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An approach for the theory of nonlocal magnetorotational and convective instabilities in a rotating plasma is
developed, on the basis of the surface wave concept, which allows the derivation of useful analytical results.It
is assumed that the rotation frequency has a step-like profile, so that a narrow transition layer separates two
regions with different rotation frequencies. The one-fluid magnetohydrodynamic (MHD) model for description
of the perturbed plasma dynamics is used. It is shown that in the case of magnetized plasma the main properties
of the nonlocal (surface-wave) instabilities are similar to those of the local ones.
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1. INTRODUCTION AND OVERVIEW

One of the important issues in recent plasma physics studies
is the spontaneous generation of magnetic field in a rotating
plasma, motivated by numerous investigations of this effect in
a rotating liquid metals (see pioneering papers [1-3] and the
review [4]).

Because most of the previous analytical works in this field,
starting with Ref. 1, were based upon a local-mode analy-
sis, it is important to complement them with other theoreti-
cal approaches that allow for a simple description of non-local
modes. In particular, the surface waves model, based upon
step-like profiles of the equilibrium quantities, has been re-
cently applied in a simplified analysis of the magnetorotational
instability (MRI) [5]. One of the goals of the present work
is to develop a more general theory of nonlocal modes in the
surface-wave approximation.

First, let us define the model of simplest astrophysical equi-
librium. This is a cylindrical plasma rotating in azimuthal di-
rection θ with the angular frequency Ω = Ω(r), where r is the
radius. The equilibrium magnetic field B0 is assumed uniform
and directed along the cylinder axis z, B0 = (0,0,B0). The
model also includes a gravitational force g , with the radial
component only, g = (g,0,0), and an equilibrium electric field
E0 = (E0,0,0) related to the rotation frequency Ω = V0/r by
E0 =−rΩB0/c, where V0 =V0(r) is the azimuthal equilibrium
plasma velocity and c is the speed of light. The equilibrium
plasma pressure p0 is assumed uniform, p′0 = 0, where prime
is the radial derivative. Then the radial equilibrium condition

yields

−rΩ
2 = g. (1.1)

An alternative to the simplest astrophysical equilibrium is
the simplest laboratory equilibrium. In this case g = 0, while
p′0 6= 0. Then, instead of (1.1), one has

ρ0rΩ
2 = p′0, (1.2)

where ρ0 is the equilibrium mass density.
A general case, when both g and p′0 are finite, can be called

the astrophysical equilibrium with pressure gradient. Then,
instead of (1.1) and (1.2), one has

ρ0rΩ
2 = p′0−ρ0g. (1.3)

The theory of nonlocal modes developed in Ref. 5 con-
sidered only the simplest astrophysical equilibrium, i.e., with
p′0 = 0. In the present paper this theory is extended to equilib-
ria with p′0 6= 0.

According to Ref. [1], with both g 6= 0 and p′0 6= 0 two va-
rieties of instabilities may appear: the MRI and the convective
instability, CI. Our analysis includes both of them.

An important subset of the theory of local instabilities in
a rotating plasma is the modes with parallel phase velocities
much smaller than the sound velocity in a high-β plasma (the
slow modes), where β is the ratio of plasma pressure to the
magnetic field pressure. Here, althoug a complete analytical
technique for arbitrary modes and arbitrary β is developed, we
consider its applications primarily for slow modes in a high-β
plasma.
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One of the kee physics issues in this problem is the level of
heat conductivity. In our analysis, preceded by Ref. [6] (see
also Refs. [7, 8]), both cases of high and finite heat conductiv-
ity are considered.

The analysis of nonlocal perturbations requires a proper
mode equation. Its derivation is presented in Sec. 2, which
summarizes the mathematical technique developed for the case
of high heat conductivity in Refs. [9, 10] (see also Refs. [11–
14]) and for arbitrary heat conductivity in Refs. 15 and 16.

The main benchmarks of our technique are the pair of the
canonical first-order differential equations for perturbations
called the Hameiri-Bondeson-Iakono-Bhattacharjee (HBIB)
type equations, first derived in [12, 13]. The variables in these
equations are the perturbed radial magnetic field B̃r, the so-
called Friman-Rotenberg (FR) variable,

p∗ = p̃+ B̃zB0/(4π), (1.4)

and

τB =
1
r

∂

∂r
(rB̃r). (1.5)

Here p̃ is the perturbed plasma pressure and B̃z is the paral-
lel projection of the perturbed magnetic field. The mentioned
canonical equations are

DτB = C1B̃r− i4πkzB0C2 p∗, (1.6)

i4πkzB0Dp′∗ =−4πkzB0C̄1 p∗+C3B̃r. (1.7)

Here D,C1,C̄1,C2, and C3 are the primary canonical param-
eters and kz is the parallel wave number. We call the effect
related to C1 the first oblique effect, while that described by C̄1
the second oblique effect. In [9, 10] it has been shown that the
high heat conductivity leads to the following symmetry:

C̄1 = C1. (1.8)

Below we prove that the same symmetry survives at arbitrary
heat conductivity. This is important since in this case Eqs. (1.6)
and (1.7) lead to a self-adjoint canonical mode equation

D(DτB/C2)′+ΛB̃r = 0. (1.9)

Here Λ is the secondary canonical parameter,

Λ = a+b, (1.10)

with a and b the secondary local and differential canonical pa-
rameters, respectively, determined by

a = C3−C2
1/C2, (1.11)

b =−Dr[C1/(rC2)]′. (1.12)

In Sec. 3 we discuss the general aspects of the problem of
slow modes in high-β plasma. There we use the so-called
quasi-incompressible approximation, when the “sound prop-
agator”

α
T
s = 1−

p0k2
z (Γω̃+ i∆T )

ρ0ω̃2(ω̃+ i∆T )
(1.13)

is replaced by

α
T
s → −

p0k2
z (Γω̃+ i∆T )

ρ0ω̃2(ω̃+ i∆T )
. (1.14)

Here Γ is the adiabatic exponent, ∆T is the characteristic heat-
conductivity-induced decay rate, ω̃ = ω−mΩ is the Doppler-
shifted oscillation frequency with ω being the usual oscillation
frequency and m the azimuthal mode number. Then the sym-
metry expressed by Eq. (1.8), describing the equality of the
first and second oblique effects, is automatically satisfied.

As an alternative to the quasi-incompressible approxima-
tion, there is the Boussinesq approximation. We explain in
Sec. 3 that the latter leads to

C1 = CBous
1 ≡ 0, (1.15)

where the superscript “Bous” means Boussinesq. Then the first
oblique effect disappears in the first canonical first-order dif-
ferential equation, i.e., instead of (1.6), one has

DτB =−i4πkzB0C2 p∗. (1.16)

We show in Sec. 3 that, instead of Eq. (1.7), the Boussinesq
approximation yields the second canonical first-order equation
of the form

i4πkzB0Dp′∗ = C3B̃r− i4πkzB0C̄Bous
1 p∗, (1.17)

where

C̄Bous
1 = C̄1. (1.18)

Thereby, in the Boussinesq approximation one deals with non-
vanishing second oblique effect, C1 6= 0. Excluding p∗ from
Eq. (1.17) by means of Eq. (1.16), one arrives at the mode
equation in the Boussinesq approximation

D(DτB/C2)′+Λ
BousB̃r +C̄1DτB/C2 = 0, (1.19)

where

Λ
Bous = C3. (1.20)

Comparing Eqs. (1.19) and Eq. (1.9), one can see that the
Boussinesq approximation leads to a non-self-adjoint mode
equation with reduced expression for Λ. Using the Boussi-
nesq approximation, Ref. 6 has neglected the term with C̄Bous

1
in Eq. (1.17). In this case the mode equation (1.19) is substi-
tuted by

D(DτB/C2)′+C3B̃r = 0. (1.21)

Being central in the Balbus approximation this can be called
the Balbus mode equation.

Section 4 is devoted to derivation of the nonlocal dispersion
relation. In Sec. 5 the theory of nonlocal axisymmetric modes
in the simplest astrophysical plasma is developed. In contrast,
Sec. 6 considers the nonlocal axisymmetric modes allowing
for both the gravitation force and the plasma pressure gradient.
In Sec. 7 we transit to analysis of the nonaxisymmetric modes.
Discussion of the results is given in Sec. 8.

It seems reasonable to compare the results of nonlocal and
local theories. Our paper contains Appendices summarizing
the local results obtained in [9, 15]: Appendix A shows the
general preliminary results, while Appendices B and C are
related to the axisymmetric and nonaxisymmetric modes, re-
spectively.
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2. BASIC EQUATIONS AND GENERAL
TRANSFORMATIONS

2.1. Basic equations

We start with the standard MHD plasma motion equation

ρ
dV
dt

=−∇p+ρg− 1
4π

{
∇

B2

2
− (B ·∇)B

}
, (2.1)

where V is the plasma velocity, B the magnetic field, p the
plasma pressure, ρ is the plasma mass density, g is the grav-
itation force, and d/dt = ∂/∂t + V ·∇. We use the Ohm law
in the form E + [V×B]/c = 0, where E is the electric field
and c is the speed of light. This equation leads to the standard
frozen-in condition

∂B/∂t−∇× [V×B] = 0. (2.2)

In addition, we use the Maxwell equation

∇ ·B = 0, (2.3)

the plasma continuity equation

dρ/dt +ρ∇ ·V = 0, (2.4)

and the heat conductivity equation

n
dT
dt

+(Γ−1)p∇ ·V =−(Γ−1)∇ ·q. (2.5)

Here Γ = 5/3 is the adiabatic exponent, n = ρ/M is the plasma
number density, M is the ion mass, T is the plasma temperature
related to the pressure and density by p = nT, q is the heat flux
defined by

q =−κT b(b ·∇T ), (2.6)

where κT is the heat conductivity coefficient, b = B/B.
We consider a cylindrical plasma rotating in azimuthal di-

rection θ with the angular frequency Ω = Ω(r) (r is the ra-
dius), which was described in Sec. 1 as the astrophysical equi-
librium with pressure gradient, see Eq. (1.3). We linearize the
basic equations assuming each perturbation to depend on t, θ,
z as exp(−iωt + imθ + ikzz), where ω is the oscillation fre-
quency, m is the azimuthal mode number, kz is the parallel
projection of the wave vector. In addition to m, we intro-
duce ky ≡ m/r, the azimuthal projection of the wave vector,
while, in addition to ω, we use the Doppler–shifted oscilla-
tion frequency ω̃ = ω−mΩ. The (r,θ,z)-th projections of the
perturbed plasma velocity Ṽ are Ṽr, Ṽθ, and Ṽz. Similarly, the
(r,θ,z) components of the perturbed magnetic field B̃ are B̃r,
B̃θ, and B̃z. The perturbed plasma mass density is designated
by ρ̃.

The (r,θ)-th projections of the frozen-in condition (2.2)
yield

−iω̃B̃r− ikzB0Ṽr = 0, (2.7)

−iω̃B̃θ−
dΩ

d lnr
B̃r− ikzB0Ṽθ = 0. (2.8)

The Maxwell equation (2.3) gives

ikzB̃z + ikyB̃θ +
1
r

∂

∂r
(rB̃r) = 0. (2.9)

The perturbed plasma motion equation (2.1) yields

−iω̃Ṽr−2ΩṼθ +
1
ρ0

∂ p̃
∂r
−

iv2
Akz

B0
B̃r +

v2
A

B0

∂B̃z

∂r
−

ρ̃p′0
ρ2

0
= 0,

(2.10)

−iω̃Ṽθ +
κ2

2Ω
Ṽr +

iky p̃
ρ0

−
iv2

Akz

B0
B̃θ +

iv2
A

B0
kyB̃z = 0,

(2.11)

−iω̃Ṽz =−ikz p̃/ρ0. (2.12)

Here v2
A = B2

0/(4πρ0) is the Alfvén velocity squared, κ2 =
(2Ω/r)d(r2Ω)/dr, and the gravitation force is replaced
through Ω and p′0 by means of Eq. (1.3).

With Eq. (2.9) we express B̃z in terms of B̃r, B̃θ:

B̃z =−
ky

kz
B̃θ +

i
kz

τB, (2.13)

where τB is given by Eq. (1.5).
With the FR variable p∗ defined by Eq. (1.4) Eqs. (2.10) and

(2.11) take the form

i
(

D0−
dΩ2

d lnr

)
B̃r +2Ωω̃B̃θ +

kzB0

ρ0

d p∗
dr

−
kzB0ρ̃p′0

ρ2
0

= 0 ,

(2.14)

iD0B̃θ−2Ωω̃B̃r +
ikykzB0

ρ0
p∗ = 0 ,

(2.15)

where D0 = αAω̃2, αA = 1− k2
z v2

A/ω̃2.
It follows from Eq. (2.4), (2.7) and (2.9) that the perturbed

density satisfies the equation

ρ̃

ρ0
=

1
kzB0

[
i
(

τB +
d lnρ0

dr
B̃r

)
− kyB̃θ

]
+

kzṼz

ω̃
. (2.16)

Now we linearize Eq. (2.5) obtaining [cf. (2.16)]

T̃
T0

=
1

kzB0

[
ω̃

(ω̃+ i∆T )
(Γ−1)

(
iτB− kyB̃θ +

k2
z B0

ω̃
Ṽz

)
+

id lnT0

dr
B̃r

]
. (2.17)
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Here ∆T is the characteristic heat-conductivity-induced decay
rate given by ∆T = κT (Γ−1)k2

z /n0. At last, we have

p̃ =
(

ρ̃/ρ0 + T̃/T0

)
p0. (2.18)

2.2. Derivation of general canonical mode equation

2.2.1. Pair of canonical first-order differential equations

Substituting Eqs. (2.16) and (2.17) into Eq. (2.18), one has

p̃ =
p0

kzB0

[(
iτB− kyB̃θ +

k2
z ṼzB0

ω̃

)
Γω̃+ i∆T

ω̃+ i∆T
+ i

d lnρ0

dr
B̃r

]
.

(2.19)

It follows from Eqs. (2.12) and (2.19) that

Ṽz =
p0

ρ0B0ω̃αT
s

[(
iτB− kyB̃θ

)
Γω̃+ i∆T

ω̃+ i∆T
+ i

d lnρ0

dr
B̃r

]
.

(2.20)

Here αT
s is the “sound propagator” defined by Eq. (1.13). Sub-

stitution of Eq. (2.20) into Eqs. (2.19) and (2.16) yields

p̃ =
p0

kzB0αT
s

[
Γω̃+ i∆T

ω̃+ i∆T

(
iτB− kyB̃θ

)
+ i

d ln p0

dr
B̃r

]
,

(2.21)

ρ̃

ρ0
=

1
αT

s kzB0

[
iτB−kyB̃θ+i

(
α

T
s

d lnρ0

dr
+

k2
z p0

ρ0ω̃2
d ln p0

dr

)
B̃r

]
.

(2.22)

Substituting Eq. (1.4) into Eq. (2.14), we arrive at

iλrB̃r +λθB̃θ− iλττB + kzB0 p′∗/ρ0 = 0. (2.23)

Here

λr = D0−
dΩ2

d lnr
−

p′0
ρ0αT

s

(
α

T
s

d lnρ0

d lnr
+

k2
z p0

ρ0ω̃2
d ln p0

dr

)
,

(2.24)

λθ = 2Ωω̃+ ky p′0/(ρ0α
T
s ),

(2.25)

λτ = p′0/(ρ0α
T
s ). (2.26)

It follows from Eq. (2.15) that

B̃θ =− 1
D0

(
i2Ωω̃B̃r +

kykzB0

ρ0
p∗

)
. (2.27)

Substitution of Eq. (2.27) into Eqs. (2.13) and (2.21) leads to

B̃z =
i

kz

(
τB +

ky

D0
2Ωω̃B̃r

)
+

k2
y

ρ0 p0
B0 p∗, (2.28)

p̃ =
p0

kzB0αT
s

{
i
Γω̃+ i∆T

ω̃+ i∆T
τB + i

[
d ln p0

dr
+

+
2Ωω̃ky(Γω̃+ i∆T )

(ω̃+ i∆T )D0

]
B̃r +

Γω̃+ i∆T

(ω̃+ i∆T )D0

k2
ykzB0

ρ0
p∗

}
.

(2.29)

With Eqs. (2.28) and (2.29), Eq. (1.4) is represented in the form
(1.6) where

D = D0

(
1+

4πp0

B2
0αT

s

Γω̃+ i∆T

ω̃+ i∆T

)
, (2.30)

C1 = −
[

2Ωω̃ky

(
1+

Γω̃+ i∆T

ω̃+ i∆T

4πp0

B2
0αT

s

)
+

4πp0D0

B2
0αT

s

d ln p0

dr

]
,

(2.31)

C2 =
1

B2
0

{
D0− k2

yv2
A

[
1+

Γω̃+ i∆T

ω̃+ i∆T

4πp0

B2
0αT

s

]}
. (2.32)

Equation (1.6) is the first canonical first-order differential
equation of the MHD approach. The effect described by the
coefficient C1 is the first oblique effect. It can be seen that this
effect is revealed only if p′0 6= 0 or ky 6= 0.

Substitution of Eq. (2.27) into Eq. (2.23) yields

−ip′∗ =−
ikyλθ

D0
p∗+

ρ0λτ

kzB0
τB−

ρ0

kzB0

(
λr−

λθ

D0
2Ωω̃

)
B̃r.

(2.33)
Using Eq. (1.6), we exclude τB from Eq. (2.33). Then we arrive
at Eq. (1.7) where

C̄1 = −
[

4πρ0λτC2 +λθky

(
1+

Γω̃+ i∆T

ω̃+ i∆T

4πp0

B2
0αT

s

)]
,

(2.34)

C3 = 4πρ0

{
D
(

λr−
λθ

D0
2Ωω̃

)
−λτC1

}
. (2.35)

By means of Eqs. (2.31) and (2.32), Eqs. (2.34) and (2.35)
reduce to Eq. (1.8) and

C3 = 4πρ0D0

[(
1+

Γω̃+ i∆T

ω̃+ i∆T

4πp0

B2
0αT

s

)
×

×
(

D0−
dΩ2

d lnr
−

p′0
ρ0

d lnρ0

dr
−

−4Ω2ω̃2

D0

)
+

D0 p′0 p0

ρ2
0v2

AαT
s ω̃2

d ln p0

dr

]
. (2.36)

Equation (1.7) is the second canonical first-order differential
equation of the MHD approach. As a whole, Eqs. (1.7) and
(1.8) are the Hameiri-Bondeson-Iakono-Bhattacharjee (HBIB)
type equations. The effect described by the coefficient C̄1 is
the second oblique effect.

2.2.2. General canonical mode equation

In order to exclude the value p∗ from our problem, we find
from Eq. (1.7)

i4πkzB0 p∗ = (C1B̃r−DτB)/C2. (2.37)

Then equation (1.8) takes the form of Eq. (1.9) with Λ given
by Eqs. (1.10)–(1.12).
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3. MODE EQUATIONS IN THE QUASI-INCOMPRESSIBLE,
BOUSSINESQ, AND BALBUS APPROXIMATIONS

3.1. Quasi-incompressible approximation

We introduce the quasi–incompressible approximation as-
suming the parameter k2

z p0(Γω̃ + i∆T )/[ρ0ω̃2(ω̃ + i∆T )] to be
large but finite. Then the sound propagator given by Eq. (1.13)
reduces to (1.14), which is relevant to the high-β plasma and
the slow modes with parallel phase velocities much smaller
than the sound velocity.

With Eq. (1.14), Eqs. (2.30)–(2.32), and (2.36) are trans-
formed into

D = −D2
0/(k2

z v2
A). (3.1)

C1 = − D0

k2
z v2

A

[
2Ωω̃ky + ω̃

2 p′0
ρ0

(
ω̃+ i∆T

Γω̃+ i∆T

d ln p0

dr
− d lnρ0

dr

)]
,

(3.2)

C2=
1

B2
0

D0

(
1+

k2
y

k2
z

)
, (3.3)

C3 = −
4πρ0D2

0

k2
z v2

A

[
D0−

dΩ2

d lnr
− 4Ω2ω̃2

D0
+

p′0
ρ0

(
ω̃+ i∆T

Γω̃+ i∆T

d ln p0

dr
− d lnρ0

dr

)]
. (3.4)

By means of the above expressions for C1,C2, and C3,
Eq. (1.11) reduces to

a=−
4πρ0D2

0

k2
z v2

A

[
D0−

dΩ2

d lnr
+

p′0
ρ0

(
ω̃+i∆T

Γω̃+i∆T

d ln p0

dr
−d lnρ0

dr

)
−

−d lnρ0

dr
4Ω2ω̃2k2

z

(k2
z + k2

y)D0
+a3 +a4

]
, (3.5)

where

a3 =
4kyΩω̃3(ω̃+ i∆T )

(k2
y + k2

z )(Γω̃+ i∆T )D0

d ln p0

dr
, (3.6)

a4 =
ω̃4(ω̃+ i∆T )2

(k2
y + k2

z )(Γω̃+ i∆T )2D0

(
d ln p0

dr

)2

. (3.7)

Similarly, Eq. (1.12) is transformed to

b =
4πD2

0

v2
A

d
d lnr

{
ρ0

r(k2
z + k2

y)

[
2Ωω̃ky+

+
ω̃2(ω̃+ i∆T )
(Γω̃+ i∆T )

d ln p0

dr

]}
.

(3.8)

3.2. The Boussinesq approximation

By means of Eq. (2.4), one can exclude ∇ ·V from Eq. (2.5)
arriving at the entropy equation

p
d
dt

ln
(

p
ρΓ

)
=−(Γ−1)∇ ·q. (3.9)

Neglecting the term dρ/dt in Eq. (2.4), one has the incom-
pressibility condition

∇ ·V = 0. (3.10)
Using Eq. (3.10), instead of Eq. (2.4), together with Eq. (3.9),
is the essence of the Boussinesq approximation.

In the case of axisymmetric perturbations Eq. (3.10) yields

1
r

∂

∂r
(rṼr)+ ikzṼz = 0. (3.11)

Hence, using Eq. (2.7), one has

Ṽz =− iω
k2

z B0
τB. (3.12)

By means of Eq. (2.12) and (3.12), we arrive at

p̃ =− iω2ρ0

k3
z B0

τB. (3.13)

With Eq. (2.13) for ky = 0 and (3.13), Eq. (1.4) leads to

p∗ =
iB0

4πkz

(
1− ω2

k2
z v2

A

)
τB. (3.14)

This is the same as Eq. (1.6) for D and C2 given by Eqs. (3.1)
and (3.3) (for ky = 0) and C1 = 0, (see Eq. (1.15)).

Turning to Eq. (3.9), one finds
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ρ̃

ρ0
=

1
Γω+ i∆T

{
(ω+ i∆T )

p̃
p0
− i
[

ω
d
dr

ln
(

p0

ρΓ
0

)
+ i∆T

d lnT0

dr

]
B̃r

kzB0

}
. (3.15)

Substitution of Eq. (3.13) into (3.15) yields

ρ̃

ρ0
=

−i
kzB0

[
ω+ i∆T

Γω+ i∆T

(
iω2ρ0

kz p0
τB +

d lnρ0

dr
B̃r

)
− d lnρ0

dr
B̃r

]
.

(3.16)
It follows from Eq. (2.15) for ky = 0 that

B̃θ =−i2ΩωB̃r/D0. (3.17)

Substitution of Eq. (3.17) into Eq. (2.14) leads to

i
(

D0−
dΩ2

d lnr
− 4Ω2ω2

D0

)
B̃r +

kzB0

ρ0

d p∗
dr

−
kzB0ρ̃p′0

ρ2
0

= 0.

(3.18)
For ρ̃ given by Eq. (3.16) this equation means

i4πkzB0Dp′∗ = C3B̃r + i4πDp′0
ω+ i∆T

Γω+ i∆T

ω2ρ0

k2
z p0

τB, (3.19)

where the constants D and C3 are defined by Eqs. (3.1) and
(3.4), respectively (for ky = 0). Using Eq. (3.13), one can ex-
press τB in terms of p∗ and arrive at an equation similar to
Eq. (1.7), which is given by Eq. (1.17), where

C̄Bous
1 =

ω2D0

k2
z v2

A

p′0
p0

ω+ i∆T

Γω+ i∆T
. (3.20)

Comparing Eq. (3.20) with Eq. (2.34) for ky = 0 and using
(1.14), one has (1.18). Then one arrives at the mode equation
in the Boussinesq approximation given by (1.19), (1.20).

3.3. The Balbus approximation

In Ref. 6, the term with p̃ in Eq. (3.15) for ρ̃ has been ne-
glected. This followed by the statement that such a neglect “is
an implementation of the Boussinesq approximation (relative
changes in the pressure are much smaller than relative changes
in the temperature or density)”. Then one arrives at the Balbus
mode equation (1.21).

4. DERIVATION OF NONLOCAL DISPERSION RELATION

We represent (1.9) as

∂

∂r

[
G

1
r

∂

∂r
(rB̃r)

]
−HB̃r = 0, (4.1)

where

G = D/C2, (4.2)

H = −Λ/D. (4.3)

In the quasi-slab approximation, (4.1) reduces to

∂

∂r

(
G

∂B̃r

∂r

)
−HB̃r = 0. (4.4)

Assume that there is a jump of the rotation frequency Ω at
r = r0 from Ω1 to Ω2, where “1” means r < r0 (the inside re-
gion) while “2” denotes r > r0 (the outside region). The char-
acteristic width of the transition layer between the regions is
a� r0.

Far from the transition layer the functions G and H can by
approximated by constants. Then solution of Eq. (4.4) decreas-
ing with increasing |r− r0| is given by

(B̃r)1,2 = B̃(0)
r exp

(
−σ1,2|r− r0|

)
, (4.5)

where B̃(0)
r is a constant and

σ1,2 = (H1,2/G1,2)1/2. (4.6)

Now we integrate Eq. (4.4) over a region of the width of
order δ including the transition layer assuming a� δ� 1/σ1,2

and B̃r to be continuous. Then we obtain

D
C2

(
∂B̃r

∂r

)∣∣∣∣∣
r0+δ

r0−δ

− B̃(0)
r I = 0, (4.7)

where

I =
r0+δZ

r0−δ

H dr. (4.8)

Substitution of Eq. (4.5) into (4.7) leads to

(GH)1/2
2 +(GH)1/2

1 + I = 0. (4.9)

This is the nonlocal dispersion relation.
In terms of the canonical parameters one has

(GH)1/2
2,1 = (−Λ/C2)

1/2
2,1 , (4.10)

where

I =−
r0+δZ

r0−δ

dr Λ/D. (4.11)

The parameters C1 and C2 do not contain the δ-functional
singularity. Then (4.11) reduces to

I =−
r0+δZ

r0−δ

C3

D
dr +

(
C1

C2

)∣∣∣∣2
1
. (4.12)
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On the other hand, (4.10) is transformed to

(GH)1/2
2,1 =

[
(C2

1 −C2C3)/C2
2
]1/2

2,1 . (4.13)

The term I describes the nonlocal part of the nonlocal disper-
sion relation (4.9), while (GH)1/2

2,1 the local one.
According to Eqs. (3.1)–(3.4), in the case m = 0 (ky = 0),

p′0 = 0, ρ′0 = 0, β� 1,∆T → 0, i.e., in the case of slow axisym-
metric modes in the simplest astrophysical plasma for low heat
conductivity, one has

D = −(ω2− k2
z v2

A)2/k2
z v2

A, (4.14)

C1 = 0, (4.15)

C2 = (ω2− k2
z v2

A)/B2
0, (4.16)

C3 = −4πρ0(ω2− k2
z v2

A)2
(

ω
2− k2

z v2
A−

dΩ2

d lnr
− 4Ω2ω2

ω2− k2
z v2

A

)
.

(4.17)

Then, starting from Eqs. (4.9), (4.12), and (4.13), we arrive at[(
1+

γ2

k2
z v2

A

)2

+
4Ω2

2γ2

k4
z v4

A

]1/2

+

+

[(
1+

γ2

k2
z v2

A

)2

+
4Ω2

1γ2

k4
z v4

A

]1/2

+
r0(Ω2

2−Ω2
1)

|kz|v2
A

= 0,

(4.18)

where γ2 =−ω2.

5. SLOW AXISYMMETRIC MODES IN THE SIMPLEST
ASTROPHYSICAL HIGH-β PLASMA

5.1. General properties of nonlocal modes

One can see that, since the two first terms on the right-hand
side of Eq. (4.18) are positive, this equation can be satisfied
only if

Ω
2
1 > Ω

2
2. (5.1)

This condition shows that the instability is possible only
for a decreasing profile of the rotation frequency, i.e., for
dΩ2/d lnr < 0, which agrees with the results of [1–3].

5.2. The case of a magnetized plasma, γ� kzvA

The perturbations described by (4.18) are marginally stable
(γ = 0) for kz = kz0 with

|kz0|= r0(Ω2
1−Ω

2
2)/2v2

A. (5.2)

Turning to (B.5), one can see that, instead of (5.2), the local
theory yields Eq. (B.6). It can be seen that (B.6) is in a quali-
tative agreement with (5.2).

Near the instability boundary, at γ2 � k2
z v2

A, Eq. (4.18) re-
duces to

γ
2 =

1
2
|kz0|r0

Ω2
1−Ω2

2

1+(Ω2
1 +Ω2

2)/(kz0vA)2

(
1− |kz|

|kz0|

)
. (5.3)

At the same time, the expression for the squared growth rate
near the instability boundary following from the local disper-
sion relation (B.5) is given by (B.8). One can see that there is
a qualitative agreement between (B.8) and (5.3).

The instability condition following from (5.3) takes the form

|kz|< |kz0|, (5.4)

or, in the explicit form,

Ω
2
1−Ω

2
2 > 2v2

A|kz|/r0. (5.5)

One can see that, as for the local perturbations [1], sufficiently
small wave number is necessary for the nonlocal instability.
This agrees with the general results of [2, 3].

The above relations describe the nonlocal axisymmetric
magnetorotational instability (MRI) in the simplest astrophys-
ical high-β plasma, which is physically the same as the local
MRI [1].

5.3. The case of nonmagnetized plasma

It follows from Eq. (4.18) for v2
A → 0 that

γ

[(
γ

2 +4Ω
2
2
)1/2

+
(
γ

2 +4Ω
2
1
)1/2

]
= r0|kz|(Ω2

1−Ω
2
2). (5.6)

For γ� (Ω2,Ω1) one hence finds

γ =
r0|kz|

2(|Ω2|+ |Ω1|)
(Ω2

1−Ω
2
2). (5.7)

Since we assumed r0|kz| � 1, this equation should be consid-
ered for |Ω1−Ω2| �Ω1, when it turns into

γ = r0|kz|(Ω1−Ω2)/4. (5.8)

In the opposite case γ� (Ω2,Ω1) Eq. (5.6) yields

γ
2 = r0|kz|(Ω2

1−Ω
2
2)/2. (5.9)

For γ' (Ω2,Ω1) one can take Ω2 = Ω1 = Ω̄ on the left-hand
side of Eq. (5.6), where Ω̄ = (Ω1 +Ω2)/2. Then (5.6) reduces
to

γ
(
γ

2 +4Ω̄
2)1/2

= r0|kz|Ω̄(Ω1−Ω2). (5.10)

This equation can be transformed into the bi-quadratic with
respect to γ with the rule that Imω > 0:

ω
2 (

ω
2−4Ω̄

2)= r2
0k2

z Ω̄
2(Ω1−Ω2)2. (5.11)

It hence follows that

ω1 = i21/2|Ω̄|[(1+∆)1/2−1], (5.12)

ω2,3 = ±21/2|Ω̄|[(1+∆)1/2 +1], (5.13)
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where

∆ = r2
0k2

z (Ω1−Ω2)2/(4Ω̄
2). (5.14)

The roots ω2,3 are real, they are not of interest for the stability
problem. The root ω1 is generalization of Eqs. (5.8) and (5.9)
for arbitrary ∆.

As a whole, the result of this subsection is compatible with
the local solution γ2 = k2

z κ2/k2 (for κ2 < 0) mentioned in Ap-
pendix B.

6. SLOW NONLOCAL AXISYMMETRIC MODES IN A
HIGH-β PLASMA WITH GRAVITATION FORCE AND

PRESSURE GRADIENT

6.1. General dispersion relation for low heat conductivity

For axisymmetric modes, ky = 0,∆T → and p′0 6= 0,
Eqs. (3.2)-(3.4) reduce to

C1 =−D0 p′0/(αsv2
Aρ0), (6.1)

C2 = D0/B2
0, (6.2)

C3 = 4πρ0D0

[(
1+

β

αs

)(
D0−

dΩ2

d lnr
−

−
p′0

rρ0

d lnρ0

d lnr
− 4Ω2ω2

D0

)
+

D0

αsv2
Aω2

p′20
ρ2

0

]
. (6.3)

Here β = c2
s /v2

A,c2
s = Γp0/ρ0 is the squared sound velocity,

αs = 1− k2
z c2

s /ω2. Then Eq. (4.12) yields

I = 4πr0

[
ρ0

(
Ω

2−
p′0

r0ρ0αs

)]∣∣∣∣2
1
. (6.4)

Turning to (4.13) and using (6.1)–(6.3), we find

(GH)1/2
2,1 = 4πr0v2

A(1+β/αs)1/2 [−(D̄−4Ω
2
ω

2/D0
)]1/2

2,1 ,

(6.5)
where

D̄ = D0− k2
z p′20 /

(
ω

2
αsρ

2
0
)
− p′0(ln p0)′/ρ0. (6.6)

As a result, (4.9) reduces to

(1+β/αs)1/2
{[
−
(
D̄−4Ω

2
ω

2/D0
)]1/2

2 +

[
−
(
D̄−4Ω

2
ω

2/D0
)]1/2

1

}
+

r0

vA

(
Ω

2−
p′0

r0ρ0αs

)∣∣∣∣2
1
= 0.

(6.7)

6.2. Slow modes in high-β plasma for low heat conductivity

It follows from (6.7) for β� 1 and αs →−c2
s k2

z /ω2 that(
1+

γ2

k2
z v2

A

)1/2 [
γ

2 + k2
z v2

A−
p′20

c2
s ρ2

0
+

p′0
ρ0

(ln p0)′
]1/2

+

+
r0

2vA

(
Ω

2
2−Ω

2
1
)

= 0. (6.8)

It is allowed here that for β � 1 the jump in the pressure gra-
dient is small as 1/β.

Taking here γ → 0, one arrives at the instability boundary
[cf. (B.15)][

k2
z v2

A−
p′0

Γρ0

d
dr

ln
(

p′0
ρΓ

0

)]1/2

+
r0

2vA

(
Ω

2
2−Ω

2
1
)

= 0. (6.9)

Turning to (B.11), Eq. (6.9) is represented as(
k2

z v2
A +N2

BV
)1/2

+
r0

2vA

(
Ω

2
2−Ω

2
1
)

= 0, (6.10)

where N2
BV is defined by (B.11).

For N2
BV > 0 this dispersion relation describes convective

suppression of the nonlocal MRI. On the other hand, for

−k2
z v2

A < N2
BV < 0 (6.11)

Eq. (6.10) describes the convective enhancement of this insta-
bility. In the case

N2
BV <−k2

z v2
A (6.12)

the nonlocal MRI disappears and the nonlocal CI does not oc-
cur.

6.3. Slow modes in high-β plasma for high heat conductivity

According to [15], transition from the case of low to high
heat conductivity is done by

Γ→ 1 (6.13)

in the final formulas. Then one arrives at the instability condi-
tion (6.10) with the substitution

N2
BV → N2∞

BV, (6.14)

where [cf. (B11)]

N2∞
BV =−

p′0
ρ0

ln(p0/ρ0)′. (6.15)

7. SLOW NONAXISYMMETRIC MODES IN THE
SIMPLEST ASTROPHYSICAL HIGH-β PLASMA

In the case of uniform plasma pressure, p′0 = 0, one has by
means of (4.12) and (4.13)

I = = r0

{
Ω

2
2−Ω

2
1−2

m
r2

0

[
Ωω̃

Dθ

(
v2

A +
c2

s

αs

)]2

1

}
, (7.1)

(GH)1/2
2,1 =

{(
v2

A+
c2

s

αs

)
ω̃2−k2

z v2
A

Dθ

[
k2

z v2
A−ω̃

2
(

1−4Ω2

Dθ

)]}1/2

2,1
,

(7.2)
where

Dθ = ω̃
2− (k2

z + k2
y)v

2
A− k2

yc2
s /αs. (7.3)
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Then one should substitute (7.1) and (7.2) into the nonlocal
dispersion relation (4.9).

For the slow modes in the case β → ∞ Eqs. (7.1) and (7.2)
yield [5]

I =
r0

k2
y + k2

z

[
(Ω2

2−Ω
2
1)(k

2
z − k2

y)+
2m
r2

0
ω(Ω2−Ω1)

]
,

(7.4)

(GH)1/2
1,2 =

1
(k2

z + k2
y)1/2

[
(k2

z v2
A− ω̃

2)2−4Ω
2
ω̃

2 k2
z

k2
z + k2

y

]1/2

1,2

.

(7.5)

We restrict ourselves to the case of weak rotation frequency
jump, so that

Ω
2
1−Ω

2
2 �Ω

2
1. (7.6)

Then one can introduce the axilliary Doppler-shifted oscilla-

tion frequency

ω̂ = ω−mΩ̄, (7.7)

where

Ω̄ = (Ω1 +Ω2)/2. (7.8)

At the same time, in (7.5) we take for simplicity

ω̂� m|Ω1−Ω2|/2. (7.9)

We assume ω̂ a small parameter and find it by the method of
successive approximations. In terms of ω̂ Eqs. (7.4) and (7.5)
transit to

I =
r0

k2
y + k2

z

[
k2

z (Ω
2
2−Ω

2
1)+

2m
r2

0
ω̂(Ω2−Ω1)

]
, (7.10)

(GH)1/2
2 = (GH)1/2

1 =
k2

z v2
A

(kz + k2
y)1/2

{
1− ω̂2

k2
z v2

A

[
1+

2Ω̄2

v2
A(k2

z + k2
y)

]}
. (7.11)

Using (4.9), (7.10), and (7.11), we obtain the dispersion re-
lation [5] [

1+
2Ω̄2

(k2
z + k2

y)v2
A

]
ω̂

2 + f = 0, (7.12)

where

f = k2
z

[
r0(Ω2

1−Ω2
2)

2(k2
z + k2

y)1/2 − v2
A

]
. (7.13)

Hence we find that the perturbations are unstable for

f > 0. (7.14)

For ky = 0 this instability condition reduces to (5.5). Com-
paring (7.14) with (5.5), one can see that the driving of the non-
local nonaxisymmetric modes is weakened as |kz|/(k2

z +k2
y)

1/2

compared with that of the axisymmetric modes. This con-
clusion is compatible with that for the local nonaxisymmetric
modes discussed in Appendix C.

8. DISCUSSION

The first step to the equations describing the surface-wave
instabilities is derivation of the MHD canonical mode equa-
tions. According to explanations of Sec. 1, our task is to derive
expressions for the primary canonical parameters D,C1,C̄1,C2,
and C3. In general form, these parameters are given by (2.30)–
(2.32), (1.8) and (2.36). In the quasi-incompressible approxi-
mation, instead of these equations, one has (3.1)–(3.4).

Using our technique, we have analyzed applicability of the
Boussinesq approximation for studying the slow modes in
high-β plasma. Then we have found that this approximation
leads to a non-self-adjoint equation (1.19). By this reason,
it is, in general, unacceptable for such analysis. This draw-
back of the Boussinesq approximation can be eliminated by
an artificial omitting of the term responsible for the non-self-
adjointness. This has been done by Balbus in Ref. 6.

We have considered the surface-wave perturbations in the
approximation of step-like equilibrium parameters. Then we
have derived general nonlocal dispersion relation (4.9) with its
local and nonlocal parts given by Eqs. (4.10) and (4.11), re-
spectively. Reduced version of this dispersion relation for the
case of slow axisymmetric modes in the simplest astrophysical
plasma for low heat conductivity is given by Eq. (4.18). Anal-
ysis of Eq. (4.18) has lead to results presented in Sec. 5. Then
we have shown that the nonlocal axisymmetric MRI, as the
local one, is possible only for decreasing rotation frequency
profile, see Eq. (5.1). The instability boundary is given by
Eq. (5.2) showing that, as in the local case, only the pertur-
bations with sufficiently small kz can be unstable. The growth
rate of the nonlocal MRI near its instability boundary is given
by Eq. (5.3). The results of nonlocal and local theories show
that the both varieties of the axisymmetric MRI must be simi-
lar.

With equilibrium pressure gradient, p′0 6= 0, in addition to
the surface-wave MRI, the surface-wave convective instability
can be revealed, see Sec. 6. In this case the situation with
the surface-wave instabilities is similar to that mentioned in
Appendix B for the local instabilities.

A more complicated picture is revealed for the nonlocal non-
axisymmetric MRI because of the radial dependence of the
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Doppler-shifted oscillation frequency ω̃. Dispersion relation
of nonlocal nonaxisymmetric MRI is given by Eq. (4.9) with
complementing Eqs. (7.4) and (7.5). Its instability criterion is
given by Eq. (7.14). According to these equations, driving the
nonlocal nonaxisymmetric MRI is hampered compared with
that of the axisymmetric one.

Numerical calculations of nonlocal nonaxisymemtric MRI
have been done in [17–21]. The analytical results presented
here will be useful for understanding the results of computa-
tions and for further studies on both the nonaxisymemtric and
axisymemtric MRIs.
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Appendix A General results of the theory of local
instabilities for low heat conductivity

In the case of local modes one takes the function B̃r in the
form

B̃r = B̄r(r)exp(ikrr), (A.1)

where B̄r(r) is a slowly varying amplitude. Then (4.4) leads to

−k2
r D2/C2 +Λ = 0, (A.2)

which is the local dispersion relation. The explicit form of this
dispersion relation for low heat conductivity is

D0 − k2
⊥v2

A(1+β/αs)−
[

dΩ2

d lnr
− 1

αs

d
d lnr

(
p′0

rρ0

)]
−

p′0
rρ0D0

Eρ +

+
(

Dy

ω̃2 −
β

αs

)
p
′2
0

αsv2
Aρ2

0(1+β/αs)
− 4ω̃2Ω2

D0
− 2mΩω̃

D2
0

Eω̃ = 0. (A.3)

Here

Dy = D0− k2
yv2

A(1+β/αs), (A.4)

Eρ = D0− k2
yv2

A

(
1+

β

αs

)
d lnρ0

d lnr
− D0(1+β/αs)

αs
ξ

p,

(A.5)

Eω̃ =
(

Dy

D0
+

β

αs

)
p′0

rρ0
−

D0v2
A

r2

(
1+

β

αs

)
ξ

NA, (A.6)

where

ξ
p =

d
d lnr

ln
D0ρ0

αsDy
, (A.7)

while ξNA is defined by

ξ
NA =

d
d lnr

ln
[

Ω(1+β/αs)
r2Dy

]
. (A.8)

The superscript “p” means a quantity dependent on the pres-
sure gradient, while the superscript “NA” means “nonaxisym-
metric”.

Dispersion relation (A.3) for p′0 = 0 is represented in the
form

D0

[
D0− k2

⊥v2
A

(
1+

β

αs

)
− dΩ2

d lnr

]
−4Ω

2
ω̃

2 +
2Ωω̃

m
k2

yv2
Aξ

NA = 0. (A.9)

Here k2
⊥ = k2

r + k2
y , and

ξ
NA =

d
d lnr

ln

{
Ω(1+β/αs)

r2[D0− k2
yv2

A(1+β/αs)]

}
. (A.10)

Appendix B Local axisymmetric modes

B.1. The simplest astrophysical plasma

For m = 0 Eq. (A.9) leads to the focal dispersion relation

D0

[
D0− k2

⊥v2
A

(
1+

β

αs

)
− dΩ2

d lnr

]
−4Ω

2
ω̃

2 = 0. (B.1)
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For incompressible plasma with β� 1, Eq. (B.1) reduces to

γ
4 + γ

2
(

2k2
z v2

A +
k2

z

k2 κ
2
)

+ k4
z v4

A

(
1+

1
k2v2

A

dΩ2

d lnr

)
= 0,

(B.2)
where k2 = k2

r + k2
z . The instability boundary is then given by(
k2)loc

=−(dΩ
2/d lnr)/v2

A. (B.3)

The growth rate near the instability boundary is defined by

(γ2)loc =−k2
z v2

A
k2v2

A +dΩ2/d lnr
2k2v2

A +κ2
. (B.4)

Note also that for v2
A → 0 Eq. (B.2) has solution γ2 =

−k2
z κ2/k2. This solution describes the local instability for

κ2 < 0.

B.2. The local modes in the presence of pressure gradient

B.2.1. Local dispersion relation near instability boundary

For small ω and ky = 0 one has from (A.3)

ω
2
∆

p
1 + k2

z v2
A∆

p = 0, (B.5)

where

∆
p =−

[
1+

1
k2v2

A

(
dΩ2

d lnr
−

p′20
ρ2

0c2
s

+
p′0

ρ0r
d lnρ0

d lnr

)]
, (B.6)

∆
p
1 = 1+

Ω2

k2v2
A

[
4+

1
β

(
d ln p0

d lnr
− d lnρ0

d lnr

)]
. (B.7)

Then the dispersion relation (B.5) has the roots

ω
2 =−k2

z ∆
p/∆

p
1 . (B.8)

One of these roots describes unstable modes for

∆
p < 0. (B.9)

Neglecting the term with p′0 in Eq. (B.6), one has

∆
p = ∆

pV ≡ 1+
1

k2v2
A

dΩ2

d lnr
. (B.10)

Then Eq. (B.9) is the Velikhov instability condition. The term
with p′0 in Eq. (B.6) is responsible for the convective insta-
bility, CI. Following [1], one can introduce the Brunt-Väisälä
(BV) frequency NBV defined by

N2
BV =−

p′0
Γρ0

(
ln

p0

ρΓ
0

)′
. (B.11)

Then Eq. (B.6) is represented as

∆
p = ∆

pV +∆
pB, (B.12)

where

∆
pB = N2

BV /(k2v2
A). (B.13)

The BV effect is destabilizing for

N2
BV < 0. (B.14)

With Eq. (B.6), the explicit form of the instability condition
(B.9) is

k2v2
A +

dΩ2

d lnr
−

p′0
Γρ0

d
dr

ln
(

p0

ρΓ
0

)
< 0. (B.15)

This result coincides with that obtained in Ref. 1.

Appendix C Local nonaxisymmetric modes in the simplest
astrophysical plasma

Taking ω̃ to be a small parameter, we reduce (A.10) to

ξ
NA = d lnΩ/d lnr. (C.1)

Then (A.9) is transformed to

D0

[
D0− k2

⊥v2
A

(
1+

β

αs

)
− dΩ2

d lnr

]
−4Ω

2
ω̃

2 +
2ω̃

m
dΩ

d lnr
k2

yv2
A = 0.

(C.2)
For β→ ∞ one has from (C.2)

ω̃
2
∆

NA
1 − 2ω̃

m
dΩ

d lnr
k2

y

k2
z + k2

⊥
+ k2

z v2
A∆

NA = 0, (C.3)

where

∆
NA = −

[
1+

1
(k2

z + k2
⊥)v2

A

dΩ2

d lnr

]
, (C.4)

∆
NA
1 = 1+

4Ω2

v2
A(k2

z + k2
⊥)

, (C.5)

the superscript “NA” means “nonaxisymmetric”.

C.1.1 The approximation ω̃/m→ 0

Without the term with ω̃/m Eq. (C.3) reduces to

γ
2 = k2

z v2
A∆

NA/∆
NA
1 . (C.6)

Then the instability boundary is given by

∆
NA = 0. (C.7)

The nonaxisymmetric instability region corresponds to

∆
NA > 0. (C.8)

At the same time, starting with (C.3), one can obtain that for
the case of axisymmetric modes, ky = 0, Eq. (C.6) is substi-
tuted by

γ
2 = k2

z v2
A∆/∆1, (C.9)

where

∆=−
[

1+
1

(k2
z + k2

r )v2
A

dΩ2

d lnr

]
, (C.10)

∆1= 1+4Ω
2/[(k2

z + k2
r )v

2
A] . (C.11)

Comparing (C.6) with (C.10), we conclude that the nonax-
isymmetric perturbations are less dangerous than the axisym-
metric ones.
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