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Abstract One of the pillars of the finance theory is the
efficient-market hypothesis, which is used to analyze
the stock market. However, in recent years, this hy-
pothesis has been questioned by a number of studies
showing evidence of unusual behaviors in the returns
of financial assets (“anomalies”) caused by behavioral
aspects of the economic agents. Therefore, it is time to
initiate a debate about the efficient-market hypothesis
and the “behavioral finances.” We here introduce a
cellular automaton model to study the stock market
complexity, considering different behaviors of the eco-
nomical agents. From the analysis of the stationary
standard of investment observed in the simulations and
the Hurst exponents obtained for the term series of
stock index, we draw conclusions concerning the com-
plexity of the model compared to real markets. We also
investigate which conditions of the investors are able to
influence the efficient market hypothesis statements.
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1 Introduction

Motivated by the seminal work of H. E. Stanley and
collaborators [1], a new domain of research has de-
veloped—econophysics. Using mostly statistical physics
tools and the increasing calculational power of com-
puters, physicists have introduced several methods to
interpret noisy and stochastic data. One of the most
promising areas to apply this interdisciplinary knowl-
edge to are stochastic time series such as the stock
market index. Apart from finding a way to predict the
index, which was the first “gold rush” of econophysics,
we focus more on trying to understand the dynamic
process of the market and how the local behavior of the
investors can influence the worldwide tendency of the
index.

The finance theory uses the efficient-market hypoth-
esis as the ideal model system; it states that the in-
vestors are rational and immediately incorporate the
new information of the market to find fair prices. In
this way, the market becomes efficient and, because of
this rational behavior, there would be no psychologi-
cal features such as excess of confidence, indecision,
and exaggeration and, therefore, a crisis would never
occur in this market. A basis for a new theory, named
behavioral finance, customizes concepts of psychology,
sociology, and other sciences to model the investors,
aiming to approximate the finance theory to the stock
market reality. Empirical studies show that the be-
havior of the investors frequently deviates from the
rational standards.
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Fig. 1 Stationary configuration for the option of the investors;
the initial condition was a random distribution of 33% for each
option of investment and all investors imitate the neighborhood
with P1 = 1

Compared to a complex ecosystem, the stock market
is a dynamic system in a complex network in which each
individual (investor) searches to protect his (we will write
“he” for “the investor” throughout for convenience,
although we are well aware that there are many female
investors as well) own safety (investment). In current
economic models, the agent is generally perfectly ra-
tional and his target is to maximize his profit. Models
based on agents, as those treated by statistical physics,
can go beyond the theories of the “agent” prototype
of the traditional economy because these statistical
physics models can be used to incorporate collective
behavior and develop a better understanding of the
dynamic aspects of the financial market.

Recently, a cellular automaton model, a common
technique in statistical physics, was proposed to sim-
ulate an artificial stock market, allowing one to study
how the market depends on the investors’ psychology
[2, 3]. Yi-ming and co-authors considered two types of
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Fig. 2 Evolution of the investor’s behavior during the time for case (1). In all cases, the initial state is random with 33% for each option
of investment
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behavior: the imitation, in which the investor follows
the preference of the majority of his neighbors, and the
anti-imitation, in which he adopts the opposite position
of the majority of his neighbors.

We used a cellular automaton model to study the
market behavior based on the investors’ preferences.
In addition to the types of investors mentioned above,
we considered a third type, the indif ferent, who makes
his decisions regardless of his neighbors. To character-
ize the proposed model, we used a statistical physics
techniques [1], such as the Hurst exponent, to analyze
the temporal series of the stock index produced by

the model and to verify whether the complexity of the
results is statistically coherent with real markets. We
also compared the results with the prediction from the
efficient-market hypothesis.

2 Numerical Procedure

The cellular automata were originally proposed by
J. Von Neumann and were thoroughly studied by
Wolfram [4]. They are discrete dynamic systems of a
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Fig. 3 Evolution of the investor behavior during the time for case (2). In all the cases, the initial state is random with 1/3 for each
option of investment
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simple construction, used as mathematics models to
investigate problems in different areas because they are
the simplest models that are able to describe complex
systems [5]. In a general way, they consist of a uniform
lattice of discrete elements (sites) that can be in k states.
The condition of each site in a time step is determined
by its neighborhood at the previous step, and the tran-
sition rules can be deterministic or probabilistic [6].

We represent the market as a cellular automaton in
two dimensions where each site represents an investor.
The linear extension of the system is L = 100, with
N = 10,000 sites (investors). We use deterministic or
probabilistic transition rules depending on the consid-
ered implementation and periodic boundary conditions
in both directions. The variable St(i, j) denotes the
option of the investor at the site (i, j), at time t, from
the following choices: Sb (to buy), Sh (to hold), and Ss

(to sell). A Moore neighborhood with eight neighbors
is used, and different evolution rules are associated
to each behavior type of investors. In a general way,
the state is determined by the prevailing state of the
neighborhood in a specific step of time. In this way, the
option of the investor in the moment t + 1 is a function
in the majority state among its neighbors at the moment
t, represented by the expression

St+1(i, j) = f
(

St(i − 1, j − 1), St(i − 1, j),

St(i − 1, j + 1), St(i, j − 1),

St(i, j + 1), St(i − 1, j + 1),

St(i, j + 1), St(i + 1, j + 1)

)
.

(1)

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
1 10 100 1000 10000

1 10 100 1000 10000 1 10 100 1000 10000

1 10 100 1000 10000

pe
rc

en
ta

ge
 o

f i
nv

es
to

rs
pe

rc
en

ta
ge

 o
f i

nv
es

to
rs

pe
rc

en
ta

ge
 o

f i
nv

es
to

rs
pe

rc
en

ta
ge

 o
f i

nv
es

to
rs

time steps

time steps time steps

time steps

CASE(2):(0.01;0.01;0.89)

CASE(2):(0.4;0.04;0.56) CASE(2):(0.5;0.05;0.45)

CASE(2):(0.3;0.03;0.67)selling
holding
buying

selling
holding
buying

selling
holding
buying

selling
holding
buying

a b

dc

Fig. 4 Evolution of the investors behavior as a function of time for case (3). In all the cases, the initial state is random with 1/3 for each
option of investment
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The initial condition for each investor was determined
considering a random distribution with probability of
1/3 for each option (to buy, to sell, to hold).

Three types of investor behavior were considered:
“imitation,” when the choice of the investor will be
identical to the prevailing choice of its neighborhood;
“anti-imitation,” when the investor will choose the op-
posite of the prevailing tendency of the neighborhood
(if the prevailing choice is to keep, the anti-imitation
will choose, the less prevailing of the options to buy
and to sell). In the third type, named “indifferent,” the
choice is independent of the tendency of the neighbors
and is determined randomly among the three possible
choices. This third type increases the randomness of the
system.

In simulations, the quantity of money and stocks
are limited. The stock market index is altered in each
step depending on the options of the investors, in
other words, depending on the supply and demand of
stocks. The variable P1(i, j) represents the probability
that the agent (i, j) imitates the neighborhood, P2(i, j)
represents the probability (i, j) of anti-imitation, and
P3(i, j) = 1 − P1 − P2 is the probability of the agent
(i, j) to be indifferent.

We considered several different combinations of
these probabilities. First, we investigated the behavior
of the model when all investors behave identically,
considering each one of the three types [7]. Interest-
ingly, when all the investors chose to imitate or anti-
imitate their neighbors, the system froze into random
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Fig. 5 Calculation of the Hurst exponent for the indices of the
stocks in the case (1). The parameter B represents the H value.
In the inset in each panel, we show the temporal evolution of the
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configurations that looked like patterns of Ising models
close to criticality. Figure 1 shows an example of the
pattern obtained for the case in which all investor
follows the majority. The more interesting cases were
obtained when the indifferent type was included in
the system. The results of these simulations are sum-
marized in the following figures and were obtained
considering the following choices for the probabilities
of each type of behavior:

(1)P2 = P1; (2)P2 = 0.1P1; (3)P2 = 10P1;

3 Results and Discussion

The Hurst exponent has been introduced through the
work of the biologist Harold E. Hurst in 1951, where he
proposed a new statistic to distinguish a random series

from a non-random one, while examining the various
regimes of water flow in a dyke. In 1972, B. Mandelbrot
[8] introduced the Hurst exponent as a tool to analyze
temporal series and calculate their fractal dimension.
Edgar E. Peters used the Hurst exponent in explaining
economic phenomena and in finance temporal series
[9].

The method used most often for the calculation of
the Hurst exponent is the detrended fluctuation analy-
sis [10], which calculates the roughness around the line
that better fits a set of points. We calculated the Hurst
exponent for the temporal series of the stock index
produced by the artificial market. In the model, the
index value is denoted by X(t), and each time step is
considered as a market-closing day.

To calculate the Hurst exponent, we divided the tem-
poral series into a set of points that were not superim-
posed, In, and calculated for each gap ε the best linear
fit to the points inside the gap. Then, we calculated the
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local roughness at the scale ε as the standard deviation
around the fitting line

w(ε) = 1
Nε

∑
In

√
1
T

∑
t

[
X(t)− (an(ε)−b n(ε)t)

]2
. (2)

an and b n are the linear fit coefficients in the gap ε

and Nε is the number of gaps. The value of the Hurst
exponent H is obtained from the relation

w(ε) ∼ εH , (3)

where the value of the Hurst exponent can be estimated
as the angular coefficient of the linear regression of the
data from a log–log plot. It is known that for H = 1/2,
the series is decorrelated, and different values indicate

the existence of long-range correlations. When 1/2 <

H < 1, the series is positively correlated and shows
persistence. For 0 < H < 1/2, the series is negatively
correlated and shows anti-persistence. Hurst exponents
were calculated for all series of stock index for each of
the samples.

We now consider the results from ten samples during
10,000 steps of time in each case. In Figs. 2, 3, and
4, we show the temporal distribution of the options
of investment for the cases 1, 2, and 3, respectively.
In Figs. 5, 6, and 7, the Hurst exponent is calculated
from the market index for the cases 1, 2, and 3, re-
spectively, and the market index behavior is shown in
detail in each of the panels. As expected, the number
of investors in each choice fluctuates randomly, and the
stock index reflects this behavior, showing self-similar
characteristics.
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In most cases, we verified that the number of agents
who are selling and buying are generally the same, and
as P2 increases, the number of agents in holding posi-
tion decreases. This decreasing in the number holding
positions directly influences the market prices, causing
huge flows. When very many people hold, the market
index varies less.

In case 2, the effect of crowd behavior increases for
the choices to buy or to sell as P1 increases. In case 3,
we observe that if the number of independent investors
is increased and the number of imitations decreases, the
market fluctuates less.

In Fig. 8, we observe the tendencies of the Hurst
exponent and the option of the investors as a function
of the anti-imitation probability, P2. We observe some
correlation between the value of the Hurst exponent
and the collective crowd behavior. In case 1, clearly
the increasing of P1 (imitation investors) increases the
tendency for H > 0.5, which is associated to emerging
markets. In case 2, in which the percentage of the

imitation investors is ten times higher than that of anti-
imitation investors, this crowd effect rises faster as a
function of P1 than in the other cases, and H converges
quickly to 1.

In case 3, in which the number of anti-imitations is
ten times higher than the number of imitations (and
the lower the number of anti-imitations, the higher the
number of indifferent people), we observe the tendency
of H ∼ 0.5, as expected for a completely decorrelated
market. As P2 increases, the number of investors who
hold decreases, and this alters the stability of the mar-
ket, implying H > 0.5.

4 Conclusions and Perspectives

The Hurst exponent is proposed in the literature to
classify the market indices of the countries as a measure
of the efficiency of the market. If long-range persis-
tence is present in the return of the financial assets, the
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hypothesis of the efficient market is invalid. Following
Cajueiro [11, 12], we can assume that the value of
the Hurst exponent in developed markets—where the
efficient-market hypothesis should be valid—must be
close to H = 0.5. In emerging markets, its value is less
than this. In our artificial market, the value of the
Hurst exponent stays close to these expected values.
In this context, the model was able to reproduce the
complexity of the market to a degree comparable to
reality.

The imitation behavior in the model can be as-
sociated to the rational investor of the efficient-
market hypothesis. The anti-mimic investors and the
indifferent ones are the “irrational” investors of behav-
ioral finance. Our results showed that the market stabil-
ity is affected by the investment preference. When the
investor behavior is affected only by other investors’
behaviors, huge market fluctuactions are expected—a
crowd effect. When there are many imitation investors,
the Hurst exponent exceeds 0.5; the efficient-market
hypothesis is then invalid. The Hurst number is closest
to 0.5 the higher the number of indifferent investors
and the lower the number of imitation investors, as
expected for the developed markets (efficient markets).
Thus, the stock market stability is the highest when the
investor’s behavior is most independent.
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