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a b s t r a c t

22Recently, the deterministic tourist walk has emerged as a novel approach for texture analysis. This
23method employs a traveler visiting image pixels using a deterministic walk rule. Resulting trajectories
24provide clues about pixel interaction in the image that can be used for image classification and identifi-
25cation tasks. This paper proposes a new walk rule for the tourist which is based on contrast direction of a
26neighborhood. The yielded results using this approach are comparable with those from traditional tex-
27ture analysis methods in the classification of a set of Brodatz textures and their rotated versions, thus
28confirming the potential of the method as a feasible texture analysis methodology.
29Ó 2010 Published by Elsevier B.V.

30

31

32 1. Introduction

33 Texture is an important visual attribute which is presented in
34 the most real world images. Although this attribute is naturally
35 processed by natural vision and easily comprehended by humans,
36 there is no formal definition for it. Indeed, textures are complex
37 visual patterns formed by arrangements of pixels, regions or even
38 set of patterns formed by other visual attributes, such as shape or
39 color. These patterns can be composed by completely distinct fac-
40 tors, such as pixel organization or even its disorganization. In fact,
41 depending of the context, the noise can be considered as a sort of
42 texture. These characteristics of the texture attribute make it spe-
43 cial and hard to be well defined. A detailed description of the tex-
44 ture perception and its applications to machine vision can be found
45 in (Tuceryan and Jain, 1993).
46 There are many approaches for texture analysis and segmenta-
47 tion. Some consider different aspects of the visual attribute as also
48 use different mathematics to handle it. Most popular approaches
49 are based on spectral analysis of the image pixels (e.g., Fourier
50 descriptors (Azencott et al., 1997), Wavelets and Gabor filters (Jain
51 and Farrokhnia, 1991)), statistical analysis of the pixels (e.g., co-
52 occurrence matrices (Haralick, 1979), local binary pattern, fea-
53 ture-based interaction map (Chetverikov, 1999) and complexity
54 analysis by fractal dimension (Chaudhuri and Sarkar, 1995; Emer-
55 son et al., 1999; Kasparis et al., 2001).

56Recently, we have proposed a novel approach to texture analy-
57sis based on deterministic walks (Campiteli et al., 2006; Backes
58et al., 2006), which overcomes the most popular and state of art
59texture analysis methods, specially for uniform biological textures
60(Backes et al., 2010). Although it is not so thoroughly investigated
61as random walks on regular latices and random media (Fisher,
621984; Metzler and Klafter, 2000; Derrida, 1997), deterministic
63walks in regular (Freund and Grassberger, 1992; Bunimovich and
64Troubetzkoy, 1992; Gale et al., 1995) and disordered media (Bun-
65imovich, 2004) have also presented very interesting results. While
66the deterministic walk appears in computer science literature as
67intelligent agents, our approach explores trajectories inside the
68image using a statistical strategy. Thus, it brings a novel approach
69to explore walkers in pattern recognition and image analysis.
70The deterministic tourist walks (DTW) was introduced in Lima
71et al. (2001) to study the models of deterministic walks. On images,
72the DTW is adapted to consider each pixel as a city with 8-con-
73nected neighbours. The distance between the cities is determined
74by the difference in pixel intensity. In this approach, there are
75some situations where some neighbours may present the same
76pixel intensity and a rule must be incorporated to choose just
77one of them. Special situations arise from this choice, and it can
78compromise with the accuracy of the DTW texture analysis. To cor-
79rect this, we propose a different approach to model images for the
80DTW. In the new DTW image analysis, the connection between the
81pixels is established by vectors and a deterministic rule is deter-
82mined by the vector arithmetic. It guarantees that there is just
83one direction for the walker to choose, even when some cities pres-
84ent the same distance. This new model is simple, efficient, and it
85improves considerably the DTW. These paper details the method
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86 and presents comparative experiments that demonstrate the
87 advantages of this approach to the usual DTW and the performance
88 of the method.
89 This paper starts by presenting an overview of the deterministic
90 tourist walk in Section 2. In Section 3, the method is detailed for
91 image applications as well as the problem of detecting an attractor
92 during a walk. A new walk rule is proposed to improve the algo-
93 rithm efficiency. In Section 4, a study of the dynamics of the tourist
94 walk on texture images is presented. We also show how to build
95 texture signatures vectors from the transient time and cycle period
96 joint probability distributions. Experiments using synthetic and
97 natural texture images are proposed in Section 5. The obtained re-
98 sults are presented in Section 6. Finally, in Section 7, conclusions
99 and improvements of the method are discussed.

100 2. Deterministic tourist walk (DTW)

101 The deterministic tourist walk algorithm can be understood as
102 a traveler wishing to visit N cities distributed on a map of d

103dimensions. Starting from a given city, the tourist moves accord-
104ing to the following rule: go to the nearest city, which was not vis-
105ited in the last l steps (Lima et al., 2001; Stanley and Buldyrev,
1062001; Kinouchi et al., 2002; Tertariol and Martinez, 2005; Terca-
107riol et al., 2007). This partially self-avoiding walk consists of a
108transient part of length t (where new cities can be visited) and
109a final cycle of period pP l + 1, called attractor, and where
110new cities are not visited any longer (Fig. 1). The tourist’s move-
111ments are entirely performed based on its neighbourhood and its
112trajectory depends on the starting point and memory l. Trajecto-
113ries which start at different points can end in the same attractor
114of period p.
115For image applications (d = 2), the tourist walk algorithm con-
116siders each pixel as a city in a two-dimensional map. Each pixel
117interacts only with its 8 nearest neighbor pixels. The tourist moves
118according to the deterministic rule of going to the pixel which pre-
119sents the nearest intensity in comparison with the current pixel
120intensity. Also, this pixel must have not been visited in the preced-
121ing l steps. For a given memory l, the transient time and cycle

Fig. 1. Example of a tourist walk over an image using l = 1. (a)–(h) Tourist’s current position in red, previous steps in gray; (i) The transient part, t = 4, is in gray, while the

attractor part, p = 3, is in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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122 period are computed for all starting points of the image, thus
123 resulting in the joint distribution of transient and attractor of the
124 image SðNÞ2;lðt; pÞ, where SðNÞ2;lðt; pÞ is a bi-dimensional histogram
125 which represents the number of times that a walk presents tran-
126 sient size t and attractor size p when walking on a image contain-
127 ing N pixels. An example is depicted in Fig. 2.
128 The joint distribution can efficiently be used as features for im-
129 age analysis and texture characterization purposes (Backes et al.,
130 2006, 2010). This is due to the fact that the joint distribution
131 behavior is a result of the different changes in the tourist trajectory
132 during its walk. These changes in trajectory depend on the image
133 context of the image, and therefore, it takes into account local
134 and global information of the image. As a result, the texture infor-
135 mation is stored in the joint probability distribution, which can be
136 used for texture characterization and classification.
137 The drawback of the DTW on image is the presence of two or
138 more directions complying with the tourist walking rule. To solve
139 this problem, we propose the following strategy presented in the
140 next section: the maximum contrast direction.

141 3. Maximum contrast direction

142 Consider a vector in the Cartesian space V
!
¼ fvx;vyg, where vx

143 and vy represent its components along the x and y axis, respec-
144 tively. Given an image pixel g0, which here we consider as the pixel
145 where the tourist is current placed, each one of its neighboring pix-
146 els gi,i = 1,. . .,8, has its gray level intensity mapped into a vector V i

!

147 according to its relative position to pixel g0. From this mapping,
148 three types of vectors arise:

149 � Horizontal vectors: V3

!
¼ fg3;0g and V7

!
¼ fÿg7;0g.

150 � Vertical vectors: V1

!
¼ f0;ÿg1g and V5

!
¼ f0; g5g.

151 � Diagonal vectors: V2

!
¼

ffiffi

2
p

g2
2

f1;ÿ1g;V4

!
¼

ffiffi

2
p

g4
2

f1;1g;V6

!
¼

ffiffi

2
p

g6
2

152 fÿ1;1g;V8

!
¼

ffiffi

2
p

g8
2

fÿ1;ÿ1g.
153

154 From the sum of the vectors achieved, it is possible to compute
155 the maximum contrast direction relative to pixel g0:

V r

!
¼ frx; ryg ¼

X

8

i¼1

V i

!
: ð1Þ

157157

158 By normalizing the components of vector V r

!
, we are able to deter-

159 mine the maximum contrast direction in the discreet space, which
160 is the case of image pixels. This normalization is performed by
161 dividing each component of vector V r

!
by its absolute value, thus

162 resulting in:

Vd

!
¼ fdx;dyg ¼ rx

jrxj
;
ry
jryj

� �

; ð2Þ
164164

165where jrxj and jryj– 0. The components dx,dy 2 {ÿ1, 0, +1} of the
166vector Vd

!
represent the coordinates of the image pixel where the

167tourist must move into, relative to the pixel g0, and which coincides
168with the maximum contrast direction at pixel g0 (see Fig. 3).
169The maximum contrast direction Vd

!
is computed at each step of

170the tourist walk, and this rule is applied until the tourist finds an
171attractor and ends it walk. However, when the transient time
172reaches the number of cities/pixels of the image (which means that
173the tourist already visited all the cities on the map without finding
174a cycle) or when Vd = {0,0} (the tourist found a homogeneous re-
175gion in the image where there is no contrast direction), the tourist
176is not able to find an attractor, and so it stops its walk.

1774. Texture signature with DTW

178As the tourist walks on an image, its trajectory changes accord-
179ing to the image context. These changes during the trajectory re-
180flect on the behavior of the transient time and attractor period
181computed for each tourist walk throughout the joint distribution
182probability. Thus, measurements computed from the joint distri-
183bution probabilities can efficiently be used as features for texture
184analysis and characterization (Backes et al., 2006).
185Let us consider the transient time [htl(n)], attractor period
186[hpl(n)] and walking [hwl(n)] histograms as feasible texture signa-
187tures. These histograms are computed from the joint distribution
188as follows:

Fig. 3. Calculus of the direction where the tourist must move into during its walk

from a pixel g0: (a) Neighbor pixels and relative positions (dx, dy); (b) vectors

computed considering the gray level intensity and the relative position to pixel g0;

maximum contrast direction Vd

!
computed. In this case, tourist must move from g0

to g2.

Fig. 2. Example of texture image and the tourist walk transient time t and cycle period p joint distribution, for l = 1.
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htlðnÞ ¼
X

p

SðNÞ2;lðn; pÞ; ð3Þ

hplðnÞ ¼
X

t

SðNÞ2;lðt;nÞ; ð4Þ

hwlðnÞ ¼
X

n¼tþp

SðNÞ2;lðt; pÞ; ð5Þ
190190

191 where n represents, respectively, the distribution of transient time,
192 attractor period and walk length on the image.
193 As the texture pattern and the memory l employed changes,
194 new joint distributions are achieved. Each joint distribution has a
195 particular behavior which reflects in the histograms computed. It
196 makes these histograms useful tools for texture analysis (see
197 Fig. 4).
198 It is important to note that the attractors have period pP l + 1,
199 unlike the transient time, which starts in t = 0. Thus, the first
200 descriptor selected for the attractor and walking histograms neces-
201 sarily has a size l + 1. The feature vector is built by concatenating
202 the n first descriptors selected from one histogram for a given spe-
203 cific memory:

~wht
l ðnÞ ¼ ½htlð0Þ;htlð1Þ; . . . ;htlðnÿ 1Þ�; ð6Þ

~whp
l ðnÞ ¼ ½hplðlþ 1Þ;hplðlþ 2Þ; . . . ;hplðlþ nÞ�; ð7Þ

~whw
l ðnÞ ¼ ½hwlðlþ 1Þ; hwlðlþ 2Þ; . . . ; hwlðlþ nÞ�: ð8Þ205205

206 As the transient time and cycle period joint distribution depends on
207 l value, a feature vector which considers different l values is also
208 evaluated:

uh
l1 ;...;lM

ðnÞ ¼ wh
l1
ðnÞ;wh

l2
ðnÞ; . . . ;wh

lM
ðnÞ

h i

; ð9Þ210210

211 where h is the histogram adopted (ht, hp or hw).
212 This uh feature vector enables us to characterize a texture pat-
213 tern considering different scales, where each scale is represented
214 by a different l value.

215 5. Experiments

216 Our proposed approach was evaluated using transient, attractor
217 and walking histograms for different l values in a texture analysis
218 and classification context. A database containing 111 textures ob-
219 tained from Brodatz texture album (Brodatz, 1966) was used. Bro-
220 datz textures are broadly used in computer vision and image
221 processing literature as benchmark for texture analysis. A total of

22210 samples of 200 � 200 size and 256 grey levels were considered
223for each texture class, which makes a total of 1110 texture images
224in the database. Fig. 5 shows an example of each texture class con-
225sidered while Fig. 6 shows examples of texture variability inside a
226class.
227Statistical analysis was performed by applying linear discrimi-
228nant analysis (LDA) in a cross-validation scheme over the signa-
229tures computed for each texture sample considered. LDA enables
230us to estimate a linear subspace with good discriminative proper-
231ties, i.e., a linear subspace where the variance between classes is
232larger than the variance within classes. As LDA is a supervised
233method, the class definition is necessary during its estimation pro-
234cess (Everitt and Dunn, 2001; Fukunaga, 1990).
235To perform a better evaluation of the method, a comparison
236with traditional texture analysis methods was also performed.
237Thus, Fourier descriptors (Azencott et al., 1997), co-occurrence
238matrices (Haralick, 1979) and Gabor filters (Jain and Farrokhnia,
2391991; Daugman and Downing, 1995; Idrissa and Acheroy, 2002)
240were tested with the proposed database. A brief description of each
241method is presented as follows:
242Fourier descriptors: the Fourier Transform is applied over the im-
243age and, after a shifting operation, a feature vector is built contain-
244ing the sum of the spectrum absolute values at a specific radius
245distance, thus resulting in a total of 99 descriptors.
246Co-occurrence matrices: basically, the co-occurrence matrices
247are the joint probability distributions between pairs of pixels at a
248pre-specific distance and direction. During the experiments, dis-
249tances of 1 and 2 pixels with angles of ÿ45°, 0°, 45°, 90° were used.
250Descriptors of energy and entropy were computed from resulting
251matrices, thus resulting in a feature vector containing 16 descrip-
252tors. A non-symmetric version has been adopted in experiments.
253Gabor filters: an input image is convolved by a family of Gabor
254filters. Each Gabor filter is a bi-dimensional gaussian functionmod-
255uled with an oriented sinusoid in a determined frequency and
256direction. During the experiments, the best results were yielded
257by using a family of 16 filters (4 rotation and 4 scale filters), with
258lower and upper frequency equal to 0.01 and 0.3, respectively.
259Descriptors of energy were computed for each computed filter.
260Definition of the individual parameters of each filter follows math-
261ematical model presented in Manjunath and Ma (1996).
262To evaluate the rotation invariance of the method, an additional
263database containing 10 different orientations for each texture class
264was considered. It is important to emphasize that some Brodatz
265patterns cannot be freely rotated during the extraction of a

Fig. 4. Examples of the walking histogram for different texture patterns and l values.
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266 200 � 200 size sample (e.g., Brodatz patterns D42, D43 e D44).
267 These patterns, when rotated, may produce a constant pattern
268 which does not correspond to the original Brodatz texture depend-
269 ing on the region where the samples are extracted from. Thus, in

270order to avoid this problem, a single region containing a well-de-
271fined pattern was considered during the extraction of the rotated
272samples. Fig. 7 shows examples of a given texture under different
273orientations.

Fig. 5. One example of each of the 111 Brodatz’s classes considered. Each image has 200 � 200 pixels and 256 grey levels.
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274 6. Results

275 6.1. Comparison with other methods

276 Table 1 shows the yielded results of each method compared. For
277 this comparison, we employed the parameters of the tourist walk
278 which leads to the best result. Thus, the tourist signature here em-
279 ployed is the concatenation of the feature vectors uha

0;1;2;3;4;5ð3Þ;
280 uht

0;1;2;3;4;5ð5Þ and uhw
0;1;2;3;4;5ð8Þ, totalizing 96 descriptors.

281 Although results yielded for proposed method show a superior
282 performance over Fourier descriptors and co-occurrence matrices,
283 Gabor filters presented a similar result for the considered database
284 (89.37%). This result confirms that the combination of different fea-
285 tures extracted from joint distribution, as also the use of different
286 memory values, produces a texture signature with great discrimi-
287 nation power, which is also capable of dealing with a large number
288 of texture patterns. Notice, however, that Gabor filters use only 16
289 descriptors while the tourist signatures need 96 descriptors to ob-
290 tain the same result.

291 6.2. Rotation tolerance

292 An interesting and desirable characteristic in texture recogni-
293 tion applications is the ability of the method to recognize a texture
294 pattern independent of its orientation.
295 In the proposed approach, the tourist walks on a texture image
296 according to the maximum contrast direction from the current

297step. Rotation transform does not affect pixel intensities, and it
298does not change the neighborhood of a pixel, both items consid-
299ered when computing the subsequent tourist step. Nevertheless,
300images are discreet structures, and they cannot be freely rotated.
301A small variation in the computed direction may occur for a given
302texture sample depending on the chosen rotation angle. However,
303for 90°-rotated versions of an image, the maximum contrast direc-
304tion is maintained perfectly unaltered. This indicates that the pro-
305posed texture features are insensitive for rotation multiples of 90°
306(Fig. 8).
307Table 2 shows the results yielded when the method is applied
308over rotated textures. Results show a superiority of the proposed
309approach over Gabor filter when dealing with different rotated ver-
310sions of a texture pattern. As in the previous experiment, the tour-
311ist walk also presented a performance similar other methods (in
312this case, with the Fourier descriptors). It indicates that the pro-
313posed approach presents a performance similar to Gabor filter
314and Fourier descriptors for image analysis and rotation tolerance,
315respectively.

3166.3. Computational complexity

317To understand the computational complexity of the tourist
318walk, we must consider that the method considers each image pix-
319el as a starting point. Thus, for an image of N � N size, this leads to
320N2 walks. Each resulting walk consists of a transient part, of size t,
321and, an attractor of size pP l + 1, which may not be present. In

Fig. 7. Examples of Brodatz rotated samples: (a) 15°; (b) 30°; (c) 45°; (d) 60°; (e) 75°; (f) 90°; (g) 105°; (h) 120°; (i) 135°; (j) 150°.

Fig. 6. Examples of variability in texture of two Brodatz classes.
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322 this case, the transient part is considered as having its size equal to
323 the number of image pixels, i.e., t = N � N and p = 0. All this consid-
324 ered, the computational complexity of the tourist walk is stated as
325 O(N2(t + p)), where (t + p) is the size of a tourist walk.
326 Both best and worst case of the method are achieved only in
327 special cases of image context or memory. The best case occurs
328 when all walks already start on an attractor (t = 0) and only if the
329 attractor presents the minimum size possible. The attractor’s min-
330 imum size depends on the memory l and it is achieved for l = 0,
331 which minimizes the attractor size to p = 1. Therefore, in this case,
332 the computational complexity of the method is O(N2). The worst
333 case occurs when the attractor is never found during the walk.
334 Thus, independent of the memory size l, the tourist walk presents
335 size t + p = N2, which leads to complexity O(N4). However, it is
336 important to emphasize that both cases, specially the worst case,
337 are very rare cases. On one hand, the best case is easily found for
338 some walks in a common image. On the other hand, the worst case
339 requires a very specific configuration of pixels in the image, so that,
340 even a random generated image does not produce this special case
341 of walk.

342 7. Conclusion

343 In this paper, we proposed a different approach to compute the
344 direction during the deterministic tourist walk in order to explorer
345 an image in a given scale (memory). Instead of using a simple dif-
346 ference of intensities between pixels, we proposed to use the
347 intensities and relative positions of the neighbor pixels to compute
348 the maximum contrast direction of a pixel. This direction points to
349 the neighbor pixel that a traveler must go in the next step of the
350 Tourist Walk to find an attractor.

351Signatures computed from joint distribution computed using
352this walk were tested in image classification experiments. Linear
353discriminant analysis was employed to classify a set of Brodatz tex-
354tures and their rotated versions. Comparison with other methods
355shows a great potential of the method as a feasible texture analysis
356methodology.
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Table 1

Comparison with traditional texture analysis methods.

Method No. of

descriptors

Images correctly

classified

Success rate

(%)

Gabor filters 16 992 89.37

Fourier descriptors 99 888 80.00

Co-occurrence

matrices

16 665 59.91

Tourist walk 96 992 89.37

Table 2

Comparison with traditional texture analysis methods using rotated textures.

Method No. of

descriptors

Images correctly

classified

Success rate

(%)

Gabor filters 16 885 79.73

Fourier descriptors 99 966 87.02

Co-occurrence

matrices

16 105 9.46

Tourist walk 96 966 87.02

Fig. 8. For 90°-based rotation the maximum contrast direction is constant.
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