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It is the natural (or artificial or social) system itself 
which, through its geometrical-dynamical  properties, 
indicates the specific informational tool --- entropy ---
to be meaningfully used for the study of its 
thermostatistical and thermodynamical properties. 
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HISTORICAL BACKGROUND AND PHYSICAL 
MOTIVATIONS FOR ATTEMPTING TO 

GENERALIZE BOLTZMANN-GIBBS 
STATISTICAL MECHANICS

ALONG THE LAST 135 YEARS…



Vorlesungen uber Gastheorie (Leipzig, 1896)
Lectures on Gas Theory, transl. S. Brush 
(Univ. California Press, Berkeley, 1964), page 13

The forces that two molecules impose one  
onto the other during an interaction can be 
completely arbitrary, only assuming that their 
sphere of action is very small compared to  
their mean free path. 

Ludwig BOLTZMANN



J.W. GIBBS
Elementary Principles in Statistical Mechanics - Developed with     
Especial Reference to the Rational Foundation of Thermodynamics

C. Scribner’s Sons, New York, 1902; Yale University Press, New Haven, 1981),
page 35

In treating of the canonical distribution, we shall always suppose the 
multiple integral in equation (92) [the partition function, as we call it 
nowadays] to have a finite valued, as otherwise the coefficient of 
probability vanishes, and the law of distribution becomes illusory. This 
will exclude certain cases, but not such apparently, as will affect the 
value of our results with respect to their bearing on thermodynamics.  
It will exclude, for instance, cases in which the system or parts of it 
can be distributed in unlimited space […]. It also excludes many 
cases in which the energy can decrease without limit, as when the 
system contains material points which attract one another inversely as 
the squares of their distances. […]. For the purposes of a general 
discussion, it is sufficient to call attention to the assumption implicitly 
involved in the formula (92).



Enrico FERMI              Thermodynamics (Dover, 1936)

The entropy of a system composed of several parts is very 
often equal to the sum of the entropies of all the parts. This 
is true if the energy of the system is the sum of the energies 
of all the parts and if the work performed by the system 
during a transformation is equal to the sum of the amounts 
of work performed by all the parts. Notice that these 
conditions are not quite obvious and that in some cases 
they may not be fulfilled. Thus, for example, in the case of a 
system composed of two homogeneous substances, it will 
be possible to express the energy as the sum of the 
energies of the two substances only if we can neglect the 
surface energy of the two substances where they are in 
contact. The surface energy can generally be neglected 
only if the two substances are not very finely subdivided; 
otherwise, it can play a considerable role. 



Ettore MAJORANA
The value of statistical laws in physics and social sciences.
Original manuscript in Italian published by G. Gentile Jr. in Scientia 36, 58 
(1942); translated into English by R. Mantegna (2005). 

This is mainly because entropy is an additive quantity as the 
other ones. In other words, the entropy of a system composed 
of several independent parts is equal to the sum of entropy of 
each single part. [...]
Therefore one considers all possible internal determinations as 
equally probable. This is indeed a new hypothesis because the 
universe, which is far from being in the same state indefinitively, 
is subjected to continuous transformations. We will therefore 
admit as an extremely plausible working hypothesis, whose far 
consequences could sometime not be verified, that all the 
internal states of a system are a priori equally probable in 
specific physical conditions.  Under this hypothesis, the 
statistical ensemble associated to each macroscopic state A 
turns out to be completely defined.



Claude Elwood SHANNON

The Mathematical Theory of Communication
(University of Illinois Press, Urbana, 1949)

It is practically more useful. [...] 
It is nearer to our intuitive feeling as to the proper measure. 
[...] 
It is mathematically more suitable. [...].} 

This theorem and the assumptions required for its proof, are 
in no way necessary for the present theory. It is given chiefly 
to lend a certain plausibility to some of our later definitions. 
The real justification of these definitions, however, will reside 
in their implications.



Laszlo TISZA

Generalized Thermodynamics
(MIT Press, Cambridge, Massachusetts, 1961)

The situation is different for the additivity postulate
Pa2, the validity of which cannot be inferred from 
general principles. We have to require that the 
interaction energy between thermodynamic systems 
be negligible. This assumption is closely related to 
the homogeneity postulate Pd1. From the molecular 
point of view, additivity and homogeneity can be 
expected to be reasonable approximations for 
systems containing many particles, provided that the 
intramolecular forces have a short range character.



Radu BALESCU

Equilibrium and Nonequilibrium Statistical Mechanics
(John Wiley and Sons, 1975, New York)

It therefore appears from the present discussion 
that the mixing property of a mechanical system is 
much more important for the understanding of 
statistical mechanics than the mere ergodicity. [...] 
A detailed rigorous study of the way in which the 
concepts of mixing and the concept of large 
numbers of degrees of freedom influence the 
macroscopic laws of motion is still lacking. 



Peter LANDSBERG

Thermodynamics and Statistical Mechanics (1978)

The presence of long-range forces causes important 
amendments  to thermodynamics, some of which are not fully 
investigated as yet.

Is equilibrium always an entropy maximum?
J. Stat. Phys. 35, 159 (1984)

[...] in the case of systems with long-range forces and which 
are therefore nonextensive (in some sense) some 
thermodynamic results do not hold. [...] The failure of some 
thermodynamic results, normally taken to be standard for 
black hole and other nonextensive systems has recently been 
discussed. [...] If two identical black holes are merged, the 
presence of long-range forces in the form of gravity leads to a 
more complicated situation, and the entropy is nonextensive.



David RUELLE
Thermodynamical Formalism -
The Mathematical Structures of Classical Equilibrium Statistical Mechanics
(page 1 of both 1978 and 2004 editions)

The formalism of equilibrium statistical mechanics -- which we shall call thermodynamic 
formalism -- has been developed since J.W. Gibbs to describe the properties of certain 
physical systems. [...] While the physical justification of the thermodynamic formalism 
remains quite insufficient, this formalism has proved remarkably successful at 
explaining facts.
The mathematical investigation of the thermodynamic formalism is in fact not 
completed: the theory is a young one, with emphasis still more on imagination than on 
technical difficulties. This situation is reminiscent of pre-classic art forms, where 
inspiration has not been castrated by the necessity to conform to standard technical 
patterns. 

(page 3) The problem of why the Gibbs ensemble describes thermal equilibrium (at 
least for “large systems”) when the above physical identifications have been made is 
deep and incompletely clarified. 
-----------------------------------------------------------------------------------------------------------------

[The first equation is dedicated to define the BG entropy form. It is introduced after the 
words “we define its entropy” without any kind of justification or physical motivation.] 



Nico van KAMPEN

Stochastic Processes in Physics and Chemistry
(North-Holland, Amsterdam, 1981) 

Actually an additional stability criterion is needed, see M.E. 
Fisher, Archives Rat. Mech. Anal. 17, 377 (1964); D. Ruelle, 
Statistical Mechanics: Rigorous Results (Benjamin, New York 
1969). A collection of point particles with mutual gravitation is 
an example where this criterion is not satisfied, and for which 
therefore no statistical mechanics exists.



Roger BALIAN
From Microphysics to Macrophysics
(Springer-Verlag, Berlin, 1991), p. 205 and 206; French edition (1982). 

These various quantities are connected with one another 
through thermodynamic relations which make their extensive 
or intensive nature obvious, as soon as one postulates, for 
instance, for a fluid, that the entropy, considered as a function 
of the volume Omega and of the constants of motion such as 
U and N, is homogeneous of degree 1:     
S(x Omega, x U, x N)=x S(Omega, U, N) (Eq. 5.43). [...]     
Two counter-examples will help us to feel why extensivity is 
less trivial than it looks. [...] A complete justification of the 
Laws of thermodynamics, starting from statistical physics, 
requires a proof of the extensivity (5.43), a property which was 
postulated in macroscopic physics. This proof is difficult and 
appeals to special conditions which must be satisfied by the 
interactions between the particles.



L.G. TAFF

Celestial Mechanics
(John Wiley, New York, 1985) 

This means that the total energy of any finite collection of self-
gravitating mass points does not have a finite, extensive (e.g., 
proportional to the number of particles) lower bound. Without 
such a property there can be no rigorous basis for the statistical 
mechanics of such a system (Fisher and Ruelle 1966). 
Basically it is that simple. One can ignore the fact that one 
knows that there is no rigorous basis for one's computer 
manipulations; one can try to improve the situation, or one can 
look for another job.



W.C. SASLAW

Gravitation Physics of Stellar and Galactic Systems
(Cambridge University Press, Cambridge, 1985)

When interactions are important the thermodynamic 
parameters may lose their simple intensive and extensive 
properties for subregions of a given system. [...] 
Gravitational systems, as often mentioned earlier, do not 
saturate and so do not have an ultimate equilibrium state. 



John MADDOX

When entropy does not seem extensive
Nature 365, 103 (1993)

Everybody who knows about entropy knows that it is an 
extensive property, like mass or enthalpy. [...] Of course, there 
is more than that to entropy, which is also a measure of 
disorder. Everybody also agrees on that. But how is disorder 
measured? [...] So why is the entropy of a black hole 
proportional to the square of its radius, and not to the cube of 
it? To its surface area rather than to its volume?



A.C.D. van ENTER, R. FERNANDEZ and A.D. SOKAL,  Regularity Properties and 
Pathologies of Position-Space Renormalization-Group Transformations: Scope and 
Limitations of Gibbsian Theory [J. Stat. Phys. 72, 879-1167 (1993)] 
We provide a careful, and, we hope, pedagogical, overview of the theory of Gibssian
measures as well as (the less familiar) non-Gibbsian measures, emphasizing the 
distinction between these two objects and the possible occurrence of the latter in 
different physical situations.
Toward a Non-Gibbsian Point of View: Let us close with some general remarks on the 
significance of (non-)Gibbsianness and (non)quasilocality in statistical physics. Our first 
observation is that Gibbsianness has heretofore been ubiquitous in equilibrium statistical 
mechanics because it has been put in by hand: nearly all measures that physicists 
encounter are Gibbsian because physicists have decided to study Gibbsian measures!
However, we now know that natural operations on Gibbs measures can sometimes lead 
out of this class. [...] It is thus of great interest to study which types of operations 
preserve, or fail to preserve, the Gibbsianness (or quasilocality) of a measure. This 
study is currently in its infancy. [...] More generally, in areas of physics where 
Gibbsianness is not put in by hand, one should expect non-Gibbsianness to be 
ubiquitous. This is probably the case in nonequilibrium statistical mechanics. Since one 
cannot expect all measures of interest to be Gibbsian, the question then arises whether 
there are weaker conditions that capture some or most of the “good” physical properties 
characteristic of Gibbs measures. For example, the stationary measure of the voter 
model appears to have the critical exponents predicted (under the hypothesis of 
Gibbsianness) by the Monte Carlo renormaliztion group, even though this measure is 
provably non-Gibbsian. One may also inquire whether there is a classification of non-
Gibbsian measures according to their “degree of non-Gibbsianness”.
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C.T., M. Gell-Mann and Y. Sato           
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(European Physical Society, 2005)      
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UBIQUITOUS LAWS IN 
COMPLEX SYSTEMS

ORDINARY DIFFERENTIAL EQUATIONS

ENTROPY Sq                        
(Nonextensive statistical mechanics)

PARTIAL DIFFERENTIAL EQUATIONS      
(Fokker-Planck, fractional derivatives, 
nonlinear, anomalous diffusion, Arrhenius)

STOCHASTIC DIFFERENTIAL EQUATIONS 
(Langevin, multiplicative noise)

NONLINEAR DYNAMICS                              
(Chaos, intermittency, entropy production, Pesin, 
quantum chaos, self-organized criticality)

CENTRAL LIMIT THEOREMS                
(de Moivre-Laplace-Gauss, Levy-Gnedenko) 

q-ALGEBRA

CORRELATIONS IN PHASE SPACE

GEOMETRY          
(Scale-free networks)

LONG-RANGE INTERACTIONS 
(Hamiltonians, coupled maps)

SIGNAL PROCESSING   
(ARCH, GARCH)

IMAGE PROCESSING

GLOBAL OPTIMIZATION 
(Simulated annealing)

q-TRIPLETTHERMODYNAMICS

FURTHER APPLICATIONS 
(Physics, Astrophysics, Geophysics, 
Economics, Biology, Chemistry, 
Cognitive psychology, Engineering, 
Computer sciences, Quantum 
information, Medicine, Linguistics …) 

AGING (metastability, glass, spin-glass)

SUPERSTATISTICS 
(Other generalizations)



ARISTOTLE (384 – 322 BC)
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S. Abe                             
Phys Lett A 224,               
326 (1997)





SANTOS THEOREM: RJV Santos, J Math Phys 38, 4104 (1997)

(q -generalization of Shannon 1948 theorem)
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ABE THEOREM: S Abe, Phys Lett A 271, 74 (2000)

(q -generalization of Khinchin 1953 theorem)
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or EXPERIMENTAL 
ROBUSTNESS

B. Lesche
J Stat Phys 27, 419 (1982)
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THE VARIOUS FORMS OF THE NONADDITIVE q-ENTROPY Sq:



( , )   qS N t versus t
DISSIPATIVE MAPS:

Strongly chaotic (i.e., maximal Lyapunov exponent > 0) 
Weakly  chaotic (i.e., maximal Lyapunov exponent = 0)

CONSERVATIVE MAPS:
Strongly chaotic (i.e., maximal Lyapunov exponent > 0)    
Weakly  chaotic (i.e., maximal Lyapunov exponent = 0)



DISSIPATIVE MAPS



LOGISTIC MAP:
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(strong chaos, i.e., positive Lyapunov exponent)
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EDGE OF CHAOS OF THE LOGISTIC MAP:
(Using result in  http://pi.lacim.uqam.ca/piDATA/feigenbaum.txt)

q =

0.2444877013412820661987704234046804052344469354900576736703650
986327749672766558665755156226857540706288349640382728306063600
193730331818964551341081277809792194386027083194490052465813521
503174534952074940448165460949087448334056723622466488083333072
142318987145872992681548496774607864821834569063370205946820461
899021675321457546117438305008496860408846969491704367478991506
016646491060217834827889993818382522554582338038113118031805448
236757944990397074395466146340815553168788535030113821491411266
246328940130370152354936571471269917921021622688833029675405780
630706822368810432015790352123740735444602970006055250423142028
089193578811239731977974844235152456040926446709579570304658614
129566479666687743683240492022757393004750895311855179558720483
992696896827555852445024436526825609423780128033094877954403542
524859043379761802711830004573585550738941136758784400629135630
421674541694092135698603207859088199859359007319336801069967496
707904456092418632112054130547393985795544410347612222592136846
219346009360… (1018 meaningful digits)

http://pi.lacim.uqam.ca/piDATA/feigenbaum.txt


CONSERVATIVE MAPS



BAKER MAP:
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G. Ruiz-Lopez and C. T. (2006)





CASATI-PROSEN TRIANGLE MAP [Casati and Prosen, Phys Rev Lett 83, 4729 (1999) and 85, 4261 (2000)]
(two-dimensional, conservative, mixing, ergodic, vanishing maximal Lyapunov exponent)

G. Casati, C. T. and F. Baldovin, Europhys. Lett. 72, 355 (2005)



[G. Casati, C.T. and F. Baldovin, Europhys Lett 72, 355 (2005)]



0 20 40 60 80 100n
0

50

100

150

200

S
q
(n) q=-0.2

q= 0

q=+0.2

(a)
4000 4000 
1000       

   100  

[ 0   0.99993]

W cells
N initial conditions randomly chosen in one cell
Average done over initial cells

q linear correlation

= ×
=

= → =

CASATI-PROSEN TRIANGLE MAP [Casati and Prosen, Phys Rev Lett 83, 4729 (1999) and 85, 4261 (2000)]
(two-dimensional, conservative, mixing, ergodic, vanishing maximal Lyapunov exponent)

0  
0

0
0

     
( )     lim 1

t

n

Also e
S nwith

n

λξ

λ →∞

=

= =

q - generalization of 
Pesin (- like) theorem

G. Casati, C. T. and F. Baldovin, Europhys. Lett. 72, 355 (2005)



( , )   qS N t versus N



                                                       

                            

( N = 0 )  

( N = 1 )    

( N = 2 )   

              

                                

1 1

1

1
1

1 1            
2 2

1 1           2

1

       
3 6

×

× ×

× ×

                      

               

1       
3

1 1 1 1                              
4 1 2 1 2 4

1 1 1 1 1                           

1

1 3 3 1

1 4 6 4          
5 2 0 3 0 2 0

( N = 3

1 
5

1       

)      

( N = 4 )   

( N

  

       =  
6

5 )  1

×

× × × ×

× × × × ×

×

                                           

1 1 1 1 1                          

                               

5 1 0 1 0 5 1

       

        
3 0

          

6 0 6 0 3 0 6

1    (  )NΣ

× × × × ×

= ∀

HYBRID PASCAL - LEIBNITZ TRIANGLE

Blaise Pascal (1623-1662)
Gottfried Wilhelm Leibnitz (1646-1716)
Daniel Bernoulli (1700-1782)
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Proc Natl Acad Sc USA 102, 15377 (2005)

Asymptotically scale-invariant (d=2)

d+1

(It asymptotically satisfies the Leibnitz rule)



. .,
1
 
 S
 

YSTEM
( )   ( ) 

S
 qi e such that

q
S N N N∝ → ∞

≠

11q
d

= −

0 2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

N

S p q=0.0

q=-0.1

q=+0.1

(a)

(d =1) (d = 2) (d = 3)

(All three examples asymptotically satisfy the Leibnitz rule)

0 2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

N

S p

q=1/2

q=1/2-0.1

q=1/2+0.1

(b)

0 2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

N

S p

q=2/3

q=2/3-0.1

q=2/3+0.1

(c)

C.T., M. Gell-Mann and Y. Sato                     
Proc Natl Acad Sc USA 102, 15377 (2005) 



Continental Airlines



1( ) ( )

(

( )  ( ) ( )

                ( )

     ,

. .,     ,

   

  

  

) ( ) ( )

( )    (  1)

   (  

q q q q

BG B

q

A B A B
ij i

G BG

q

j

B

q

independent

qS A B S A S

If A and B are

i e if p p

B S A S B
k

S A S B if

p

then

whereas

But i

q

especiallyf A and glB ar

S A B A S

e

S B

+

−
+ = + +

≠ +

=

+ =

≠

+

 ( ) ( )

) 

( )

,

 
( ) ( )

( )q q q

BG BG BG

then

wher

obally correlated

S A B S A S B
ea

A S B
s

S B A S+

+ ≠ +

= +



ADDITIVITY:

additive probabilistically independent   
                 
Hence,  and ( ) are additive, and  ( 1) is nonadd

An entropy is if,
   

 for tw
             ( ) (

o  systems  and ,

it
) ( ) 

Renyi
BG q q

S A B S A S
S

B
A

q S

B

S q∀ ∀ ≠

+ = +

ive .

EXTENSIVITY:

1 2

1 2   Consider a system made of  (not necessarily independent) 
   identical elements or subsystems  and ,  ...,  .      An entropy is if 

 ...  
extensive  

                         0  lim  

N

N

N

N
A A

A
A

A AΣ

→∞

≡ + + +

<

Re

Re

The   and  are   the  subsystems ar

( )   ,  . .,   ( )   ( ) 

ad e 

   (strictly or as

ditive entropies ext

ymptotically) indep

ensive if an

endent; oth

d

erwise,  a

 only if

nd  ar

 

e no

nyi
BG q

nyi
BG q

S S

S N i e S N
N

S S

N

N

N< ∞ ∝ → ∞

nonadditive entropy extensive for special 

nextensive. 

The   ( 1) is  if the 

   subsystems are specially (globall

valu

y) c

es of

orrel

 

ated.
q q qS ≠

CONSEQUENTLY:

Foundations of Statistical Mechanics: A Deductive Treatment 
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MEPHISTOPHELES: 

Denn eben wo Begriffe fehlen,

Da stellt ein Wort zur rechten Zeit sich ein.

Wolfgang von Goethe                                           

[Faust I, Vers 1995, Schuelerszene (1808)]

For at the point where concepts fail,

At the right time a word is thrust in there.



King Thutmosis III
18th Dynasty                    
c. 1460 B. C. 
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A MANY-BODY HAMILTONIAN ILLUSTRATION 
OF THE EXTENSIVITY OF  Sq FOR 

ANOMALOUS VALUES OF q
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REVISITING THE DIFFUSION OF ONE ELECTRON

IN A MANY-BODY QUANTUM HAMILTONIAN 



1D ANDERSON MODEL WITH LONG-RANGE CORRELATED DISORDER 
(METAL-INSULATOR TRANSITION):

F.A.B.F. de Moura and M.L. Lyra, Phys Rev Lett 81, 3735 (1998)
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F.A.B.F. de Moura and M.L. Lyra, Phys Rev Lett 81, 3735 (1998)

Zero “Lyapunov exponent”

Positive “Lyapunov exponent”



(8000, )BGS t

( , 1)BGS N t >>

B. Santos, L.P. Viana, M.L. Lyra and F.A.B.F. de Moura, Sol State Comm 138, 585 (2006)
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REVISITING THE PREVIOUS RESULTS:



( , )   ( , )qS N t versus t N
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NONEXTENSIVE STATISTICAL MECHANICS AND THERMODYNAMICS 
(CANONICAL ENSEMBLE):

1

1

1

1

                    

                                  

                              

1
[ ]

1

1

     

W
q
i

i
q i

W
q
i iW

i
i qW

qi
i

i

q
i

Extremization of the functional

with the constraints an

p
S p k

q

p E
d

yi

p

el

p U

ds
e

p

=

=

=

=

−
≡

−

= =

=

∑

∑
∑

∑

( )

1

1

( )

           , ,  q i q
W

E U
q q qW

q i
i

i

q qiE U

q

energy Lagwith andrange parameter e
p

β

β

ββ β − −

=

=

− −

≡ ≡ ≡ ∑
∑

  Z

Z



'

'

' '

1

 

'

        
1 (1 )

1 1( )               

1( )     ln     

           

,    

  

    ln ln

(

 

q i

q

W
Eq

q q q
iq q

q

q

q q q q q q q q q q

i

q

E
q

iWe can rewrite

with and

And we can

Z e
q U

S
i T

T U k

ii F U T

p

S Z Z

rove

with

U

i

h e

Z

w er

e
p

β

β

β
β

β

β

β
β

−

=

−

≡ ≡
+ −

∂
= ≡

∂

≡ − = − = −

=

∑

Z

2

2

( . .,   

)   ln

( ) 

     -

   

!)

q q q

q q q
q

i e the Legendre structure of Thermod

ii U Z

S U F
iv C T T

T T
ynamics is q invariant

T

β
∂

= −
∂

∂ ∂ ∂
≡ = = −

∂ ∂ ∂





WHY USING ESCORT DISTRIBUTIONS FOR THE CONSTRAINTS?
1) The optimizing probability distribution is automatically invariant with regard 
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 -expectation value .

5) The principle of minimal relativ

without involving any optimization principle
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