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It is shown in this paper that minisuperspace quantization of homogeneous and isotropic geome-
tries with phantom scalar fields, when examined in the light of the Bohm-de Broglie interpretation
of quantum mechanics, does not eliminate, in general, the classical big rip singularity present in
the classical model. For some values of the Hamilton-Jacobi separation constant present in a class
of quantum state solutions of the Wheeler-DeWitt equation, the big rip can be either completely
eliminated or may still constitute a future attractor for all expanding solutions. This is contrary to
the conclusion presented in Ref. [1], using a different interpretation of the wave function, where the
big rip singularity is completely eliminated (”smoothed out”) through quantization, independently
of such separation constant and for all members of the abovementioned class of solutions. This is
an example of the very peculiar situation where different interpretations of the same quantum state
of a system are predicting different physical facts, instead of just giving different descriptions of the
same observable facts: in fact, there is nothing more observable than the fate of the whole Universe.

PACS numbers: 98.80.Cq, 04.60.Ds

I. INTRODUCTION

The discovery that the Universe is experiencing a phase
of accelerated expansion [2] constitutes a big challenge to
theoretical physics and Cosmology. The simplest expla-
nation, the existence of a positive cosmological constant,
has problems with quantum field theory [3]. Other pos-
sibilities have been investigated, either by proposing new
material sources, called generically dark energy [4], or
through the modification of the gravitational interaction
itself [5]. Even the whole framework of the standard cos-
mological model has been questioned [6]. It is expected
that these possibilities will be tested by future observa-
tions [7].

One bonus of this revolution was the definite fall, ini-
tiated with the advent of inflationary theory, of ancient
theoretical prejudices based on the postulation of energy
conditions. Nowadays we know many plausible frame-
works where such energy conditions can be violated.
Even the possibility of existence of phantom fields, vi-
olating the less severe of these conditions, the null en-
ergy condition, has been investigated and some scenarios
proposed [8]. The presence of such phantom fields may
impose the existence of a future singularity, called big
rip, a rupture of spacetime due to an infinite accelerated
expansion, which can destroy the Universe in some tens
of billion years [9].

One natural question, which has already been asked,
concerns the importance of quantum effects as one ap-
proachs the big rip: in the same way that the initial big-
bang singularity may be avoided through quantum effects
[10], one may expect that the big rip can be circumvanted
due to quantum gravitational effects. This possibility has

∗Electronic address: nelsonpn@cbpf.br
†Electronic address: diegomp@cbpf.br

been investigated in the framework of phantom hydrody-
namical fluis [11] and phantom scalar fields [1]. In the
first, it is argued that the big rip is not eliminated, while
in the second it is suggested that the big rip is indeed
avoided through quantum effects.

In order to arrive at these conclusions, one must ex-
tract the relevant information from the wave function
of the Universe according to a definite interpretation of
quantum mechanics. However, as it is well known, when
one tries to quantize the whole Universe, one cannot rely
on the Copenhaguen interpretation of quantum mechan-
ics because it imposes the existence of a classical do-
main outside the quantized system in order to generate
the physical facts out of the quantum potentialities. Of
course, if we want to quantize the whole Universe, there is
no place for a classical domain outside it, and the Copen-
haguen interpretation cannot be applied. Some alterna-
tives are the Bohm-de Broglie [12] and the many worlds
interpretation of quantum mechanics [14], where no clas-
sical domain is necessary to generate the physical facts
out of potentialities. Hence, they can be applied to the
Universe as a whole.

In Ref. [1], it is argued that the wave packet solution
of the Wheeler-De Witt equation corresponding to the
quantized phantom scalar field model, which is peaked
around the classical solution, spreads as one approaches
the big rip region of configuration space, indicating the
breakdown of the Born-Oppenheimer approximation and
the absence of a WKB time. Hence, the semiclassical
approximation together with the notion of classical tra-
jectories are not valid any more, and the classical singu-
larity theorems do not apply: the big rip singularity is
”smoothed out” due to quantum effects.

There are two reasons which make this reasoning not
conclusive. First of all, spreading of a gaussian does not
necessarily mean that one is out of the classical region.
For instance, a gaussian peaked around the classical tra-
jectory x− pt/m describing a free quantum particle with
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momentum p and mass m spreads due to the increasing of
the uncertainty on its position as time passes, approach-
ing the classical statistical distribution of an ensemble of
free particles with classical gaussian distribution of ini-
tial positions. In fact, there are many classical statistical
distributions which spreads in time, hence spreading of
distributions is not necessarily connected with quantum
behaviour (see Ref. [13], chapter 6, for a discussion on
this subject). Secondly, even assuming that a classical
singularity has really been ”smoothed out” by quantum
effects, there is still the possibility of existence of some
sort of singularity in the region of configuration space
where the semiclassical approximation is not valid, even
though it is rather obscure what should be a definition
of a quantum spacetime singularity in this picture.

These ambiguities are not present if one uses the
Bohm-de Broglie interpretation of quantum cosmology.
Here, the classical domain is simply defined as the re-
gion in configuration space where the Bohmian trajecto-
ries approach the classical ones, which happens when the
wave function phase approaches the classical action or,
equivalently, when the so called quantum potential be-
comes negligible. Also, as in this interpretation one has
a definite notion of trajectory in the classical and quan-
tum domains, the singulatity may be defined straight-
forwardly, even at the quantum level. For instance, in
a homogeneous and isotropic minisuperspace model, a
Bohmian scale factor trajectory can be calculated, and
the big-bang singularity is defined as the finite proper
time moment where the Bohmian scale factor goes to
zero. An illustrative example is the model described in
Ref. [19], where a singularity appears when quantum ef-
fects are present.

The aim of this paper is to reexamine the investiga-
tion performed in Ref. [1] within the Bohm-de Broglie
interpretation of quantum cosmology. We will show that,
using this interpretation, the big rip singularity is not
avoided in general: for a large class of wave solutions
of the Wheeler-DeWitt equation it is still present, even
though the wave function spreads in all cases.

The paper is divided as follows: in the next section
we describe the classical model where the big rip ap-
pears. In Section 3 we quantize the system and interpret
the solutions using the Bohm-de Broglie interpretation of
quantum cosmology, showing that within this interpreta-
tion the big rip is not always avoided. We end in section
4 with a discussion of the results and their significance,
specially when compared with the results presented in
Ref. [1], and a conclusion.

II. THE CLASSICAL PHANTOM COSMOLOGY

Let us take the Einstein-Hilbert action minimally cou-
pled to a scalar field φ,

S = − 3
κ2

(∫
M

d4x
√
−gR+ 2

∫
∂M

d3xh
1
2K

)
+ Sφ, (1)

where, k2 = 8πG, c = 1, R is the curvature scalar, h is
the determinant of the space metric, K is the trace of the
extrinsic curvature Kij at the boundary ∂M of the four-
dimensional manifold M. The scalar field is accelerating
the Universe [2], and it is phantomic (p/ρ < −1) [8]. The
scalar field action Sφ reads

Sφ =
∫
M

d4x
√
−g
[
−1

2
gµν∂µφ∂νφ− V (φ)

]
, (2)

where g is the determinant of the spacetime metric gµν .
Note the wrong sign in the kinetic term, causing the
phantomic acceleration. The potential is given by [15]

V = V0e
−λkφ. (3)

We will work with a spatially flat minisuperspace
Friedmann model with homogeneous and isotropic phan-
tom field. Actions (1) and (2)then read

S = −
∫
dt

(
3

Nκ2
ȧ2a+

1
2N

a3φ̇2 +Na3V0e
−λkφ

)
,

(4)
where N is the lapse function and a is the scale factor.

The canonical momenta are

πa = − 6
Nκ2

ȧa,

πφ = −a
3φ̇

N
, (5)

yielding the canonical hamiltonian

H = NH = N

(
− κ2

12a
π2
a −

1
2a3

π2
φ + a3V0e

−λκφ
)
, (6)

which is constrained to be null. The hamiltoian con-
straint H = 0 reduces, when written in terms of the ve-
locities and taking N = 1, to the Friedmann equation(

ȧ

a

)2

≡ H2 =
κ2

3

(
− φ̇

2

2
+ V0e

−λκφ

)
. (7)

The energy density and pressure associated with the
phantom field are

ρ = −1
2
φ̇2 + V (φ) , (8)

p = −1
2
φ̇2 − V (φ) . (9)

The Euler-Lagrange equations read, after combination
with the constraint (7),

ä

a
− κ2

3

(
φ̇2 + V0e

−λκφ
)

= 0,

φ̈+ 3
ȧ

a
φ̇+ V0λκe

−λκφ = 0. (10)
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An attractor solution can be found [16] given by

φ(t) =
2
λκ

ln
[
1− λ2

2
H0 (t− t0)

]
,

α(t) = − 2
λ2

ln
[
1− λ2

2
H0 (t− t0)

]
+ α0, (11)

where α(t) ≡ ln a(t). This is a big rip solution because
at the finite time t→ tRip = t0 + 2

λ2H0
, the scale factor,

the Hubble parameter, and the energy density

ρ = ρ0

(
a

a0

)λ2

, (12)

diverges, and consequently the curvature of spacetime.
As we will exhibit numerical calculations, from now on

we will take λ = 2/
√

6, V0 = 1/2, κ =
√

6, which implies
H0 = 3/

√
10 and, from Eq. (11), the big rip attractor

relation

α = −3φ+ α0. (13)

To prove that the big rip solution (13) is an attractor,

we will make the change of variables [1],

u(α, φ) ≡ 3
10
e3α−φ

[
cos(α+ 3φ) +

1
3

sin(α+ 3φ)
]
,

v(α, φ) ≡ 3
10
e3α−φ

[
sin(α+ 3φ)− 1

3
cos(α+ 3φ)

]
(14)

yielding the hamiltonian

H = N

(
−1

2
π2
u −

1
2
π2
v + 1

)
e3α−2φ. (15)

Its Hamilton-Jacobi equation reads(
∂S0

∂u

)2

+
(
∂S0

∂v

)2

= 1, (16)

with solution

S0k = ku−
√

(1− k2)v, (17)

and |k| ≤ 1 is a constant of integration.

From the equations

u̇ = −N exp(3α− 2φ)πu = −N exp(3α− 2φ)
∂S0k

∂u
= −N exp(3α− 2φ)k, (18)

v̇ = −N exp(3α− 2φ)πv = −N exp(3α− 2φ)
∂S0k

∂v
= N exp(3α− 2φ)

√
1− k2, (19)

and the definitions (14), one obtains the first order equations

α̇ = e−φ
[√

1− k2 sin (3φ+ α)− k cos (3φ+ α)
]
,

φ̇ = e−φ
[
k sin (3φ+ α) +

√
1− k2 cos (3φ+ α)

]
. (20)

One can easily verify that these equations are first integrals of the system (10) and constraint (7), and are equivalent
to them (in both cases we have three independent constants of integration).

From the Hamilton-Jacobi theory [17], one obtains that

∂S0k

∂k
= β, (21)

where β is a constant. Using again definitions (14) in Eq. (21), one obtains

3
10
e3α−φ

[√
1− k2 + 3k
3
√

1− k2
sin (3φ+ α) +

3
√

1− k2 − k
3
√

1− k2
cos (3φ+ α)

]
= β. (22)

Equation (22) is the implicit integral of the equation com-
ing from Eq. (20),

dα

dφ
=
√

1− k2 tan (3φ+ α)− k
k tan (3φ+ α) +

√
1− k2

, (23)

as one can easily verify.

The big rip solution α+3φ = α0 corresponds to β = 0,
as one can check from Eqs. (22) and (23). In this case,
α0 and k are related through

tan(α0) =
k − 3

√
1− k2

3k +
√

1− k2
, (24)
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FIG. 1: Field plot figure showing α against φ for the classical
case with k = 0. Note the attractor behavior of the curves
α+ 3φ = α0.

with solution α0 = α0k + nπ (n an integer), for each k.
The field plot solutions of Eqs. (20) for the cases k = 0

and k = 1/2 are shown in figures 1 and 2. Note the at-
tractors at α + 3φ = α0 when φ → −∞, α → ∞. The
bounces at small values of α should not be considered be-
cause they are beyond the validity of the model: in such
regions, other matter components should be important
while the scalar field should be irrelevant.

One can understand analitically their attractor be-
haviour in the folowing way: make the substitution
3φ + α → α0 + ε in Eq. (23) with α0 given in Eq. (24).
The result, up to first order in ε, is

dα

dφ
= −3 + 10ε+O(ε2), (25)

which means that the curves in the neighbhorhood of
α + 3φ = α0, above and below, have inclination in its
direction. Hence they are attractors.

Note that result (25) is independent of k, the first term
in the series is linear and positive, and that α0 given in
Eq. (24) is the unique solution of dα/dφ = −3 (up to
additions of nπ). These properties are not present in the
quantum case, as we will see in the next section.

III. MINISUPERSPACE BOHM-DE BROGLIE
QUANTIZATION

Dirac quantization of constrained systems imposes
that the operator version of Hamiltonian (6) should an-

nihilate the wave function ψ(a, φ), yielding the Wheeler-

FIG. 2: Field plot figure showing α against φ for the classical
case with k = 0.5. Note again the attractor behavior of the
curves α+ 3φ = α0.

Dewitt equation

[
~2

2
∂2

∂α2
+

~2

2
∂2

∂φ2
+ V0e

6α−λ
√

6φ

]
ψ (α, φ) = 0, (26)

which, in the variables u and v, read

~2

(
∂2ψ

∂u2
+
∂2ψ

∂v2

)
+ ψ = 0. (27)

Using the Hamilton-Jacobi solution (17), one can con-
struct the exact solution,

ψ (u, v) = C1e
i
~

[
zu−
√

(1−z2)v
]

+ C2e
− i

~

[
zu−
√

(1−z2)v
]
.

(28)
Note that this solution is valid even for |z| > 1.

One can construct gausssian superpositions of the
above solution,
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ψ (u, v) =
∫ ∞
−∞

dzA (z)
{
C1e

i
~

[
zu−
√

(1−z2)v
]

+ C2e
− i

~

[
zu−
√

(1−z2)v
]}

, (29)

where A (z) is a Gaussian with width σ centered around
z̄,

A (z) =
~

σ
√

2π
e−

(z−z̄)2

2σ2 ~2
. (30)

Assuming that σ is very small and setting C2 = 0, one
can perform the integration after an expansion around
z − z̄ yielding [1]

ψ = C1~2

√
1

1− iσ2~S′′0
exp

[
iS0

~
− S

′2
0

2
(
σ−2 − i~S′′0

)] ,
(31)

where S0(z) = zu −
√

(1− z2)v, and the primes are
derivatives with respect to z. All functions of z are eval-
uated at z̄. Writting ψ in polar form, ψ = Rei

S
~ , one

obtains

R =
C1~2(

1 + σ4~2S
′′2
0

)1/4 exp

[
− S

′2
0 σ
−2

2
(
σ−4 + ~2S

′′2
0

)] ,
S = S0 −

~2S
′2
0 S

′′

0

2
(
σ−4 + ~2S

′′2
0

) +
~
2

arctan
(
σ2~S

′′

0

)
.(32)

The explicit expression for S reads,

S (u, v) = ku−
√

(1− k2)v −
(1− k2)3/2vσ4

(
u+ kv√

(1−k2)

)2

2[(1− k2)3 + σ4v2]
+

1
2

arctan
[

σ2v

(1− k2)3/2

]
, (33)

where were we have set ~ = 1 and z̄ ≡ k. We will restrict ourselves to the case |k| < 1 in order to avoid divergences
of the wave function.

Assuming the Bohm-de Broglie interpretation of quantum cosmology [18], we will use the Bohmian guidance
relations

u̇ = −N exp(3α− 2φ)πu = −N exp(3α− 2φ)
∂S

∂u
,

v̇ = −N exp(3α− 2φ)πv = −N exp(3α− 2φ)
∂S

∂v
, (34)

which have the same form as their classical counterpart (18), except for the fact that the Hamilton-Jacobi function
which appears in (34) is the quantum one given in Eq. (33), not the classical one given in Eq. (17), which implies the
quantum effects. Note that S written in Eq. (33) reduces to S0k given in Eq. (17) when σ → 0, as expected, yielding
the classical limit.

Going back to the original variables α, φ through Eqs. (14), Eq. (34) yields,

α̇ = −e−φ
[
∂S

∂v
sin (3φ+ α) +

∂S

∂u
cos (3φ+ α)

]
,

φ̇ = e−φ
[
∂S

∂u
sin (3φ+ α)− ∂S

∂v
cos (3φ+ α)

]
, (35)

where it is understood that Eqs. (14) must be used in the partial derivatives of S.
In the relevant region φ→ −∞, α→∞, which corresponds to u→∞, v →∞, Eq. (33) reduces to

S (u, v) = ku−
√

(1− k2)v −
(1− k2)3/2

(
u+ kv√

(1−k2)

)2

2v
+
π

4
. (36)
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Note that it is independent of σ. Hence, we obtain,

∂S

∂u
= − tan(α+ 3φ) + 3

3 tan(α+ 3φ)− 1
(1− k2)3/2 + k3,

∂S

∂v
= −

√
1− k2

2

[
2 + k2 −

(
tan(α+ 3φ) + 3

3 tan(α+ 3φ)− 1

)2

(1− k2)

]
. (37)

These terms can now be substituted in Eqs. (35) in order to obtain the quantum trajectories.
The behaviors of the quantum trajectories around the big rip solutions α+ 3φ = α0 can be understood analitically

as follows: from Eqs. (35,37) one obtains

dα

dφ
= −−(17 + 10k2)

√
1− k2x3 + 6[3k3 + (k2 + 2)

√
1− k2]x2 + 3[−4k3 + (2k2 − 3)

√
1− k2]x+ 2k3 − 6(k2 + 1)

√
1− k2

6[−(1− k2)3/2 + 3k3]x3 + [−12k3 + (26k2 + 1)
√

1− k2]x2 + 2[k3 − 3(k2 + 2)
√

1− k2]x− (7− 10k2)
√

1− k2
,

(38)
where x = tan(α+ 3φ). The big rip solution α+ 3φ = α0 can be obtained from the solutions dα/dφ = −3 of Eq. (38),
as in the classical case. The difference in the quantum case is that now we have two roots given by

tan(α01) =
(36k2 + 3)

√
1− k2 + 2k(10− k2)

(28k2 − 1)
√

1− k2 + 54k3
,

tan(α02) = − (54k2 − 3)
√

1− k2 + 2k(5− 14k2)
(28k2 − 1)

√
1− k2 + 54k3

, (39)

up to additions of nπ.

Making again the substitution 3φ + α → α0i + ε in
Eq. (38), with α0i given in Eq. (39), the result, up to
leading order in ε, is

dα

dφ
= −3 + f(k)ε+O(ε2), (40)

for α01, and

dα

dφ
= −3 + g(k)ε2 +O(ε3), (41)

for α02, where

f(k) =
90k2

3k2 − 2
, (42)

and

g(k) = − 15k√
1− k2

. (43)

When k = 0, the roots coincide and read, tan(α0) =
−3. Both f(k) and g(k) are zero and one has to go to
the third order, yielding

dα

dφ
= −3− 5x3 +O(x4). (44)

Hence, the curves in the neighbhorhood of α + 3φ =
α0, above and below it, have inclination contrary to its
direction: it is a repellor and the big rip is avoided.

For all other k, the situation is more involved. In the
case of the big rip curves corresponding to the first root

α01, one can see from Eq. (40) that the lines α + 3φ =
α01 + nπ are repellors or attractors, depending on the
sign of f(k). For |k| < (2/3)1/2, f(k) < 0 which means
that the curves are repellors, while for (2/3)1/2 < |k| < 1,
f(k) > 0 and the curves are attractors.

For the second root α02, Eq. (41) indicates that the
curves α+ 3φ = α02 + nπ are ”saddle” lines, which work
as attractors from one side and as repellors from the other
side. For k > 0, f(k) < 0 which means that the curves
are repellors from above and attractors from below, while
for k < 0, f(k) > 0 and the curves are attractors from
above and repellors from below.

From these considerations we conclude that, for |k| <
(2/3)1/2, half of the initial conditions giving rise to ex-
panding solutions go to the big rip if they are to the left
(right) of α02, and avoid the big rip if they are to the right
(left) of α02 if k > 0 (k < 0). When (2/3)1/2 < |k| < 1,
all expanding solutions go to the big rip, even after being
repelled around α02.

These behaviours can be seen numerically in Figs. 3, 4,
5, 6, corresponding to the cases k = 0, k = 1/2, k = −1/2
and k = 9/10, respectively, which are representative of
all possible cases described above.

IV. CONCLUSION

We have shown in this paper that minisuperspace
quantization of homogeneous and isotropic geometries
with phantom scalar fields, when examined in the light of
the Bohm-de Broglie interpretation of quantum mechan-
ics, does not eliminate, in general, the classical big rip
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FIG. 3: Field plot figure showing α against φ for the quantum
case with k = 0. Note the repellor behavior of the curves
α+ 3φ = α0.

FIG. 4: Field plot figure showing α against φ for the quantum
case with k = 0.5. Note the saddle curves which works as
attractors from above and repellors from below, as predicted
from our analitic discussion.

singularity. When examining gaussian superpositions of
exact solutions of the Wheeler-DeWitt equation centered
at different values of the Hamilton-Jacobi separation con-
stant |z̄| ≡ |k| < 1, one arrives at three possibilities: the
big rip is completely eliminated when k = 0, it is a fu-
ture attractor of all quantum expanding solutions when
(2/3)1/2 < |k| < 1, and it can be either eliminated or

FIG. 5: Field plot figure showing α against φ for the quantum
case with k = −0.5. Note the saddle curves which works as
attractors from below and repellors from above, as predicted
from our analitic discussion.

FIG. 6: Field plot figure showing α against φ for the quantum
case with k = 0.9. One can see the attractor behaviour of the
big rip, as predicted from our analitic discussion.

a future attractor, depending on the initial conditions
of each Bohmian trajectory, when |k| < (2/3)1/2. As
in the classical regime the big rip is a future attractor
for all values of the separation constant k, one concludes
that, using the Bohm-de Broglie interpretation, the big
rip singularity problem is alleviated but not solved by
quantization.
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However, contrary to this conclusion, it is argued in
Ref. [1], using a different interpretation of the wave func-
tion, that the big rip singularity is completely eliminated
(”smoothed out”) through quantization, and this result
is independent of the separation constant k. The rea-
son for these different conclusions relies on the fact that
all information one can get from the interpretation used
in Ref. [1] comes from the amplitude of the wave func-
tion, whose qualitative behavior does not depend on k,
while the results obtained in the present paper, where the
Bohm-de Broglie interpretation of quantum mechanics
was used, there is crucial information also coming from
the phase of the wave function (its gradient), whose quali-
tative behavior does depend on k. We are then faced with
the very peculiar situation where different interpretations
of the same quantum state of a system are predicting dif-
ferent physical facts, instead of just giving different de-
scriptions of the same observable facts: indeed, there is
nothing more observable than the fate of the whole Uni-
verse. Of course, even if the toy model analyzed here has
something to do with the real Universe, one should wait
some tens of billion years to decide which conclusion is
correct.

We have explained in the Introduction why we think
the results of Ref. [1] are not conclusive, and how the
notion of Bohmian trajectories coming from the Bohm-
de Broglie interpretation of quantum mechanics leads to
well posed questions and answers concerning this sub-

ject. Note, however, that the very notion of Bohmian
trajectories can be questioned with the argument that
they are just artifacts, with no physical meaning. In fact,
many objections against this notion have been presented
[20], which were however properly answered in Ref. [21].
Anyway, deciding between these two results seems to be
rather premature at the moment.

Let us conclude with a last remark. We have seen
that in quantum cosmology one may arrive at the pecu-
liar situation where different interpretations of the same
quantum state can lead to different physical facts, al-
though testing the alternatives is completely out of ques-
tion in this case. One interesting perspective for future
work should be to find analog models in the laboratory
based on this (and perhaps others) quantum cosmolog-
ical model which present analog ambiguities in order to
decide between interpretations. If it indeed turns to be
possible in the future, it will be a result of ultimate im-
portance for quantum mechanics, and for our whole phys-
ical picture of reality.

Acknowledgements

We would like to thank CNPq of Brazil for financial
support, and Claus Kiefer for his comments and sugges-
tions.

[1] M. P. Dabrowski, C. Kiefer, and B. Sandhofer, Phys. Rev.
D 74, 044022 (2006).

[2] A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perl-
mutter et al., Astrophys. J. 517, 565 (1999).

[3] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[4] R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev.

Lett. 80, 1582 (1998); Leonard Parker and Alpan Raval,
Phys. Rev. Lett. 86, 749 (2001); J. C. Fabris, S. V. B.
Goncalves, H. E. S. Velten, and W. Zimdahl, Phys. Rev.
D 78, 103523 (2008); N. Pinto-Neto and Bernardo M. O.
Fraga, Gen. Rel. Grav. 40, 1653 (2008).

[5] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, L. Se-
bastiani, and S. Zerbini, Phys. Rev. D 77, 046009 (2008);
C. Deffayet, G. Dvali, and G. Gabadadze, Phys. Rev. D
65, 044023 (2002).

[6] J. V. Narlikar, G. Burbidge, and R. G. Vishwakarma,
J. Astrophys. Astron. 28, 67 (2007); N. Pinto-Neto and
E. Sergio Santini, Phys. Lett. A 315, 36 (2003); D. L.
Wiltshire, Phys. Rev. Lett. 99, 251101 (2007); A. A. Co-
ley, N. Pelavas, and R. M. Zalaletdinov, Phys. Rev. Lett.
95, 151102 (2005); G. Ellis, Nature 452, 158 (2008); T.
Clifton, P. G. Ferreira, and K. Land, Phys. Rev. Lett.
101, 131302 (2008).

[7] S. Unnikrishnan, Phys. Rev. D 78, 063007 (2008).
[8] J. L. Tonry et al., Astroph. J. 594, 1 (2003); M. Tegmark

et al., Phys. Rev. D 69, 103501 (2004).
[9] R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg,

Phys. Rev. Lett. 91, 071301 (2003).
[10] R. Colistete Jr., J. C. Fabris, and N. Pinto-Neto, Phys.

Rev. D 62, 083507 (2000); F. G. Alvarenga, J. C. Fab-
ris, N. A. Lemos, and G. A. Monerat, Gen. Rel. Grav.
34, 651 (2002); J. Acacio de Barros, N. Pinto-Neto, and
M. A. Sagioro-Leal, Phys. Lett. A 241, 229 (1998); M.
Bojowald, Phys. Rev. Lett. 86, 5227 (2001).

[11] E. M. Barboza Jr. and N. A. Lemos, Gen. Rel. Grav. 38,
1609 (2006).

[12] D. Bohm, Phys. Rev. 85, 166 (1952); D. Bohm, B. J.
Hiley, and P. N. Kaloyerou, Phys. Rep. 144, 349 (1987).

[13] P. R. Holland, The Quantum Theory of Motion: An Ac-
count of the de Broglie-Bohm Causal Interpretation of
Quantum Mechanics (Cambridge University Press, Cam-
bridge, 1993).

[14] B. S. DeWitt and N. Graham (Eds.) The Many-Worlds
Interpretation of Quantum Mechanics (Princeton Univer-
sity Press, Princeton, 1973).

[15] J. g. Hao and X. z. Li, Phys. Rev. D 70, 043529 (2004);
J. g. Hao and X. z. Li, Phys. Rev. D 67, 107303 (2003).

[16] L. P. Chimento and R. Lazkoz, Phys. Lett. 91, 211301
(2003).

[17] H. Goldstein, Classical Mechanics (Addison-Wesley Pub-
lishing Company, Inc., London, 1972).

[18] N. Pinto-Neto and E. Sergio Santini, Phys. Rev. D 59
123517 (1999).

[19] N. Pinto-Neto, E. Sergio Santini, and Felipe T. Falciano,
Phys. Lett. A 344, 131-143 (2005).

[20] M. O. Scully, Phys. Scripta. T 76, 41 (1998); Y.
Aharonov and L. Vaidman, arXiv:quant-ph/9511005.

[21] B. J. Hiley, R. E. Callaghan, and O. Maroney,



9

arXiv:quant-ph/0010020.


