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In this paper, we present a study on a deterministic partially self-avoiding walk (tourist walk), which
provides a novel method for texture feature extraction. The method is able to explore an image on
all scales simultaneously. Experiments were conducted using different dynamics concerning the tourist
walk. A new strategy, based on histograms, to extract information from its joint probability distribution
is presented. The promising results are discussed and compared to the best-known methods for texture
description reported in the literature.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Texture is an important visual attribute. It is used to describe im-
ages in computer vision and image processing. Applications using
textures are found in various areas, ranging from aiding diagnoses in
medical images [1], passing by remote sensing [2], analysis of geo-
logical structures in images [3], microscope images [4], etc. Texture
is a visual pattern attribute. It consists of sub-patterns, which are
related to the pixel distribution in a region and characteristics of the
image object, such as size, brightness and color. Even though, there
is no exact definition for the term texture, this is an attribute easily
comprehended by humans and responsible for extracting meaning-
ful information from images. The importance of texture perception
is presented in Ref. [5] from the viewpoint of human vision and prac-
tical computer vision applications.

Many methods have been proposed in the literature for an effi-
cient texture description [5,6]. These methods are, in general, based
on the spectral analysis of the pixels of the image (e.g., Fourier de-
scriptors [7] and Gabor filters [8]), statistical analysis of the pixels
(e.g., co-occurrence matrices [9], Local Binary Pattern [10], Feature-
based Interaction Map [11]) and complexity analysis (e.g., Fractal
Dimension [12–14]). However, most of the proposed methods fo-
cus on micro-texture analysis (analysis of a small set of pixels).
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The number of methods applied to macro-textures is reduced, due
to the inherent difficulty in the analysis [3].

Recently, we have proposed a novel method of texture analysis
able to explore different scales in the image, the deterministic tourist
walk [15,16]. It considers independent walkers leaving from each
pixel of an image. For a given memory, a walker moves to one of its
neighboring pixels according to the difference of intensity between
these pixels. Each generated trajectory, after a transient time, ends
in an attractor, i.e., a cycle of pixels from where the walker cannot
escape. These attractors contain characteristics of the pixel organi-
zation in that image region. Here we present a novel approach for
texture analysis and classification based on the analysis of the tran-
sient time and cycle period joint probability distribution computed
by the deterministic tourist walk.

We start presenting an overview of the deterministic tourist walk
in Section 2. In Section 3, the method is described in detail for image
applications as well as the problems of detecting an attractor dur-
ing a walk. A novel attractor detection methodology is proposed. In
Section 4, a study of the dynamics of the tourist walk over texture
images is presented. We also show how to build texture signature
vectors from the joint transient time and cycle period probability
distributions. Experiments using synthetic and natural texture im-
ages are proposed in Section 5 and results are presented in Section 6.
Finally, in Section 7, the conclusions and improvement of themethod
are discussed.

2. Deterministic tourist walk (DTW)

Random walks over regular latices and random media have of-
ten been studied and have a wide range of applications [17,18].
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Fig. 1. Joint probability distribution of transient time (t) and period (p) for two values of � with (a) �= 9 and (b) with �= 25. One observes that the general aspects of both
histograms are similar.

Although it is not so thoroughly investigated, deterministic walks in
regular [19,20] and disordered media [21] also present very inter-
esting results. Here, we are interested in a partially self-avoiding de-
terministic walk algorithm, which we call the deterministic tourist
walk (DTW) [22,23].

The tourist walk algorithm can be understood as awalker (tourist)
wishing to visit N points distributed in a map of d dimension. These
points can be considered as sites and a tourist canmove on them. The
tourist follows the deterministic rule of, at each discreet time step,
going to the nearest site not visited in the previous � steps, a walker
performs a partially self-avoiding walk, where the self-avoidance is
limited to the memory window � = � − 1. This quantity represents
a characteristic time to the site to become attractive to the walker
again (refractory time) and prohibits a trajectory from intersecting
itself inside this memory window.

The tourist's behavior depends strictly on the data set configura-
tion and on the starting site. The tourist's movements are entirely
performed based on a neighborhood table. This table represents the
tourist graph, i.e., nodes with � fixed directed and weighted outgo-
ings links (edges) each and with a variable number of incomings
links (edges). Notice that the distances among the sites are simply a
way of ranking their neighbors. This feature leads to an invariance
in scale transformations [24].

Each tourist walk has an initial transient part of length t and ends
in a cycle with period p. Both the transient time and cycle period
can be combined in the joint probability distribution S(N)�,d(t, p). Fig. 1
shows the joint probability distribution for � = 9 and 25.

Next, we consider some special cases obtained combining differ-
ent values of � and d.

The simplest case to deal with the DTW is to consider �=0. This
case is trivial, since the walker has a null-size memory. The walker
remains at the same site. The trajectory has a zero-length transient
and a cycle of period p=1. The transient and period joint probability
distribution is simply given by

S(N)0,d (t,p) = �t,0�p,1, (1)

where �i,j is the Kronecker's delta. Despite its triviality, this be-
comes interesting because it is the simplest situation of the stochas-
tic tourist walk [25].

For a memoryless tourist (�=1), the walker only knows the near-
est neighbor of its current site. Thus, at each time step, the walker
must leave the current site and go to the nearest one. The name
“memoryless tourist” is devised because the walker knows the site
where the walker is, but does not remember any of the previously
visited ones. This rule does not lead to exploration of the random
medium, since after a very short transient time, the walker becomes
trapped by a couple of mutually nearest neighbors. The transient
time and period joint probability distribution was analytically ob-
tained for N?1 [26]:

S(∞)
1,d (t, p) = �(1 + I−1

d )(t + I−1
d )

�(t + p + I−1
d )

�p,2, (2)

where �(z) is the gamma function and Id = I1/4[
1
2 , (d + 1)/2] is the

normalized incomplete beta function. Analytical calculations [27]
were also performed for the stochastic tourist walk.

An interesting phenomenon occurs when greater values of � are
considered. In this case, the cycle distribution is no longer peaked
at pmin = � + 1, but presents a whole spectrum of cycles with period
p�pmin, with possible power-law decay [22,23,28–30].

3. Deterministic tourist walk on images

Consider a digital image of Mx ×My size and N =Mx ×My pixels,
where each pixel (x, y) is associated to a gray level ranging from 0
to 255. Two pixels, (xi, yi) and (xj, yj) are considered neighbors if the
geometrical distance between them is smaller than 2, i.e., d(i, j)<2,
where d(i, j) is the Euclidean distance:

d(i, j) =
√
(xi − xj)

2 + (yi − yj)
2. (3)

Once two pixels are considered geometric neighbors, the module of
the difference of their intensities is defined as the real “distance”
between them [15,16].

Now consider a traveler walking through neighboring pixels. This
traveler can only walk according to the following rule: move to the
nearest or furthest neighbor (i.e., the one which differs in the min-
imum or maximum value, respectively, from the current position)
and that has not been visited in the last �(� ∈ [1,N]) previous steps.
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This rule produces partially self-avoiding walks called deterministic
tourist walks (Section 2).

Trajectories yielded from these walks are divided into two parts:
an initial part, with t steps, called transient, and the final part, where
the traveler is trapped in a cycle of period p��+1, called attractor.
In images, these attractors consist of a group of pixels which compose
a path from where the tourist cannot escape. Although, there are
cases where, depending on the disposition of pixels along the image
and the memory size � used, the tourist cannot find an attractor. In
this case, the tourist walks until it finds a transient with a size equal
to the number of image pixels (t =N) and the resulting trajectory is
considered as having only the transient part (p = 0).

Another common situation found in images is the existence of
two or more directions complying with the tourist walking rule. In
this case, the draw is solved by selecting the first direction, among
the drawn directions, when the neighbors are visited in a clockwise
order according to the scheme presented in Fig. 2. This approach
preserves the deterministic characteristic of the method.

For each initial condition (i.e., the starting pixel), the tourist pro-
duces a different trajectory. Notice, however, that different initial
conditions can lead to the same attractor. Considering all pixels in
the image as starting points, we compute the joint probability dis-
tribution of transient time t and attractor period p, S(N)�,2(t, p) (Fig. 3).

Fig. 2. Visiting order of neighbors for a tourist placed at pixel i.
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Fig. 3. (a) Original image; (b) Joint probability distribution of transient time and attractor period for � = 5.

Fig. 4. Examples of possible tourist walks. Gray part represents the transient part while the striped pixel represents the attractor part.

From the study of these distributions using statistical techniques
it is possible to achieve a signature able to discriminate the image
texture [15,16,24].

3.1. Attractor detection

One of themost challenging tasks in the study of the deterministic
tourist walk is the attractor detection. An attractor is a cycle of period
p that exists at the end of a tourist trajectory. It is a walk section that
starts and ends at the same image pixel and from where the tourist
is unable to escape [22,24,30,30].

Considering the attractor as a walk section that starts and ends
at the same image pixel may lead one to think that, once it visited a
pixel, a new visit would configure an attractor. Nevertheless, this is
a very simple, and likely to fail, approach for attractors' detection. In
fact, during a walk an image pixel can be re-visited without config-
uring an attractor. Besides, the tourist finite memory �, which indi-
cates the pixels visited in the last � steps and that cannot be visited
at the present time, allows some steps of the walk to be repeated
without configuring an attractor. This characteristic enables sophis-
ticated tourist walks, but it also increases the difficulty of detect-
ing an attractor, and thus requiring more accurate methodologies
(Fig. 4).

Repeating walk steps, without configuring an attractor, requires
that different parts of a walk be compared in order to identify the
presence of a repeated section. This repeated section characterizes
an attractor. This comparison is made by keeping all pixels visited at
this point of the tourist walk in list L. This list enables us to check the
existence of repeated sections and, as a consequence, the presence
of an attractor in the walk (Fig. 5).

However, comparing sections of this list L is a time consuming
task. At each new step, it is necessary to check if there is a sequence
of steps p��+1 repeated throughout the list L. An alternative to this
exhaustive search, or “brute force” method, is, at first, to check if the
current step of the tourist has been visited at least three times and,
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in an affirmative case, to check the sections restricted by this step.
An attractor is defined by a sequence of steps repeated in the walk
and this sequence starts and ends at the same position, so at least
three repetitions of the initial step (x, y) are necessary to characterize
two repetitions of an attractor in the walk (Fig. 6). This existence
condition enables us to optimize the search in list L and it makes it
faster and easier to detect the attractor.

In order to check the repetition of a step in the walk, a new list
is associated to each step. This new list is responsible for keeping

L

P1

1 2 3 4 5 6 7 8 9 10 11 12

P2 P3 P4 P5 P6 P7 P4 P5 P6 P7 P4

Fig. 5. List L used to keep track of the walk visited sites.
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Fig. 6. Comparison between different parts of list L. A step (gray) repeated at least
three times in this list configures the existence of repeated sequences and, probably,
an attractor.
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Fig. 7. List associated to each step from the walk kept in L.
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Fig. 8. Attractor generated by the tourist on a random generated image using the minimum distance and different � values: (a) Original image; (b) �=1; (c) �=3 and (d) �=7.

20

40

60

80

100

20

40

60

80

100

20
1000

500

0

40

60

80

100

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
0

100

300

200

600

400

200

0

Fig. 9. Attractor generated by the tourist on a random generated image using the maximum distance and different � values: (a) Original image; (b) �=1; (c) �=3 and (d) �=7.

the positions where the (x, y) shows up in the list L (Fig. 7). This
enables us to check the existence of repeated steps quickly as well
as the number of repetitions, therefore, reducing the computational
cost involved in the attractor detection task.

3.2. Attractors on images

To investigate the behavior of a tourist during its walk, an exper-
iment was performed. This experiment consists of examining the at-
tractors generated, for different memories �, when the tourist walks
on different environments: a random generated image and a tex-
ture image. Both used images have 100 × 100 size and 256 gray
levels.

First, we realize that the memory has a great influence on at-
tractor distribution in both images. For small � values, we note a
higher number of attractors distributed on the images. These attrac-
tors present a simpler behavior and small repetitions of sections.
Otherwise, as the memory increases, the number of attractors de-
creases, i.e., a greater number of walks tend to find the same attrac-
tor. As the memory increases further, the tourist is forced to look for
bigger attractors. These new attractors are present in a smaller pro-
portion in the image, and they also present a more complex behavior
(Figs. 8–11). We also note that the tourist does not require a long
walk to find an attractor. This is shown by the number of attractors
that present a transient with t = 0 (Fig. 12).

On random generated images, a tourist walk is characterized by
chaotic behavior. This behavior is due to the environment where the
tourist is, i.e., as there is no correlation between neighboring pixels,
the tourist walks at random and changes its direction with the same
frequency as the environment changes (Figs. 8 and 9). However,
digital images present a visual context, i.e., pixels are correlated so
that a scene, the face of a person or a texture pattern, is composed.
This correlation between neighboring pixels influences the choices
of directions taken by the tourist during the walk.

An important issue about the tourist walks is the walking rule
adopted by the tourist. When a tourist starts its walk on an image,
it must choose to go to the neighboring pixel which is the nearest
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Fig. 10. Attractor generated by the tourist on a texture image using the minimum distance and different � values. Attractors are mixed with texture for better comprehension:
(a) Original image; (b) � = 1; (c) � = 3 and (d) � = 7.

Fig. 11. Attractor generated by the tourist on a texture image using the maximum distance and different � values. Attractors are mixed with texture for better comprehension:
(a) Original image; (b) � = 1; (c) � = 3 and (d) � = 7.

or furthest (i.e., the pixel which presents the minimum or maxi-
mum difference of intensity, respectively, with respect to the cur-
rent tourist position). Besides, once its rule is defined it cannot be
changed. As a result, we note that walks guided to directions of min-
imum and maximum differences generate distinct attractor patterns
for the same image.

The walks guided to the minimum difference of intensity are
inclined to locate attractors in regions of the image which present
higher homogeneity, therefore, avoiding regions with high contrast,
such as an edge, and texture pattern changes (Fig. 10). Otherwise,
the walks guided to the maximum difference emphasize attractors
located in regions of lower homogeneity, i.e., heterogeneous regions
and abrupt changes in image context (e.g., changes in texture or
illumination of a region, or presence of edges) (Fig. 11).

This behavior yielded from the walking rules adopted reflects in
the resulting joint probability distribution. This enables us to use the
information stored in the joint probability distribution as a feasible
signature for texture characterization and classification.

4. Texture analysis with DTW

Our preliminary results have shown that the transient time and
cycle period joint probability distribution demonstrates a potential
use in texture classification [15,16]. Fig. 13 shows the t and p joint
probability distribution of three different texture patterns. One can
visually notice the discrimination of the texture classes by the form
of the surfaces. Nevertheless, a more quantitative index is difficult
to extract from the surfaces [15,16]. Indeed, we have succeeded, but
the results we present here are substantially better.

Here, we propose to use the histogram h�(n), where n = t + p.
This histogram is computed from the joint probability distribution
achieved for a specific � value, and it represents the number of tourist
walks, which have a size equal to (t + p) in the joint probability
distribution, where t and p represent the transient time and attractor
period, respectively. Notice that n = t + p is the number of visited
pixels, but it does not exactly match the number of different pixels
visited since the trajectories can cross themselves. According to the
texture pattern present in the image and the memory � used, a new
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Fig. 12. Histogram of the transient size for � = 4.

joint probability distribution is achieved, as a consequence and a
different histogram is computed, which makes it a useful tool for
texture analysis (Fig. 14).

There is a relation between the histogram and texture behavior.
In textures with well defined and constant patterns in the image,
near attractors are favored. In this situation, the histogram presents
a higher peak in the beginning of the curve that decays rapidly and
in the end, the curve presents low values, as there are few long
walks (see bottom texture pattern in Fig. 14). On the other hand,
textures with sparse and not constant patterns, the probability of a
walker to find an attractor varies according to the region of texture,
making a more uniform histogram (see the middle texture pattern in
Fig. 14). Furthermore, it can be observed that the initial few values
are already sufficient to characterize the textures.

To use the tourist walk as a feasible texture signature, a feature
vector �� is constructed from the joint probability distribution for a
specific � value. A total of m descriptors are selected from walking
histograms to compose the feature vector ��. As there are no attrac-
tors of size smaller than (� + 1), the first descriptor selected has a
size (� + 1):

���(n) = [h�(� + 1),h�(� + 2), . . . ,h�(t + p), . . . ,h�(� + m)].
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Fig. 13. Example of t and p joint probability distribution computed for three different texture classes using � = 1.

The joint probability distribution depends on the � value, so we also
propose an image signature considering different � values. This tex-
ture signature consists of a concatenation of the signatures calcu-
lated using ���(m), for different � values:

���1,. . .,�M
(m) = [��1

(m),��2
(m), . . . ,��M

(m)].

Statistical analysis has shown that joint probability distribution con-
centratesmost image information on a few elements. These elements
are located in a region where 0� t�4 and (� + 1)�p� (� + 4).
Therefore, a total of m = 4 histogram descriptors were considered
to compose the feature vectors ��. Additional information about the
influence of the memory on the transient time and cycle period
distribution and its use in sample classifications can be found in
Ref. [15].

5. Experiments

Signatures were analyzed using Linear Discriminant Analysis
(LDA) in a leave-one-out cross-validation scheme. The LDA method
can estimate a linear subspace where the projection of the data

presents larger variance inter-classes than the variance intra-classes.
Additional information can be found in Refs. [31,32]. The leave-
one-out cross-validation scheme separates one sample from a given
class while supervision training and validation tasks are performed
on the complementary sample. Once the training is completed,
the remained sample is tested. Repeating this procedure, a success
index can be obtained.

Tourist signatures were evaluated using two image databases: (i)
synthetic textures and (ii) natural textures. The first database was
made using images from the book of Brodatz [33], a set of images
broadly used in computer vision and image processing literature as
benchmark for texture analysis. In this experiment, each image has
200 × 200 pixels with 256 gray levels. A total of 40 classes, with
10 samples each, were used. One example of each texture class is
shown in Fig. 15.

The second database used textures extracted from plant leaves of
five different species from Brazilian flora. From each species, 10 tex-
ture samples of 128×128 pixels with 256 gray levels were extracted
for the experiment, making a total of 50 images in the database.
Examples of each texture class are shown in Fig. 16. The main mo-
tivation of this experiment was to evaluate the algorithm in a real
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Fig. 14. Example of histograms computed for three different texture classes using � = 1.

Fig. 15. Example of 40 Brodatz texture classes used in the experiment. Each image has 200 × 200 pixels and 256 gray levels.

and complex problem. Developing computer tools that can identify
plants is a current scientific challenge. Identifying plant leaves, as
well as, the texture of leaves is a very difficult task, considering the
high variability inside the same class and the similarity between
classes [34,35].

To evaluate the proposed method better, a comparison with tra-
ditional texture analysis methods was made. The following methods
were considered:

Fourier descriptors: In the experiment, these descriptors consist
of a feature vector providing the energy of the 99 most meaningful
coefficients of the Fourier Transform. Each coefficient corresponds to
the sum of the spectrum absolute values placed at a radial distance
from the center (after performing a shifting operation) of the bi-
dimensional transformation [7].

Co-occurrence matrices: These matrices represent the joint prob-
ability distributions between pairs of pixels at a given distance and
direction. In the experiments, we considered distances of 1 and 2

pixels with angles of −45◦, 0◦, 45◦, 90◦, in a non-symmetric version.
Energy and entropy were computed from resulting matrices totaliz-
ing a set of 16 descriptors [9].

Gabor filters: This approach convolves an image by a family of Ga-
bor filters (i.e., different scales and orientations from the same orig-
inal configuration). Each Gabor filter is defined as a bi-dimensional
Gaussian function moduled with an oriented sinusoid in a deter-
mined frequency and direction. For the experiments, a family of 16
filters (four rotation filters and four scale filters), with frequency
ranging from 0.01 to 0.30, were used. Additional information can be
found in Refs. [8,36–38].

6. Results

Next, we show that a combined minimum and maximum signa-
ture lead to better image retrieval. We start considering synthetic
and then natural textures.
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Fig. 16. Example of plant leaf textures used in the experiment. Each column represents a different texture class, while rows represent the class variation.

Table 1
Success rate for ��� signature using different � values and walking rules in the Brodatz database.

Memory (�)

0 1 2 3 4 5

Min 58.25 47.50 44.75 41.00 32.75 34.25
Max 78.50 67.50 64.25 56.00 54.00 45.25
Min ∪ Max 87.50 86.50 85.00 76.75 69.25 63.25

6.1. Synthetic textures

Table 1 shows the results of the tourist walk on the Brodatz tex-
ture image database for different � values. We note that tourist walk
presents a better result when it is conducted in the direction of the
maximum difference of pixel intensity, instead of the minimum dif-
ference. In this case, tourist attractors are formed in heterogeneous
regions, i.e., regions where the pixel intensity changes in an abrupt
way, which characterizes the presence of image contours or changes
in texture patterns. In fact, contour is one of the most important
visual attributes to characterize objects, as it provides the most rel-
evant information of an object for both identification and classifi-
cation tasks [39,40]. However, combining minimum and maximum
signatures into one (Min ∪ Max) leads to an increase in the success
rate. This new signature presents both heterogeneous and homoge-
neous image information, which provides a more powerful tool for
image analysis.

Results also show that, for both maximum and minimum differ-
ence and their combination, the success rate decreases as the mem-
ory � increases. Explanation for this result lies in the fact that, as
the memory increases, the more difficult it is to find an attractor
in the image. Now the tourist is compelled to walk more to find an
attractor and there is an increase in the attractor period (size). Be-
sides, long walks may lead to a trap. In this case, the tourist does
not find an attractor, which changes its joint probability distribution
and affects the classification of the samples. Small memory values
can have a better local analysis of the image texture which reflects
in the higher success rate yielded.

Table 2 shows results yielded when multiple � values are con-
sidered. Therefore, signatures calculated using ���, for different �
values, are concatenated to compose a � signature. This approach

Table 2
Success rate for the � signature combining different � values in the Brodatz database.

Memories used (�) Min Max Min ∪ Max

{0, 1} 73.25 87.00 92.75
{0, 1, 2} 81.50 89.50 95.00
{0, 1, 2, 3} 82.50 90.00 94.75
{0, 1, 2, 3, 4} 83.00 90.00 95.25
{0, 1, 2, 3, 4, 5} 84.00 90.50 95.50

Table 3
Comparison results for different texture methods in the Brodatz database.

Method Images correctly classified Success rate (%)

Fourier 351 87.75
Co-occurrence matrices 330 82.50
Gabor filters 381 95.25
Tourist walk 382 95.50

diminishes the individual importance for each � value, but stresses
the role of small values either for � or the transient time and cycle
period, thus providing a more efficient image classification.

Results yielded for each method compared are presented in
Table 3. For this comparison, we consider the configuration that
leads the tourist walks to the best results (� signature using
� = {0, 1, 2, 3, 4, 5} for minimum and maximum walk rules). We note
that the tourist's best result overcomes traditional methods (such as
Fourier descriptors and co-occurrence matrices), while it presents a
similar performance to the Gabor filters. This shows the great poten-
tial for image analysis and classification applications of the method.
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Table 4
Success rate for ��� signature using different � values and walking rules in the plant leaf database.

Memory (�)

0 1 2 3 4 5

Min 70.00 64.00 56.00 48.00 52.00 38.00
Max 68.00 66.00 68.00 64.00 70.00 52.00
Min ∪ Max 80.00 74.00 76.00 80.00 74.00 48.00

Table 5
Success rate for the � signature combining different � values in the plant leaf
database.

Memories used (�) Min Max Min ∪ Max

{0, 1} 74.00 86.00 92.00
{0, 1, 2} 68.00 82.00 96.00
{0, 1, 2, 3} 68.00 86.00 96.00
{0, 1, 2, 3, 4} 78.00 86.00 98.00
{0, 1, 2, 3, 4, 5} 78.00 88.00 92.00

Table 6
Comparison results for different texture methods in the plant leaf database.

Method Images correctly classified Success rate (%)

Fourier 30 60.00
Co-occurrence matrices 44 88.00
Gabor filters 38 76.00
Tourist walk 49 98.00

6.2. Results for natural textures

Table 4 shows the results of the tourist walk over the Plant Leaves
texture database for different � values. Results for this database
corroborate the results from the previous experiment concerning
the dynamics of the tourist and attractors: a better classification is
yielded when the tourist is conducted to the direction of the max-
imum difference of pixel intensity, instead of the minimum differ-
ence. As in the previous experiment, this experiment confirms that
combining minimum and maximum signatures into one (Min∪Max),
it improves the discrimination power of the method, and it allows a
better classification of the samples.

Table 5 shows results when signatures consisting of multiple �
values, ���, are used. Results confirm this approach as a good strategy
for the tourist method, once it provides a substantial increase in the
success rate and image classification for both synthetic and natural
texture patterns.

Comparison results are presented in Table 6. For this comparison,
we consider the configuration that leads the tourist walks to the best
results (� signature using � = {0, 1, 2, 3, 4} for minimum and max-
imum walk rules). As in the synthetic texture results, the tourist's
best result overcomes traditional methods, including Gabor filters.
It is important to emphasize that the leaf texture classification is a
difficult task due to the small variation between classes (Fig. 16) and
high variation inside each class [35]. This shows that the tourist walk
is more efficient to deal with similar texture patterns than other tex-
tures methods compared by stressing small variations in the texture.

On one hand, macro-texture is the main feature to discriminate
textures among the synthetic images. On the other hand, in the
natural leaf texture images, the micro-texture is the main feature.
The best results for synthetic images were achieved by the tourist
walk and Gabor methods. The nature of the Gabor filter is based on
the Gaussian function, which intrinsically blur an image. For macro-
textures, this blurring does not corrupt the texture information.
Nevertheless, in micro-textures this presents a serious objection. The
tourist walk method deals with image information without filter-

Fig. 17. Average walk length for different memory � values.

ing it by underlying function. Therefore, macro- and micro-texture
information is always preserved.

6.3. Computational complexity

Tourist walks are performed for each pixel from an image. Con-
sidering an image of N × N size, this leads to N2 walks. Each tourist
walk consists of a transient part, of size t, and, if it exists, an attractor
of size p��+1. In the case where an attractor cannot be found, the
tourist walks until it finds a transient with a size equal to the num-
ber of image pixels, i.e., t=N×N and p=0. Computational complex-
ity of the tourist walk is determined by the number of image pixels
and size of each walk, O(N2(t+ p)). The best case of the algorithm is
achieved when all walks start on an attractor (t = 0) and the attrac-
tor presents a minimum size. The attractor size depends on image
context and memory �. For � = 0 and considering an opportune im-
age context, the attractor size is minimized to p = 1, which leads to
complexity O(N2) in the best case. The worst case is achieved when
no attractor is found during a walk. In this case, for any memory
size �, the tourist walk presents size t+ p=N2, which leads to com-
plexity O(N4). It is important to emphasize that the worst case is a
very rare case, which requires a very specific configuration of pixels
in the image. Even a random generated image does not produce this
special case of walk.

Fig. 17 shows the average walk length for different memory �
values. For a memory value �=11, the average walk length is equal to
55 steps. This result leads to a complexity which is very close to the
tourist's best case, O(N2), and it is an excellent result in comparison
to the complexities of Gabor filters (O(N2 logN), due to the Fourier
Transform) and co-occurrence matrices (O(N2)).

7. Conclusion

This paper presented a novel approach of texture feature extrac-
tion based on the deterministic tourist walk. This method uses a
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traveler to explore an image on a given scale (memory), where the
tourist trajectory depends on the walking rule and the image con-
text. Based on the studies of walk dynamics, a signature is computed
from its resulting joint probability distribution. The yielded signa-
ture was tested in experiments using linear discriminant analysis to
classify a set of synthetic (Brodatz) and natural (plant leaf) textures.
Results show a great potential of the method as a feasible texture
analysis methodology.

A color image consists of various matrices, which represent a
chromatic scheme. The DTW can be applied to each one of these
matrices and a combined signature vector can be made. Thus, the
presented methodology can be generalized for color images.
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