk has a similar behavior in that region of the graph and,
as a consequence, in the texture. Thus, it is interesting to investigate
the connection of these vertices.

Different measures can be computed from a graph Gm,rule

analyzing its degree and joint degree distributions over the
vertices. For the proposed application, the following measure-
ments were used: the average degree

Dm,rule ¼
X

vi AV

dðviÞ

N
, ð4Þ

and the entropy of the joint degree

Hm,rule ¼�
XN

i ¼ 1

PðviÞlog2½PðviÞ�: ð5Þ

The statistical position and dispersion measurements were
used to compose two feature vectors. These vectors represent the
mean degree distribution and the dispersion of the same degree
vertex pairs. They allow us to characterize the texture behavior
according to the properties of the graphs generated for tourist
walks considering different walking rules and memories:

cðruleÞ
m1 ,...,mM

¼ ½Dm1 ,rule,Dm2 ,rule, . . . ,DmM ,rule�, ð6Þ

and

jðruleÞ
m1 ,...,mM

¼ ½Hm1 ,rule,Hm2 ,rule, . . . ,HmM ,rule�: ð7Þ

1 M 1 M 1 M 1 M

{0, 1} 29.37 39.64 71.08

{0, 1, 2} 44.05 60.63 80.18

{0, 1, 2, 3} 53.69 72.34 85.76

{0, 1, 2, 3, 4} 59.82 75.22 86.67

{0, 1, 2, 3, 4, 5} 60.99 77.93 88.20

{0, 1, 2, 3, 4, 5, 6} 63.69 79.10 87.84

Table 2
Success rate (%) for the j signatures combining different m values in the Brodatz

database.

Memories used (m) jðminÞ
m1 ,...,mM

jðmaxÞ
m1 ,...,mM

½jðminÞ
m1 ,...,mM

,jðmaxÞ
m1 ,...,mM

�

{0, 1} 24.59 34.23 59.01

{0, 1, 2} 27.66 54.59 68.83

{0, 1, 2, 3} 30.09 61.80 72.79

{0, 1, 2, 3, 4} 32.07 66.04 74.68

{0, 1, 2, 3, 4, 5} 33.69 69.37 76.40

{0, 1, 2, 3, 4, 5, 6} 34.59 69.64 77.21
5. Experiments

The proposed signatures were evaluated in a texture classifi-
cation experiment which used images extracted from Brodatz
album [24]. This album is a set of texture images widely used as
benchmark for texture analysis methods. A total of 1110 images
grouped into 111 classes of 10 samples each was considered. Each
image has 200�200 pixels of size and 256 gray-levels, and it
represents a subsection of a larger Brodatz image. Fig. 3 shows an
example of each Brodatz texture class considered.

From each texture sample considered, the proposed signatures
were computed. Statistical analysis of these signatures was
carried out applying a linear discriminant analysis (LDA)
[42,43]. The LDA is a well-known and supervised method which
aims to find a linear combination of descriptors with good
discriminative properties. It searches a combination of descriptors
where the variance inter-classes is larger than intra-classes. The
leave-one-out cross-validation (LOOCV) scheme was also used
during the experiment. LOOCV is one of the simplest procedures
for training and testing samples. Basically, each sample is used as
a testing set, while the remaining samples are defined as training
samples [44].
6. Results and discussion

6.1. Parameters evaluation

At first, each signature was evaluated in order to determine
the set of memory values that best characterizes the texture. At
this point, we also considered both walking rules: minimum and
maximum difference. Tables 1 and 2 show the results obtained for
degree and joint degree signatures, respectively.

In general, success rate yielded by each signature tends to
increase as the number of memories considered increases. More
memory values selected leads to more descriptors in the com-
puted signature. Moreover, memories of different sizes influence
the way the walks are performed by the tourist in an image.
Previous studies [21] showed that the memory size affects the
number of attractors found, as also the quantity of attractors, in
the image. As the memory increases, the number of attractors is
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reduced, i.e., it is more difficult to find a set of pixels to compose
an attractor satisfying the memory and the walking rule used. As
a consequence, tourists are forced to perform longer walks to find
an attractor. Thus, the use of different memories provides a better
exploration of image context, and it enables us to capture texture
details in both micro- and macro-scales. This mechanism improves
the capacity of discrimination of the proposed signatures.

Independently of the memory set considered, descriptors com-
puted from graphs generated using the maximum difference in the
tourist walk achieve a better performance than the minimum one.
An explanation for this behavior lies in the fact that tourists guided
to the minimum difference tend to locate attractors where the
homogeneity in the image is higher, thus avoiding remarkable
characteristics of the image, such as edges. Otherwise, tourists
guided to the maximum difference search for attractor where the
changes in image are more abrupt (illumination and texture
pattern changes or presence of edges). This difference between
walking rules is reflected on the generated graph and also on its
properties. Thus, these signatures emphasize different texture
characteristics and, therefore, they present different performances.

Once different walking rules generate signatures with distin-
guished characteristics of the image (homogeneous and hetero-
geneous regions), it is convenient to consider the concatenation of
the signatures computed for both rules in the image classification.
As expected, the results show that this approach yields a signa-
ture with superior performance, independent on the graph
property (degree or joint degree) considered.

With respect to the graph characteristic used to compose a
signature, degree signatures (c) present a superior performance
than joint degree signatures (j). This difference of performances
indicates that degree measures are more effective than measures
based on probability distributions (joint degree) in the character-
ization of graph based structures. As the nature of these signa-
tures is different, it can be convenient to combine them. Table 3
presents the results for this signature combination. The results
show, as expected, an increase in the success rate.

However, as the number of memories increases, smaller is the
increase in the success rate, which may indicate that this approach
is more effective only when few memory values are considered.
However, the more memory values we use, the smaller is the
increase in the success rate. This may indicate that this approach is
more effective only when few memory values are considered.
6.2. Comparison with other texture analysis methods

To provide a better evaluation of the proposed approach, a
comparison with other texture methods found in literature was
performed. For this comparison, the best result achieved by our
approach was considered. Thus, our signature consists of both
graph signatures (degree c and joint degree j signatures), each
computed for the memory set m¼ f0,1,2,3,4,5g and for both
minimum and maximum walking rules. This makes a total of 24
descriptors.
Table 3

Success rate (%) for the c and the j signatures combining different m values in the

Brodatz database.

Memories used (m) ½cðminÞ
m1 ,...,mM

,cðmaxÞ
m1 ,...,mM

,jðminÞ
m1 ,...,mM

,jðmaxÞ
m1 ,...,mM

�

{0, 1} 85.49

{0, 1, 2} 87.48

{0, 1, 2, 3} 89.55

{0, 1, 2, 3, 4} 90.00

{0, 1, 2, 3, 4, 5} 91.89

{0, 1, 2, 3, 4, 5, 6} 91.80
The methods used in this comparison experiment are:
co-occurrence matrices [14], Fourier descriptors [12], Gabor
filters [13,45,46] and multilevel fractal dimension [4]. The follow-
ing paragraphs briefly describe these texture descriptors.

Co-occurrence matrices: Each matrix represents the joint prob-
ability distributions between the gray-level values of pairs of
pixels at a pre-determined distance and orientation. The feature
vector is composed of energy and entropy values computed from
the matrices obtained for distances of 1 and 2 pixels, with angles
of �453, 03, 453, 903, what makes a total of 16 descriptors. A non-
symmetric implementation of the matrices is considered.

Fourier descriptors: A vector containing 99 coefficients is
computed from the image spectrum, which is obtained through
Fourier transform applied over the input image. Each coefficient is
the sum of the spectrum absolute values from a given radial
distance from the center of the transformation.

Gabor filters: Each filter is a bi-dimensional gaussian function
moduled with an oriented sinusoid in a determined frequency
and direction. In this paper, a total of 16 filters (four rotation and
four scale filters), with 0.01 for lower frequency and 0.3 for upper
frequency were used. Feature vector is composed of energy values
computed from the image resulting from the convolution of each
Gabor filter over the input image.

Wavelet descriptors: Four dyadic decompositions with daube-
chies 4 are performed over a given image using the multilevel 2D
wavelet decomposition. Energy, entropy and mean features are
measured for horizontal, diagonal and vertical details, what
makes a total of 36 features [47–49].

Multilevel fractal dimension: It is a complexity-based method
which analyzes an image by the complexity changes in its
different gray-levels. It uses a set of threshold values to achieve
a set of binary versions of the original image. The fractal dimen-
sion is estimated from each binary image, thus resulting in a
feature vector characteristic for the image. In this paper, a total of
70 thresholds was used.

Tamura features: It is a set of six texture features correspond-
ing to human visual perception, developed by Tamura et al. [50].
These features are coarseness, contrast, directionality, line-like-
ness, regularity, and roughness. The first three features are more
correlated with the human perception.

The proposed approach was also compared to the original tourist
walk method [22]. This approach computes a texture signature
directly from the joint distribution of transient and attractors.
Histograms from these walks are computed from the joint prob-
ability distribution achieved for different m values and walking rules.
Thus, descriptors selected from these histograms are combined to
compose the feature vector which represents the texture pattern
under analysis. A total of four histogram descriptors were consid-
ered to compose the feature vectors signature. Memory values
m¼ f0,1,2,3,4,5g, for both minimum and maximum walk rules,
were considered to compute the histograms.

Table 4 shows the results obtained by each method. Signatures
computed from the graph presented the highest success rate,
overcoming all compared methods. On one hand, it is important
to note that the proposed approach also uses fewer descriptors
than Fourier descriptors and multilevel fractal dimension meth-
ods. On the other hand, co-occurrence matrices and Gabor filters
methods uses fewer descriptors than our approach. Moreover,
Gabor filters presented a success rate close to ours using only 16
descriptors. However, it is interesting to recall the result achieved
when using the degree and joint degree signatures, ½cðminÞ

f0,1,2,3g,
cðmaxÞ
f0,1,2,3g,j

ðminÞ
f0,1,2,3g,j

ðmaxÞ
f0,1,2,3g�, in Table 3. In this case, the signature is

composed of only 16 descriptors, and it yields a success rate of
89.55%, a result superior than the one achieved by Gabor filters
and using the same number of descriptors, what corroborates
the effectiveness of the approach for texture analysis and



Table 4
Comparison results for different texture methods.

Method Images correctly

classified

Success rate

(%)

Co-occurrence matrices 968 87.21

Fourier descriptors 888 80.00

Gabor filters 992 89.37

Wavelet descriptors 1001 90.18

Multilevel fractal dimension 1016 91.53

Histogram based tourist

walk [22]

992 89.37

Tamura features 734 66.13

Proposed approach 1020 91.89
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classification. As the processing bottleneck of the proposed algo-
rithm is the walk over the image and the attractor detection, its
computational complexity is the same of the original tourist walk
method [22]. In Ref. [22], the computational complexities of the
tourist walk were studied and estimated. It depends on the nature
of the image and can vary from O(N4) (worst case) to O(N2) (best
case). The worst case is very rare and occurs when no attractor is
found in the trajectories. Since attractors are found in the great
majority of trajectories, in practical terms the computational
complexities of the algorithm is O(N2). The algorithm has a good
performance. It is not so fast as the multilevel fractal dimension,
which is based on the box counting (which can achieve OðNlogNÞ

in an optimized implementation), but its performance is similar
to the Fourier transform, wavelet discrete transform and
co-occurrence matrix (O(N2)) and better than Gabor (OðN2logNÞ),
which allowed a competitive time consuming performance to the
proposed algorithm.
7. Conclusion

We presented a novel approach of texture feature extraction
based on deterministic tourist walks and graph theory. The tourist
walk is a method which uses a traveler to explore an image
according to a given memory, resulting in partially self-avoiding
trajectories, which are modeled as a graph. The behavior of this
graph depends on the walking rule, memory size and the image
context. From the study of the graph degree and joint degree
distributions obtained from different walking rules and mem-
ories, the proposed approach yields a signature. This signature
comprehends important characteristics concerning about the
transitivity and attractive regions on an image and was evaluated
in an experiment using linear discriminant analysis to classify a
set of Brodatz textures. The results show the great potential of the
method as a feasible texture analysis methodology.

As for short term future work, we plan to investigate the
discrimination power of other features of the graph, such as
clustering coefficient, average path length and others [51,52].
Moreover, we intend to investigate the application of the method
to texture segmentation, with special interest in the connection
among graph vertices, more specifically, groups of vertices that
have a high density of edges within them, and thus given origin to
community structure in the graph and, as a consequence, differ-
ent texture regions in the image.
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