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2,107 articles (done by 1,550 scientists from 60 countries) which led to

> 7,520 citations of papers
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EFEPYEIG Thermodynamics EVTPDTI'“I
Boltzmann-Gibbs statistical mechanics



TRIADIC CANTOR SET:

d_ =02 _.6300..

10 cm R In3

Hence the interesting measure 1s

(10 Cm)0.6309... ~ 4275 Cm0.6309

It Is the natural (or artificial or social) system itself
which, through its geometrical-dynamical properties,
Indicates the specific informational tool --- entropy ---
to be meaningfully used for the study of Iits
thermostatistical and thermodynamical properties.



The four independent universal constants of contemporary physics: G, ¢, h, k;'

(1/k, =0)

c1>0
h =0
G >0
Dirac Einstein 1905 instein 191

Quantum gravity?

The full tetrahedron ¢c'>0;h>0; G>0; k;' >0 corresponds to the

statistical mechanics of quantum gravity (at its center: ¢ =h=G =k;' =0)
C.T., Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World (in progress)
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Full Tetrahedron

A. Pluchino and C. T. (2006)



HISTORICAL BACKGROUND AND PHYSICAL
MOTIVATIONS FOR ATTEMPTING TO
GENERALIZE BOLTZMANN-GIBBS
STATISTICAL MECHANICS

ALONG THE LAST 135 YEARS...



Ludwig BOLTZMANN

Vorlesungen uber Gastheorie (Leipzig, 1896)
Lectures on Gas Theory, transl. S. Brush
(Univ. California Press, Berkeley, 1964), page 13

The forces that two molecules Impose one
onto the other during an Interaction can be
completely arbitrary, only assuming that their
sphere of action Is very small compared to
their mean free path.



J.W. GIBBS

Elementary Principles in Statistical Mechanics - Developed with
Especial Reference to the Rational Foundation of Thermodynamics

C. Scribner’'s Sons, New York, 1902; Yale University Press, New Haven, 1981),
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] to have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space [...]. It also excludes many
cases Iin which the energy can decrease without limit, as when the
system contains material points which attract one another inversely as
the squares of their distances. [...]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
iInvolved in the formula (92).



Enrico FERMI Thermodynamics (Dover, 1936)

The entropy of a system composed of several parts Is very
often equal to the sum of the entropies of all the parts. This
IS true If the energy of the system is the sum of the energies
of all the parts and if the work performed by the system
during a transformation is equal to the sum of the amounts
of work performed by all the parts. Notice that these
conditions are not quite obvious and that in some cases
they may not be fulfilled. Thus, for example, in the case of a
system composed of two homogeneous substances, it will
be possible to express the energy as the sum of the
energies of the two substances only if we can neglect the
surface energy of the two substances where they are In
contact. The surface energy can generally be neglected
only If the two substances are not very finely subdivided,;
otherwise, it can play a considerable role.



Ettore MAJORANA

The value of statistical laws in physics and social sciences.
Original manuscript in Italian published by G. Gentile Jr. in Scientia 36, 58
(1942); translated into English by R. Mantegna (2005).

This Is mainly because entropy is an additive quantity as the
other ones. In other words, the entropy of a system composed
of several independent parts is equal to the sum of entropy of
each single part. [...]

Therefore one considers all possible internal determinations as
equally probable. This is indeed a new hypothesis because the
universe, which is far from being in the same state indefinitively,
IS subjected to continuous transformations. We will therefore
admit as an extremely plausible working hypothesis, whose far
consequences could sometime not be verified, that all the
Internal states of a system are a priori equally probable in
specific physical conditions. Under this hypothesis, the
statistical ensemble associated to each macroscopic state A
turns out to be completely defined.



Claude Elwood SHANNON

The Mathematical Theory of Communication
(University of lllinois Press, Urbana, 1949)

It is practically more useful. [...]
It IS nearer to our intuitive feeling as to the proper measure.

[...]

It is mathematically more suitable. [...].}

This theorem and the assumptions required for its proof, are
IN no way necessary for the present theory. It is given chiefly
to lend a certain plausibility to some of our later definitions.
The real justification of these definitions, however, will reside
In their implications.



Laszlo TISZA

Generalized Thermodynamics
(MIT Press, Cambridge, Massachusetts, 1961)

The situation Is different for the additivity postulate
Pa2, the validity of which cannot be inferred from
general principles. We have to require that the
Interaction energy between thermodynamic systems
be negligible. This assumption is closely related to
the homogeneity postulate Pdl. From the molecular
point of view, additivity and homogeneity can be
expected to be reasonable approximations for
systems containing many particles, provided that the
Intramolecular forces have a short range character.



Radu BALESCU

Equilibrium and Nonequilibrium Statistical Mechanics
(John Wiley and Sons, 1975, New York)

It therefore appears from the present discussion
that the mixing property of a mechanical system is
much more important for the understanding of
statistical mechanics than the mere ergodicity. [...]
A detalled rigorous study of the way In which the
concepts of mixing and the concept of large
numbers of degrees of freedom influence the
macroscopic laws of motion is still lacking.



Peter LANDSBERG

Thermodynamics and Statistical Mechanics (1978)

The presence of long-range forces causes Iimportant
amendments to thermodynamics, some of which are not fully
Investigated as yet.

Is equilibrium always an entropy maximum?
J. Stat. Phys. 35, 159 (1984)

[...] In the case of systems with long-range forces and which
are therefore nonextensive (in some sense) some
thermodynamic results do not hold. [...] The failure of some
thermodynamic results, normally taken to be standard for
black hole and other nonextensive systems has recently been
discussed. [...] If two identical black holes are merged, the
presence of long-range forces in the form of gravity leads to a
more complicated situation, and the entropy is nonextensive.



David RUELLE

Thermodynamical Formalism -
The Mathematical Structures of Classical Equilibrium Statistical Mechanics
(page 1 of both 1978 and 2004 editions)

The formalism of equilibrium statistical mechanics -- which we shall call thermodynamic
formalism -- has been developed since J.W. Gibbs to describe the properties of certain
physical systems. [...] While the physical justification of the thermodynamic formalism
remains quite insufficient, this formalism has proved remarkably successful at
explaining facts.

The mathematical investigation of the thermodynamic formalism is in fact not
completed: the theory is a young one, with emphasis still more on imagination than on
technical difficulties. This situation is reminiscent of pre-classic art forms, where
iInspiration has not been castrated by the necessity to conform to standard technical
patterns.

(page 3) The problem of why the Gibbs ensemble describes thermal equilibrium (at
least for “large systems”) when the above physical identifications have been made is
deep and incompletely clarified.

[The first equation is dedicated to define the BG entropy form. It is introduced after the
words “we define its entropy” without any kind of justification or physical motivation.]



Nico van KAMPEN

Stochastic Processes in Physics and Chemistry
(North-Holland, Amsterdam, 1981)

Actually an additional stability criterion is needed, see M.E.
Fisher, Archives Rat. Mech. Anal. 17, 377 (1964); D. Ruelle,
Statistical Mechanics: Rigorous Results (Benjamin, New York
1969). A collection of point particles with mutual gravitation Is
an example where this criterion is not satisfied, and for which
therefore no statistical mechanics exists.



Roger BALIAN

From Microphysics to Macrophysics
(Springer-Verlag, Berlin, 1991), p. 205 and 206; French edition (1982).

These various guantities are connected with one another
through thermodynamic relations which make their extensive
or intensive nature obvious, as soon as one postulates, for
iInstance, for a fluid, that the entropy, considered as a function
of the volume Omega and of the constants of motion such as
U and N, IS homogeneous of  degree 1:
S(x Omega, x U, x N)=x S(Omega, U, N) (Eq. 5.43). [...]
Two counter-examples will help us to feel why extensivity is
less trivial than it looks. [...] A complete justification of the
Laws of thermodynamics, starting from statistical physics,
requires a proof of the extensivity (5.43), a property which was
postulated in macroscopic physics. This proof is difficult and
appeals to special conditions which must be satisfied by the
Interactions between the particles.



L.G. TAFF

Celestial Mechanics
(John Wiley, New York, 1985)

This means that the total energy of any finite collection of self-
gravitating mass points does not have a finite, extensive (e.g.,
proportional to the number of particles) lower bound. Without
such a property there can be no rigorous basis for the statistical
mechanics of such a system (Fisher and Ruelle 1966).
Basically it is that simple. One can ignore the fact that one
knows that there is no rigorous basis for one's computer
manipulations; one can try to improve the situation, or one can
look for another job.



W.C. SASLAW

Gravitation Physics of Stellar and Galactic Systems
(Cambridge University Press, Cambridge, 1985)

When interactions are important the thermodynamic
parameters may lose their simple intensive and extensive
properties for subregions of a given system. [...]
Gravitational systems, as often mentioned earlier, do not
saturate and so do not have an ultimate equilibrium state.



John MADDOX

When entropy does not seem extensive
Nature 365, 103 (1993)

Everybody who knows about entropy knows that it is an
extensive property, like mass or enthalpy. [...] Of course, there
IS more than that to entropy, which is also a measure of
disorder. Everybody also agrees on that. But how is disorder
measured? [...] So why is the entropy of a black hole
proportional to the square of its radius, and not to the cube of
It? To its surface area rather than to its volume?



A.C.D. van ENTER, R. FERNANDEZ and A.D. SOKAL, Regularity Properties and
Pathologies of Position-Space Renormalization-Group Transformations: Scope and
Limitations of Gibbsian Theory [J. Stat. Phys. 72, 879-1167 (1993)]
We provide a careful, and, we hope, pedagogical, overview of the theory of Gibssian
measures as well as (the less familiar) non-Gibbsian measures, emphasizing the
distinction between these two objects and the possible occurrence of the latter in
different physical situations.

Toward a Non-Gibbsian Point of View: Let us close with some general remarks on the
significance of (non-)Gibbsianness and (non)quasilocality in statistical physics. Our first
observation is that Gibbsianness has heretofore been ubiquitous in equilibrium statistical
mechanics because it has been put in by hand: nearly all measures that physicists
encounter are Gibbsian because physicists have decided to study Gibbsian measures!
However, we now know that natural operations on Gibbs measures can sometimes lead
out of this class. [...] It is thus of great interest to study which types of operations
preserve, or fail to preserve, the Gibbsianness (or quasilocality) of a measure. This
study is currently in its infancy. [...] More generally, in areas of physics where
Gibbsianness is not put in by hand, one should expect non-Gibbsianness to be
ubiquitous. This is probably the case in nonequilibrium statistical mechanics. Since one
cannot expect all measures of interest to be Gibbsian, the question then arises whether
there are weaker conditions that capture some or most of the “good” physical properties
characteristic of Gibbs measures. For example, the stationary measure of the voter
model appears to have the critical exponents predicted (under the hypothesis of
Gibbsianness) by the Monte Carlo renormaliztion group, even though this measure is
provably non-Gibbsian. One may also inquire whether there is a classification of non-
Gibbsian measures according to their “degree of non-Gibbsianness”.



Floris TAKENS

Structures in Dynamics —
Finite Dimensional Deterministic Studies

Eds. H.W. Broer, F. Dumortier, S.J. van Strien and F. Takens, p. 253
(North-Holland, Amsterdam, 1991)

The values of p, are determined by the following dogma: if the energy of

the system in the i1 -th state is E;, and if the temperature of the system is T then:

o Ei/KT

Z(T)
This choice of p. is called the Gibbs distribution. We shall give no justification

P = , where Z(T)=>) e™™'"(this last constant is taken so that » p, =1).

for this dogma; even a physicist like Ruelle disposes of this question as
" deep and incompletely clarified ".

The advantages of the method of postulation are great; they
are the same as the advantages of theft over honest toil.

(Bertrand Russell)




ENTROPY



ENTROPIC FORMS

I W < =
e : F,-'[{}_jll._l}
P=yr |,
=1
equiprobability { ;fjr )
W
BG entropy kinW _ﬁz p.In p,
(q :1) i=]
W
_ q
Entropy Sq “‘f l—q l | | ; p;
(q real) K k

| - ¢

q—1

Possible ceneralization of

Boltzmann-Gibbs statistical mechanics

[C.T.. . Stat. Phys. 52, 479 (1988)]

Concave
Extensive
Lesche-stable

Finite entropy production
per unit time

Pesin-like identity (with
largest entropy production)

Composable

Topsoe-factorizable



DEFINITION : q—logarithm:

X1
-0
In, X=1InX

lanE

(x>0)

Hence, the entropies can be rewritten :

equal probabilities

general probabilities

W
BG entropy k InW k > pn (1/p,)
Q=D .

W
entropy S, K In,W k > pIn, (1/p,)

(QeR)




g-describable non g-describable

/‘ q=1 q#1
local global
correlations correlations
IDEAL GAS
CRITICAL PHENOMENA

1+0
=——  (A. Robledo, Mol Phys 103 (2005) 3025)

2
\/72 C.T., M. Gell-Mann and Y. Sato
q= 9+2c” -3 (F. Caruso and C. T., 2006) Europhysics News 36 (6), 186
C

(European Physical Society, 2005)




ORDINARY DIFFERENTIAL EQUATIONS

FURTHER APPLICATIONS
(Physics, Astrophysics, Geophysics,
Economics, Biology, Chemistry,
Cognitive psychology, Engineering,
Computer sciences, Quantum
information, Medicine, Linguistics ..

)

IMAGE PROCESSING

SIGNAL PROCESSING
(ARCH, GARCH)

GLOBAL OPTIMIZATION
(Simulated annealing)

SUPERSTATISTICS
(Other generalizations)

THERMODYNAMICS

AGING (metastability, glass, spin-glass)

(Hamiltonians, coupled maps)

LONG-RANGE INTERACTIONS

UBIQUITOUS LAWS IN
COMPLEX SYSTEMS

PARTIAL DIFFERENTIAL EQUATIONS
(Fokker-Planck, fractional derivatives,
nonlinear, anomalous diffusion, Arrhenius)

CENTRAL LIMIT THEOREMS
_1 (de Moivre-Laplace-Gauss, Levy-Gnedenko)

STOCHASTIC DIFFERENTIAL EQUATIONS
(Langevin, multiplicative noise)

NONLINEAR DYNAMICS
(Chaos, intermittency, entropy production, Pesin,
quantum chaos, self-organized criticality)

q-TRIPLET

q-ALGEBRA

CORRELATIONS IN PHASE SPACE

GEOMETRY

(Scale-free networks)




ARISTOTLE (384 — 322 BC)

[AotototéAn, 1leot TTomtkng, 14594] |
Eotwv 0¢ peya pev 10 EKAOTWL TV €ONUEVOV TIQETOVTWS
xonobat, kat OLIMAOLE OVOUXOL Kl YAWTTALS, TTOAD 0&€ UEYLOTOV TO
HeTadoQkov etvat. MoOvov yao tovTo ovte maQ &AAov €0t Aafetv

evOLIAC Te ONUELOV €0TL TO YXQ €U HETADEQELV TO TO OUOLOV
Oewpelv e0TLV.

To mo onpovrikO om0 0A0 TO TUEPETAVE €ivol 11 0eSlOTEIVIKN YPNo TS
NETUQPOPAS. ALOTL HOVO GVTO Oev pmmopel va 0100y Oel, eve etvar oetypa sveutog Kabmg
N0 GMGTI] NETEQOPJ VTOONAMVEL TNV IKOVOTITO VO OLCKPIVEL KOVEIS ONOIOTNTES
OVONEGT GE AVONOLU TTPAYNATU.

“By far the greatest thing is to be a master of metaphor. It is the one thing that
cannot be learned from others. It is a sign of genius, for a good metaphor
implies an intuitive perception of similarity among dissimilars. "—Aristotle




ABOUT ORDINARY
DIFFERENTIAL EQUATIONS

(i)

d
Y—0 with y0)=1
dx

=y=1
Inverse function: z =1+«——(X 22y symmetry)

i
G) Y =1 with y0)=1
dx

y=1+4u=x
Inverse function: z =y - 1

d.
Gi) Y=y with y(0)=1
dx

=y = el (EXPONENTIAL)
Inverse function: z = Iny

Property: In(y4 yg) =Inyq + Inyg

(év) Unification:

i
=yl (geR) with y(0) =1

1 -
=y =[14+(1-¢)z]"-7 =¢; (POWER-LAW)

S 1-g_q _
Inverse function: ; = ¥ =g = Ing y

Property:ing(ys yg) = Ingya+ingyp+(1-g)(Ingy4)(Ingyp)

[¢=1,g=0and g -~ recover the three previous cases]




ABOUT MEAN VALUES

(i) Equiprobability: pi=% (i)

Sga =k InW (k = positive constant)
Naturally generalized into:
Sq =k |I‘|r,. %%

(ii) General: (not necessarily equiprobability)

1 1
Spa({pi}) = -k > pi Inp; =k Y piIn—= (kIn—)
i=1 i=1 ™ L

'y

“surprise” or “unexpectedness”
[We verify that ;. — % (vi) TECOVEIS g\ = In W |

Naturally generalized into:

Sq({pi}) = (kIng ;} =k ) pilng—

i i=1 I_EI

“g-surprise” or “g-unexpectedness”

. T T 2l
hence: §,({p;}) =k -—--'—ll P;
q —_

[We verify that p, = % (Vi) Tecovers S, =k Ing W ]

Property: path =pipf =

S¢(A+B) = Sq(A)+5¢(B) +(1—¢)S54(A)S¢(B)




ABOUT BIAS

[0<p; <1 (Vi) pi >p if ¢<1
<p;i if g>1
=pi if ¢=1 (BG)

(i) Sq=({m}) should be invariant under permutation.
The simplest manner 1s to be

Se({pi}) = F(ZIL, p))

(i) The simplest function f(x) is

Sq({pi}) = a+bX, p!

(i) Certainty must correspond to Sq =0
In other words p, =1 fori=iy

=0 otherwise
hence a+b=0
hence  §,({p;}) = a(1 - X, )

(iv) For gq— 1 we must recover Sga({p;})-
Using p;f—l ~1+(1-g)Inp; We obtain

Sq({pi}) ~ —a(g—= 1) p;Inp;
consequently, by identifying q(q — 1) = & We obtain

So({pi}) = k —325=




ABOUT REACTION
UNDER BIAS

S. Abe
Phys Lett A 224,
326 (1997)

(i) Testing the function under translation of the bias x:

55(({?3})__LZ¢ 1 P Inp; = 'I“[H_Er—lpr]r 1

(ii) Testing the function under dilatation of the bias x:

We replace % by Jackson’s 1909 generalized derivative

Dq h(-}:} = h(gx)—h(z) [ﬂlh{:};} — %1]

qr—1I

and obtain
Se({pi}) = -k [DQTH 1Pl z=1

hence
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SANTOS THEOREM: RJV Santos, J Math Phys 38, 4104 (1997)

(g -generalization of Shannon 1948 theorem)

IF S({p;}) continuous function of {p.}
AND S(p, =1/W, Vi) monotonically increases with W
S(A+B) _ S(|<A)+ S(kB)+(1_q) S(A) S(kB) (with py™= pi p ®)
AND S({p;})=S(PL, Pu)+ P SUP/ P+ Py SUP,/ Py}) (With p_+p,, =1)

AND

THEN AND ONLY THEN

l_i piq W
S({Pi})=kﬁ (OI=1 = S({pi})=—kzpiln pij

CE SHANNON (The Mathematical Theory of Communication):
"This theorem, and the assumptions required for its proof, dle INn NO way necessary for

the present theory. It is given chiefly to lend a certain plausibility to some of our later definitions.
The real justification of these definitions, however,will reside in their

Implications.



ABE THEOREM: S Abe, Phys Lett A 271, 74 (2000)

(9 -generalization of Khinchin 1953 theorem)

I= S({p;}) continuous function of {p.}
AND S(p, =1/W, Vi) monotonically increases with W

AND S(p, P,5- P> 0) = S(P, Pysees Py )
S(A+B)_S(A) S(BIA) ;| SA)SBIA
K k k k K

AND

THEN AND ONLY THEN

l_i piq
S({pi}):k =
g-1

(q:l — S({pi}):_kz p;ln pij

The possibility of such theorem was conjectured
by AR Plastino and A Plastino (1996, 1999).



STABILITY
or CONTINUITY

or EXPERIMENTAL
ROBUSTNESS

B. Lesche
J Stat Phys 27, 419 (1982)

The entropy S is said stable iff, for any given € >0,
a 0, > 0 exists such that, independently from W,

W , e ‘
lez 'p‘gl <0 = 6({p1}) ‘S({p; }) < g
= 8 LS{ITIBX |

. - Sr({ﬁ:”l})_S({p)I ‘})
Hence 13 /%0 ‘ =0

max

Spc and S, (Vg >0) are stable
S. Abe, Phys Rev E 66, 046134 (2002)

W
In Z p!

S;({ p.}) Eqi_—il (Renyi entropy)
S;V ({p} = S‘?’H(,{p ) (Normalized entropy)

-q
P ]
= (Escort entropy)

are unstable
B. Lesche (1982); S. Abe (2002); C.T. and E. Brigatti (2003)
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DEFINITIONS :

q—logarithm:
1-q
In, x=2 L x>0
1-¢
In, X=1InX

g -exponential :

O

o =J[1+(1—-)x]™ if 1+(1-q)x=0
0 otherwise
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Total # of papers = 230993

N@©) = 119558
N({1) = 18759 ]
N(c) = 25358e,32°°C.

|SI citations of Brazilian
| scientists (1945 - ...)

['Brazil” in the address field]

Number of papers

10" b

January 30,2007 |

0
10" = ! ! ! [ B L
10° 10/ 10° 10°

Citations
M.P de Albuguerque and D.B. Mussi (2007)



PREDECESSORS

RENYI ENTROPY oc lnz p

M .P. Schutzenberger, Publ. Inst. Statist. Univ. Paris (1954) [according to |. Csiszar (1974,1978)]
A. Renyi, Proc. 4" Berkeley Symposium (1969)
ENTROPY o l—z pi
i

J. Harvda and F. Charvat, Kybernetica 3, 30 (1967)
I. Vajda, Kybernetica 4, 105 (1968)
Z. Daroczy, Inf. Control 16, 36 (1970)
J. Lindhard and V. Nielsen, Det Kongelige Danske Videnskabernes Selskab
Matematisk - fysiske Meddelelser (Denmark) 38 (9), 1 (1971)
B.D. Sharma and D.P. Mittal, J. Math. Sci. 10, 28 (1975) [unification of both previous entropic forms]
A. Wehrl, Rev. Mod. Phys. 50, 221 (1978)

g—GAUSSIANS: :
Gaussian distribution Abraham de Moivre (1733)
Pierre Simon de Laplace (1774)
Robert Adrain (1808)
Carl Friedrich Gauss (1809)
Cauchy — Lorentz — Breit Agustin Louis Cauchy (~1821)

—Wigner distribution Hendric Antoon Lorentz (~1880)
Student's t —distribution William Sealy Gosset (1908)



THE VARIOUS FORMS OF THE NONADDITIVE g-ENTROPY Sq:

DISCRETE CLASSICAL STATES (Shannon for g =1):

S 1 Zpl W

kq_ —Zp.ln —:—Zp, 1n p. (with Zpu—l)

CONTINUOUS CLASSICAL STATES (Boltzmann, Gibbs for g =1):
s, 1=[dx[peor’

k 0-1 = jdX P(X) In, 500 = —jdX [p(X)] In, p(x) (with de p(x)=1)
: W S I—Z p;’
Particular case: p(x) = Z D, S(X—X) = kq _ q.__ll

QUANTUM STATES (von Neumann for g = 1):
S¢ _1-Trp’
K q-1

=Tr (p In, p ") =-Tr (p* In, p) (with Trp=1)

Particular case: p, =p; 0; = -



S, (N, 1) versus t

DISSIPATIVE MAPS:
Strongly chaotic (i.e., maximal Lyapunov exponent > 0)
Weakly chaotic (i.e., maximal Lyapunov exponent = 0)

CONSERVATIVE MAPS:
Strongly chaotic (i.e., maximal Lyapunov exponent > 0)
Weakly chaotic (i.e., maximal Lyapunov exponent = 0)




C

ISSIPATIVE MAPS



LOGISTIC MAP:

X, =l-ax’~ (0<a<2; —-1<x <1;t=0,1,2,...)

(strong chaos, i.e., positive Lyapunov exponent)

50
q=2 s *a=1.6
w=10 15.0 | o a=2
fit slope 0.36
- - -~ fit slope 0.69
0000000 CO00O0COO0QC0O000
o ..'...‘.con
> 1 & 100
O o)
E =
= =
w w
5.0
Ql
0.0t * . ‘ f
0.0 10.0 20.0 30.0 40.0
TIME TIME

V. Latora, M. Baranger, A. Rapisarda and C. T., Phys. Lett. A 273, 97 (2000)



We verify

K, =4, (Pesin—like identity)

where

K, =lim > ()

t—o0
t

and

AX(t) 4

f(t)—hmAx(O)—mA X(0) =€



(weak chaos, i.e., zero Lyapunov exponent)

50 o1
— 2 = V.
%(t) xt+1—1—axt q
a=1.4011552
. 6
40 N=W=2510
# realizations = 15115
30 -
20
10
O T T T

0 20 40 60 t 80

C.T., ARR. Plastino and W.-M. Zheng, Chaos, Solitons & Fractals 8, 885 (1997)

M.L. Lyra and C. T., Phys. Rev. Lett. 80, 53 (1998)

V. Latora, M. Baranger, A. Rapisarda and C. T. , Phys. Lett. A 273, 97 (2000)

E.P. Borges, C. T., G.F.J. Ananos and P.M.C. Oliveira, Phys. Rev. Lett. 89, 254103 (2002)
F. Baldovin and A. Robledo, Phys. Rev. E 66, R045104 (2002) and 69, R045202 (2004)
G.F.J. Ananos and C. T. , Phys. Rev. Lett. 93, 020601 (2004)

E. Mayoral and A. Robledo, Phys. Rev. E 72, 026209 (2005), and references therein



It can be proved that
K,=4, (q—generalized Pesin-Ilike identity)

where
. S, (t)
K, =lim_, sup{ qt }
and
AX(1) Aq t
() =sup {hmAx(O)—m AX(O)} eq
with
1 1 :lnaF and /i, = 1
l1-q o, a«a. In2 1-q

I . 11 1 Ineg(2)
{Xm—l alx | = 00 2.0 a2 (z-1) ) }



EDGE OF CHAQOS OF THE LOGISTIC MAP:
(Using result in http://pi.lacim.ugam.ca/piDATA/feigenbaum.ixt)

q:

0.2444877013412820661987704234046804052344469354900576736703650
986327749672766558665755156226857540706288349640382728306063600
193730331818964551341081277809792194386027083194490052465813521
503174534952074940448165460949087448334056723622466488083333072
142318987145872992681548496774607864821834569063370205946820461
899021675321457546117438305008496860408846969491704367478991506
016646491060217834827889993818382522554582338038113118031805448
236757944990397074395466146340815553168788535030113821491411266
246328940130370152354936571471269917921021622688833029675405780
630706822368810432015790352123740735444602970006055250423142028
089193578811239731977974844235152456040926446709579570304658614
1295664 79666687743683240492022757393004750895311855179558720483
992696896827555852445024436526825609423780128033094877954403542
524859043379761802711830004573585550738941136758784400629135630
421674541694092135698603207859088199859359007319336801069967496
707904456092418632112054130547393985795544410347612222592136846
219346009360... (1018 meaningful digits)


http://pi.lacim.uqam.ca/piDATA/feigenbaum.txt

CONSERVATIVE MAPS



BAKER MAP: '®) O

(t=0) (t

307 w=10°% N=10°
(precision:16 digits)

- r q=0.80

1)

20 A [— 0=0.85

0 15 q=0.90

0=0.95

)/ q=1.05

,:__f: s|ope = Lyapunov exponent = In 2

g=1.20

e e——INW

0'10'20'30'40
t G. Ruiz-Lopez and C. T. (2006)



THE CASATI-PROSEN TRIANGLE MAP:
G. Casati and T. Prosen,
Phys. Rev. Lett. 83, 4729 (1999) and 85, 4261 (2000)

“While exponential instability is sufficient for a
meaningful statistical description, it is not
known whether or not it is also necessary.”

V., =y +a sgn(x)+f (mod?2)
R L (mod?2)

( and B independent irrationals)

cg. (a,ﬂ):((llz)(\/; D)-(1/e), (112N 5-1)+(1/e))

This map is conservative, mixing, ergodic
and nevertheless with zero Lyapunov exponent!

AX (1) ot

Furthermore f =lim ,, o m



CASATI-PROSEN TRIANGLE MAP [Casati and Prosen, Phys Rev Lett 83, 4729 (1999) and 85, 4261 (2000),
(two-dimensional, conservative, mixing, ergodic, vanishing maximal Lyapunov exponent)

n=20 n=10

| (a) . (b)
[ |
| initial ensemble
0.5 . 05+ .
Yoo 1y o -
——

-0.5+ 4 -0.5- - T

-1_1

X

G. Casati, C. T. and F. Baldovin, Europhys. Lett. 72, 355 (2005)



NONEXTENSIVITY OF THE CASATI-PROSEN MAP:
[G. Casati, C.T. and F. Baldovin, Europhys Lett 72, 355 (2005)]

Answer to the above equation:

It is not necessary: a meaningful statistical description
1s possible with zero Lyapunov exponent!

[Essentially because an integrable system has zero Lyapunov
exponent but the opposite is not true]

In general, gf::[l_l_(l_q)/lqt]l/(l—q)
hence, (fcxt:)q:()
Consistently, we expect
W
1- Z [pi (O]

(i) S, (1) =—" —— o< only for g =0
;-

5,(0) _

A fora=0

(i)K, =lim



CASATI-PROSEN TRIANGLE MAP [Casati and Prosen, Phys Rev Lett 83, 4729 (1999) and 85, 4261 (2000),

(two-dimensional, conservative, mixing, ergodic,

vanishing maximal Lyapunov exponent)

200 T T T T T T T T T T T T | T T T T | T T T
i 1 W =4000x4000 cells
S(n) t q:-O_Z | N =1000 initial conditions randomly chosen in one cell
q i | Average done over 100 initial cells
150 N
I 1 [@=0 — linear correlation =0.99993]
I o= 0O A
100~ .
_n ot
: : Also & =g,
— 1. . S, (N
50+ with A4, =lim,_ o (1) =1
: : n
_ g=+0.2]
O / | | | | | | | | | | | | | | | | | | | | | | | | |
0 20 40 60 80 N 100 g - generalization of

Pesin (- like) theorem

G. Casati, C. T. and F. Baldovin, Europhys. Lett. 72, 355 (2005)



S,(N,t) versus N



HYBRID PASCAL - LEIBNITZ TRIANGLE

(NZO) IXI—
1 1
N=1 1 x — I x —
( ) 5 >
(N=2) lxl— 2><1— lxl—
3 6 3
(N=3) 1><1— 3><1— 3><1—
4 12 12
(N=4) lxl— 4><1— 6><1— 4 x —
5 20 30
(N=5) lxl— 5><1— 10><1— 10><1—
6 30 60 60

Blaise Pascal (1623-1662)
Gottfried Wilhelm Leibnitz (1646-1716)
Daniel Bernoulli (1700-1782)



1 P>+« p(l—p)-x P

2 p(l-p)-«|(1-p)+x 1-Pp

p 1-p 1
EQUIVALENTLY:
(N =0) x 1
(N =1) X P x(1- p)

(N =2) x[p*+x] 2x [pd-p)—-«] Ix[(1-p)’+x]



q=1SYSTEMS
l.e., suchthat S,(N)x< N (N — o)

1 1 1 1 1 1 1 1 1
1 10 20 30 40 50 60 70 80 90 100

1 1 1 1 1 1 1 1 1 0 L L
1 10 20 30 40 50 60 70 80 90 100 1 10 20

N N N
Leibnitz triangle N independent coins Stretched exponential
1 pN 0= pN p _ N&
e — ’ N.O p
(pN’O N +1j
withp=1/2 withp=a=1/2

(All three examples strictly satisfy the Leibnitz rule)

C.T., M. Gell-Mann and Y. Sato
Proc Natl Acad Sc USA 102, 15377 (2005)



(N = 0)
(N =1)
(N =2)
(N =3)
(N =14)

Asymptotically scale-invariant (d=2)

1/3

/2 1/2
/6  1/3 .

3/8  5/48  5/48 0

2/5

3/40  1/20 0 0

d+1

(It asymptotically satisfies the Leibnitz rule)

C.T., M. Gell-Mann and Y. Sato
Proc Natl Acad Sc USA 102, 15377 (2005)



q#1SYSTEMS
le., suchthat S (N)oc N (N —o0)

10000 10000 10000
8000 8000 8000
Sq Sq Sq
6000 6000 6000
4000 4000 4000
2000 2000 2000
g=1/2+0.1
g=2/3+0.1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

(All three examples asymptotically satisfy the Leibnitz rule)

C.T., M. Gell-Mann and Y. Sato
Proc Natl Acad Sc USA 102, 15377 (2005)



. | IR i 1"
—Sokane Sl 5 : s :
B - . I 3 .
e i 5 Falls, p ( ey
2 issoula alls g inots . ; ] 1
1l = V- - - - P !
5 S ¥ Pans
/ @ q r

'i}sdfo:do 4

iy
Arca N
Redding
i
)
Ta Hanoluls 1
Reno/Lake Tahos
% Sacramento

ﬁm Oakland

PACIFIC

OCEAN | "
A “--| Train Routes =Famraax | Angelo

Codeshars/CnePass Service | -I.‘ it
------ OnaPasa Eligible Ssrvies % =

Bosion o
i
.

Domestic Routes
Continantal Routs
— Futurs Ssnvics
-=---- Seascnal Servics
Time Zone Boundary
* Continantal/Continental Exprass!
Continsntal Connection Destination
. Cooperative Airlins Destination
(For a complets lizt of cooperativa airline parners,
s page 103)
Soma Continental raues may ba aperated by o Continental Carnaction partnar

BTl e : '

Mehlien/ / f
Reynosa
Harlingen

Brownsvills/
tamoros.

Continental Airlines



If Aand B are independent,

ie, if " =p"p,”,

then

Spe (A+B) =Sg5(A) + S5 (B)

whereas

S,(A+B)=S,(A)+S, (B)+ ” A5 (A S,(B)

B

#S,(A)+S,(B) (if g=1)

But if A and B are especially (globally) correlated
then

S,(A+B)=S,(A)+S,(B)

whereas

Sge (A+B) # S5 (A)+ S (B)

A VOLUME IN THE
SANTA FE INSTITUTE STUDIES IN THE SCIENCES OF COMPLEXITY




ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment
(Pergamon, Oxford, 1970), page 167

An entropy 1s additive if, for two probabilistically independent systems A and B,
S(A+B)=S(A)+S(B)
Hence, S, and S(?e”yi (Vq) are additive, and S, (V( # 1) is nonadditive .

EXTENSIVITY:

Consider a system 2’ = A + A +...+ A, made of N (not necessarily independent)
identical elements or subsystems A and A,, ..., A,.  An entropy is extensive if
S(N)

0< lim

N —o

<o, 1.8, S(N)cN (N > x)

CONSEQUENTLY:

The additive entropies S;; and S?e”yi are extensive 1f and only if the N subsystems are
(strictly or asymptotically) independent; otherwise, S;; and Sé{e”yi are nonextensive.
The nonadditive entropy S, (q # 1) is extensive for special values of g if the

subsystems are specially (globally) correlated.



MEPHISTOPHELES:
Denn eben wo Begriffe fehlen,

Da stellt ein Wort zur rechten Zeit sich ein.

Wolfgang von Goethe
[Faust I, Vers 1995, Schuelerszene (1808)]

For at the point where concepts fail,

At the right time a word is thrust in there.



King Thutmosis llI
18th Dynasty
c. 1460 B. C.




TYPICAL EXAMPLES FOR THE CASE OF EQUAL PROBABILITIES:

DIfF WIN)~A 2" (A>0, z>1, N — o)

Sgs(N)
K

then =In W(N)]~(ngx) N, ie., S, IS extensive!

S, (N e Al
whereas q(k )zlnq [\N(N)]z[W(T)] 1~1A 1" 2 constant N,
—q —(

le., S, Is nonextensive for g <1 (and neither is for g >1).

2) If W(N)~BN” (B>0, p>0, N =)
S (N)
k

then =In W(N)]~ p InN, ie, S;; IS nonextensive

S, (N a_1 B
whereas o )zlnq [\N(N)]:[W(N)] LB N7 ie, S | is extensive!
K 1-q 1-q -

D IF W(N) ~C uN (C>0, u>1, y=1, N = )
Hence, there is no value of ¢ (neither g =1nor q=1) for which S, is extensive.



HOW IT WORKS?  S. Abe, Phys Lett A 271, 74 (2000) and Physica A 368, 430 (2006)

We consider generic subsystems A and B:

P (A+B)=pi(A)p;(BIA)=p(A[B)p;(B) (Bayes theorem)

o S (A+B) S.(A) S (B|A) S (A) S, (B|A)
implies i =+ +(1—-q)— !
K K K K K
S,(B) S,(A|B) S,(B) S,(A|B)
K K K K
hence S,(A+B)=S,(A)+S, (B[ A)+ 1 ’ s, (A) S, (B| A)

=S,(B)+S, (A|B)+ . Is .(B)S,(A[B)

A special class of correlations exists such that, for a special value of g,
S (A|B)+ > s +(B) S, (A|B)=S,(A)
and
S (B|A)+ . s (A S, (B|A)=S,(B)

hence S,(A+B)=S,(A)+S,(B) (extensivity!)



A MANY-BODY HAMILTONIAN ILLUSTRATION
OF THE EXTENSIVITY OF Sqg FOR
ANOMALOUS VALUES OF q



SPIN 2 XY FERROMAGNET WITH TRANSVERSE MAGNETIC FIELD:

N
H=—) [(1+7)57671+(1—7)6]6], +2)57]

j=1
7 =1 — Ising ferromagnet

0< |y| <1 — anisotropic XY ferromagnet
y=0 — Isotropic XY ferromagnet

A =transverse magnetic field
= |length of a block withina N — o chain

F. Caruso and C. T., cond-mat/0612032



1 I 1 I 1 1 1 1
150 I ;T | |

1500 L q=0.05 —
I | . q=0.07
100 — "= |« g=0.08

1250

1000

750

500

50 100 150 200 250 300

L

F. Caruso and C. T., cond-mat/0612032



Sqent(L) N SQent L (L _)OO)

0%—-qmt \[__ 6 =

qeni 06 XY model ﬁ _
0.04 {I : _
002}{%]}{%1llr1 ]

| | P
0.0824 0.0828 0.0832

oL . | ! | . q | . | . |
0.85 0.9 0.95 1 7\' 1.05 1.1 1.15

F. Caruso and C. T., cond-mat/0612032




A=1= 8, (L) ~ s, L

nt

(L—>o©) with s

0. =3.56£0.03
ent

20000 [y~
15000 [
qent

10000 |-

5000 -

20

15—

0.85

F. Caruso and C. T., cond-mat/0612032



Using a Quantum Field Theory result
In P. Calabrese and J. Cardy, JSTAT P06002 (2004)
we obtain, at the critical transverse magnetic field,

Vo+c* -3
ent — -
with ¢ = central charge in conformal field theory

Hence

Ising and anisotropic XY ferromagnets = ¢ =% = Qo = J37-6 =0.0828
and

Isotropic XY ferromagnet = ¢c=1 = q,, = J10-3=0.16

F. Caruso and C. T., cond-mat/0612032



H

Z
p—A

Z
|:(1+7/)O-G|+1+(1 7/)O-G|+1+AGO-|+1+21 O-i:|
=1
L .. _BG 2
5 ™ (D =V10-3=0.16
o Isotropic XY (¥ =0; |1|<1; A4=0) and
) Heisenberg (y=0; A =0; A=1
-7 ferromagnets
5 0o (1/2)=~/37 -6 =0.0828
5 Ising (|7 =1 [A]=1; 4=0) and
anisotropic XY (y #0; |[A|=1; 4=0)
4 \J9 +¢c? —3 ferromagnets
.3 ““Oent (C) —
.2 c = 26: P. Ginsparg and G. Moore
Lectures on 2D Gravity and 2D String Theory
1 (Cambridge University Press, Cambridge, 1993)
o [hep-th/9304011, page 65] o
Y 1 2 3 4 5 a6 7 8 9 10

F. Caruso and C. T., cond-mat/0612032



In other words,

S (L)oc L (extensive!)
m%] ¢l

whereas

Sge(L)ocInL (nonextensive!)



REVISITING THE DIFFUSION OF ONE ELECTRON
IN A MANY-BODY QUANTUM HAMILTONIAN



1D ANDERSON MODEL WITH LONG-RANGE CORRELATED DISORDER
(METAL-INSULATOR TRANSITION):

F.A.B.F. de Moura and M.L. Lyra, Phys Rev Lett 81, 3735 (1998)

One electron in a disordered linear chain [the disorder comes from a randomly-

correlated potential characterized by a spectral density ~ s(k) o« k™ (a >0)]:

N
H=> e [n><n|[+t, D [In><n+1[+|n><n-1|] (t,=1)
n=1 n

N/2 1/2
with & =Z[k‘“ |27 /N |1_“] cos(zilnk +d>k)

k=1
where @, are N /2 independent random phases uniformly distributed in [0,27]

a =2H+1 (H = Hurst exponent)

a=0 = standard Anderson model [white noise spectrum,
i.e., no correlation from site to site), ie., <¢,&, >=<¢&,°>6,,]
a — oo = crystal (no disorder)



3.0 |

W
e
1.0
e
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FIG. 1.

«=0.0

| 1000 __
SITE INDEX

000

Typical on-site energy landscapes generated from

relation (2) with N = 4096: « = 0.0: uncorrelated random
sequency; « = 2.0: trace of a usual Brownian motion; a =
2.5: trace of a fractional Brownian motion with persistent
increments. Notice the smoothening of the energy landscape
for increasing values of «.

Zero “Lyapunov exponent”

Positive “Lyapunov exponent”

Extended |'

P

- . .
30 F ' .
tj . .\\ ]

20

5.0 . . e
40 t l

1.0 1 Localized

00 1 1 1 1
1.5 -1.0 _D'SEu.O'O 0.5

1.0

FIG. 5. Phase diagram in the (E/r,«) plane. Data were
obtained from chains with 10* sites, Ae/r = 1.0, and the same
random phases sequency. The phase of extended states emerges

for ¢ > 2. and its width saturates as &« — . The band of
allowed states ranges approximately from —4.0 < E < 4.0 and
is independent of @ by construction (see text).

F.A.B.F. de Moura and M.L. Lyra, Phys Rev Lett 81, 3735 (1998)
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REVISITING THE PREVIOUS RESULTS:
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S,(N,t) versus (t,N)
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C.T., M. Gell-Mann and Y. Sato, Europhysics News 36 (6), 186 (2005) [European Physical Society]
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A conjecture for Sy(N,t):

For q=d,,, N > and t — « play essentially the same role.
In particular,

i) Under conditions of Infinitely fine graining in phase space,
S, (N,t)~K, (N) t « Nt

(qsen:1 — KIZ Z ﬂ1

j/247>0

qSGI’]

"V ie., Pesin - like identity for finite N)

ii) Under conditions of finite graining in phase space,
lim (N,t)oc N

(Clausius)

t—0 quen

C.T., M. Gell-Mann and Y. Sato
Europhysics News 36, 186 (2005)



NONEXTENSIVE STATISTICAL MECHANICS
AND
THERMODYNAMICS

C.T.
Possible generalization of Boltzmann-Gibbs statistics

J Stat Phys 52, 479 (1988)

E.M.F. Curadoand C. T.
Generalized statistical mechanics: connection with thermodynamics
JPhys A 24,169 (1991)
[Corrigenda: 24, 3187 (1991) and 25, 1019 (1992)]

C.T., R.S. Mendes and A.R. Plastino
The role of constraints within generalized nonextensive statistics
Physica A 261, 534 (1998)



NONEXTENSIVE STATISTICAL MECHANICS AND THERMODYNAMICS
(CANONICAL ENSEMBLE):

Extremization of the functional S[pi]1=k

y IE
with the constraints > p =1 and =1 =U
=1

W
with 3, = P , B=energy Lagrange parameter, and Z, = e /"

Z p_q i=1




e_IBC‘l Ei
We can rewrite [, =—

Zq

- B,
'Bq=1+(1—q),6’qu

W \
. ' —PqEi
with , and Z, =Z;eq q

And we can prove

1 8s, . 1
1 == with =—

T dU, kS
. 1
() F,=U, TS, :—Elnq Z, where In,Z =In,Z 6 -pU,
0
() U, :_ﬁmq Z,
_ oS, dU, 82Fq
(v) C,=T = =T —

or oT oT

(1.e., the Legendre structure of Thermodynamics is ¢ -invariant!)



SOME FORM-INVARIANT RELATIONS (arbitrary q)

CLAUSIUS INEQUALITY AND BOLTZMANN H-THEOREM
(macroscopic time irreversibility)
Mariz, Phys Lett A 165 (1992) 409; Ramshaw, Phys Lett A 175 (1993) 169;
Abe and Rajagopal, Phys Rev Lett 91 (2003)

ds,

p6Q, <68, ; 91—

EHRENFEST THEOREM (correspondence principle)
Plastino and Plastino, Phys Lett A 177 (1993) 177

2{0), = ([#.9])

dt q h q
FACTORIZATION OF LIKELIHOOD FUNCTION
(Einstein’s 1910 reversal of Boltzmann’s formula;
thermodynamically independent systems)

Caceres and Tsallis, unpublished (1993); Chame and Mello,
J Phys A 27 (1994) 3663; Tsallis, Chaos, Solitons and Fractals 6 (1995) 539

W, (A+B)=W_(A)W _(B)

ONSAGER RECIPROCITY THEOREM
(microscopic time reversibility)
Caceres, Physica A 218 (1995) 471; Rajagopal, Phys Rev Lett 76 (1996) 3469;
Chame and Mello, Phys Lett A 228 (1997) 159
L= Ly

KRAMERS AND KRONIG RELATION (causality)
Rajagopal, Phys Rev Lett 76 (1996) 3469

>0

PESIN EQUALITY

(mixing; Kolmogorov-Sinai entropy and Lyapunov exponent)
Tsallis, Plastino and Zheng, Chaos, Solitons and Fractals 8 (1997) 885;
Baldovin and Robledo, Phys. Rev. E 69, 045202(R) (2004).

© A, it A, >0

q .
0 otherwise



WHY USING ESCORT DISTRIBUTIONS FOR THE CONSTRAINTS?

1) The optimizing probability distribution is automatically invariant with regard

to uniform translation of the energy eigenvalues (zero-point invariance).

l/q
p/
p?

Pl/q’
>, z

are finite up to a common upper bound for ¢ (e.g, for E(X) «c X*, it must be q < 3).

2) The constraints Z p,=1and Z P. E, =constant, where P, = and p, =

X

e
3) d—)z =(e))" # e, yields {P} instead of {p;} in the steepest-descent-method calculation

of the stationary-state distribution [Abe and Rajagopal, J Phys A 33, 8733 (2000)].

4) The conditional entropy naturally appears [Abe, Phys Lett A 271, 74 (2000)] as a

g-expectation value without involving any optimization principle.

5) The principle of minimal relative entropy is consistent as a rule of statistical inference
(1980 Shore-Johnson axioms) only if [Abe and Bagci, Phys Rev E 71, 016139 (2005)]

we select the g-expectation values if we use the entropy S, .
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