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We analyze the semiclassical evolution of Gaussian wave packets in chaotic systems. We show that
after some short time a Gaussian wave packet becomes a primitive WKB state. From then on, the state can
be propagated using the standard time-dependent WKB scheme. Complex trajectories are not necessary to
account for the long-time propagation. The Wigner function of the evolving state develops the structure of
a classical filament plus quantum oscillations, with phase and amplitude being determined by geometric

properties of a classical manifold.
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Introduction.—The standard approach to semiclassical
evolution is time-dependent WKB theory (TDWKB) [1-
4]. This theory provides a clear geometric description of
the dynamics: a time-dependent quantum state is associ-
ated with an evolving Lagrangian manifold in classical
phase space. [A phase-space manifold (p(q),q) is
Lagrangian if p = V§(g), for some generating function §
[5].] For TDWKB to be applicable the initial state must
itself be related to a Lagrangian manifold. This is the case,
e.g., of eigenstates of position or momentum operators
(related to planes) [5], or highly excited eigenstates of
bounded integrable Hamiltonians (related to tori) [3].

Somewhat surprisingly TDWKB has never been used to
propagate Gaussian wave packets. It is probably the static
point of view what blocked the use of standard TDWKB: If
a Gaussian state is thought of as the ground state of some
harmonic oscillator, then it certainly does not qualify as an
initial WKB state. However, by taking the dynamics into
consideration, a new perspective arises. In chaotic systems,
when one observes the evolution of an initially Gaussian
wave packet through a phase-space representation (like
Husimi or Wigner) [6], it becomes manifest that, after
some time, the wave packet acquires the form of a thin
filament, very similar to the classical evolution of the
initial density [7-10] (in the case of the Wigner function
the filament is decorated by interference fringes). The
smaller % (as compared with the relevant action scales),
the stronger the localization of the wave packet along some
classical manifold. With this picture in mind it is natural to
conjecture that the wave packet evolves into a WKB state,
its support being a real phase-space manifold [8,11,12].
The purpose of this Letter is to provide concrete evidence
in support of this statement.

We show that, after some (short) time, a Gaussian wave
packet becomes a primitive WKB state. From then on, the
state can be propagated using the standard TDWKB
scheme. Complex trajectories [13—15] are not necessary
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to describe the long-time propagation of wave packets, but
they may be used to describe the evolution during the
initial stage. The present approach not only offers an
intuitive geometric description of the evolving state, but
can be very accurate, as we demonstrate with a numerical
example.

We focus on the Wigner function for its ability to reflect
subjacent phase-space structures [16], and because it is the
standard representation when dealing with decoherence
(arising from coupling to the environment [9]) in semiclas-
sical regimes.

TDWKB approach.—In order to eliminate some unnec-
essary complications we consider a 1 degree of freedom
Hamiltonian H(p, g, t), the dependence on 7 being periodic
with period 7. Let us assume that the one-period map,
M. (p(2), g(1)) = (p(t + 7), g(t + 7)), has a hyperbolic
fixed point at the origin, and, without loss of generality,
choose the ¢ axis to coincide with the unstable subspace.
At t = 0 we launch a Gaussian wave packet at the origin:

Yolq) = Qma?)~V*exp(—q*/40?). (1)

Note that we have preserved the essential ingredient of
chaotic dynamics, i.e., the exponential stretching and fold-
ing of phase-space manifolds.

If the g uncertainty (o) of the initial wave packet (1) is
large enough [e.g., a classical length, o ~ /°], then (1) is
already a primitive WKB state,

Po(q) = Ag(q) expliSo(q)/m], (2)

given that both the amplitude Ay(g) and phase Sy(g) = 0
vary slowly on the quantum scale [2]. The associated
Lagrangian manifold is p = 0 = dS,/dq. Accordingly,
this state can be successfully evolved using the TDWKB
scheme, as we showed in Ref. [17].

Let us now analyze what happens when a small circular
wave packet is launched at an unstable fixed point.
Numerical simulations show that the positive part of the
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FIG. 1 (color online). Linear density plot of the exact Wigner
function [7AW(p, q)] after six periods of evolution with the
kicked harmonic oscillator (see the text for a description of the
system). We also show displaced versions of (i) the initial state (a
circular Gaussian at the origin, left-bottom), (ii) the Wigner
function after two steps (top, right).

Wigner function gets stretched along the unstable mani-
fold. As this positive part bends, interference fringes ap-
pear. The picture is that of a positive (classical) thin
filament decorated by an oscillatory pattern (see Fig. 1).

The fact that the structures in Fig. 1 are very similar to
those found in the Wigner functions related to WKB
eigenstates [18], leads us to enquire: does the Wigner
function of Fig. 1 correspond to a WKB state, i.e., can
we write

U(q) = > AP (q) explisi” (q)/n]? 3)

Here v labels the different branches of the hypothetical
Lagrangian manifold supporting the WKB state (p!*) =
dS™ /dq) [5]. It is understood that the expression above
must be valid during some time interval, during which
amplitudes and phases evolve according to TDWKB the-
ory [2-5]; i.e., amplitudes are convected by the classical
flow in ¢ space, A,(¢') = Ao(¢)|9q’/dql~'/2, and the gen-
erating function, which solves the Hamilton-Jacobi equa-
tion, can be written as an integral over the classically
evolved manifold [3]: S,(¢") = S,(qo) + fz; pdg.

In the case of only one branch, i.e., before the classical
manifold folds, a numerical simulation is sufficient to
answer the question posed above, as we show in the
following. For this purpose we introduce the concrete
model system that will serve as our test bench. This is
the kicked harmonic oscillator [10,19]: H(p, g, t) =
p?/2m + mw?q*/2 + K cos(kq) Y2, 8(t — nt). The pa-
rameters m = w = k=1, K =2 (in appropriate units
[10]), and 7 = 7/(B3w) guarantee a large chaotic region

phase derivative d¢,/dq (inset) at t/7 =0, 1, 2, 3, 4 (black,
green, red, blue, yellow, respectively). Also shown is the un-
stable manifold (inset, cyan). Because of parity symmetry we
only plot the region g = 0.

around the hyperbolic fixed point located at the origin [10].
The unstable direction is close to the g axis. We considered
an initial circular state (+ = 07) given by Eq. (1) with o =
0.08 (corresponding to s = 0.0128). Some snapshots of its
evolution (Wigner functions) are shown in Fig. 1.

In Fig. 2 we show amplitude p,(q) and phase derivative
dp,/dg of the evolved state for short times [¢ =
pexp(i¢p/h)]. Both quantities must be smooth on the
quantum scale for the state to qualify as a primitive
WKB state. We see that as time grows the amplitude gets
smoother: at r = 0 it was localized in a region of size
O(h'/?), at t = 3 it has acquired the maximal (classical)
width. The derivative of the phase, which is the candidate
to Lagrangian support of the WKB state, stays smooth, and
close to the unstable manifold, until 7 = 3. For larger
times, ¢ = 4, the turning point is reached and a fold is
born, giving rise to quantum oscillations in both p(g) and
&(q). For smaller /2 a similar behavior is observed, the only
difference being that it takes longer to reach the turning
point (this time goes like log#). Our claim is that, for small
enough 7, there is a time window (¢, fmax) Where ¢, is to
good accuracy (see below) a primitive WKB state, mean-
ing that it can be propagated further on according to
TDWKB. In our numerical example, we checked that the
optimal time for starting the TDWKB scheme is 1 = 2. At
t = 3 the interference effects of the turning point are al-
ready significant (even if not apparent in Fig. 2). At¢t =1
the wave packet is still not wide enough.

The next step is thus to evolve ,—, using TDWKB and
compare with the exact propagation. In order to unfold
subjacent phase-space structures, the comparison will be
made at the level of Wigner functions.

Semiclassical Wigner function.—The Wigner function
of a general WKB state [Eq. (3)] can be calculated analyti-
cally, using the stationary phase method, in a way analo-
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gous to that followed by Berry and Balazs for the special
case of semiclassical eigenstates of integrable Hamil-
tonians [3]. We start with the usual definition of Wigner
function, specialized to our case,

W(p.q,1) = % f déA(q + E)A(q — £)e' O (4)

where the phase is given by ¢ (&) = S,(g + &) — S,(§ —
&) — 2p&. We assume that p, g is not far away from the
manifold. In this case only one branch of S, is relevant [3].
The stationary phase condition reads p,(G + &) + p,(§ —
&) = 2p, where p,(q) = dS,/dq. If the point X = (p, g) is
on the concave side of the evolved manifold but not too far
away, there are in general two solutions *+ ¢, defining two
points on the manifold, x; and x_. These are the tips of a
chord having X as midpoint (Fig. 3). When the stationary
points are not coalescing they give individual complex
conjugate contributions to the integral. The corresponding
Wigner function reads

cos(A/h— mw/4)

vy Av_]

W(p, g, 1) = &AO(QQAO(Q—) &)

h

The phase structure was extracted literally from Ref. [3];
i.e., A is the (sympectic) area between the manifold and
the chord. The amplitude is different from Berry and
Balazs’, as they considered a different initial density.
Here Ay(qg-+) is the initial amplitude at the preimages of
x+ and v+ = dx+/dq, denote tangent vectors at x-, their
moduli representing local rates of expansion (dq is the ¢

<D =

FIG. 3 (color online). Classical manifold corresponding to the
state depicted in Fig. 1 (red). This manifold is itself a caustic of
the Wigner function. The “ghost” lines (blue) also belong to the
caustic. The point X is the center of the chord with tips at x_ and
Xx.. A point X belongs to the caustic if the vectors tangent to the
manifold at x_ and x; are parallel. The dashed vertical line at
g = —2.0 indicates a special section for testing the semiclassical
approximations (see Fig. 4).

component of a displacement along the initial manifold, at
the preimage of x. ).

Equation (5) is a good semiclassical approximation,
except in the vicinity caustic points, where |[v, Av_| =
0, i.e., when tangent vectors at the tips of the chords are
parallel (see Fig. 3). At caustics stationary phase points
coalesce and one must use transitional (or uniform) ap-
proximations [18]. If (p, g) is close enough to the classical
manifold, we can obtain a crude transitional approximation
to Eq. (4) as follows: (i) Approximate the manifold by the
quadratic curve p = p, + pllg — q.) + pl(q — q.)*/2.
This leads to a cubic phase ¢(&). (ii) Neglect variations
of the amplitude, i.e., A,(q) = A,(g.). If we traverse the
caustic along the line § = ¢., and assuming p!/ > 0, then
[12,20]:

W(P, gs, 1) = 2A7(g.) .[_ 25— p)

Rl Rl B
Ai standing for the Airy function.

We are now in position for the final step in our program:
the comparison of exact and semiclassical evolutions.
Figure 1 displays the exact Wigner function after six steps
of evolution. It is evident that its skeleton is the caustic of
the manifold of Fig. 3, which was obtained by evolving
during four steps the manifold (phase derivative) associ-
ated to the exact ,—,(g).

For a quantitative examination, in Fig. 4 we plotted the
section g = —2 of the exact Wigner function together with
the semiclassical prediction, Egs. (5) and (6). Inside their
respective domains of validity both approximations are
excellent. This completes our argumentation.

Concluding remarks.—We reported for the first time the
use of standard TDWKB for semiclassical propagation of
wave packets in chaotic systems.
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FIG. 4. A section of the exact Wigner function W(p, g = —2)
of Fig. 1 (line) vs WKB approximation. Full circles correspond
to the standard stationary phase result [Eq. (5)] and open circles
to the transitional approximation [Eq. (6)].
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The key point is that chaotic dynamics provides the
initial expansion that defines the appropriate Lagrangian
manifold for starting the TDWKB scheme. In particular we
showed that localized states typically evolve into WKB
states, and explained how to calculate amplitudes and
phases explicitly. The applicability of the method in its
present form requires stretching of the wave packet before
folding starts. This condition may not be met in every
example considered, but is otherwise guaranteed in deep-
enough semiclassical regimes.

Our results provide a novel perspective for reexamining
important previous work on long-time wave packet propa-
gation. Consider, for instance, the remarkable calculations
of Tomsovic and Heller’s, who used a multiple lineariza-
tion scheme to obtain accurate autocorrelation functions
for large times [7]. In the light of our findings, their scheme
can now be understood as arising from the linearization of
the WKB wave function i,(g) (which is globally valid) in
the vicinity of a periodic point. The family of ‘“homo-
clinic” intersections in Ref. [7], essential for organizing
the summation of recurrences, corresponds, in the TWKB
context, to the set of intersections between the Lagrangian
manifold of the evolved state and the stable manifold of the
fixed point. In this way, we expect the present Letter will
contribute to the ongoing debate about the time scale for
the breakdown of semiclassical propagation. Whether the
break time diverges like logh [11,12] or, more plausibly,
like some power of # [7,21] is a question still awaiting a
definitive answer.

One important feature of TDWKB is that it can be easily
supplemented to accommodate decoherence effects. Let us
briefly analyze the example of the Lindblad master equa-
tion corresponding to a chaotic Hamiltonian system
coupled to a high temperature reservoir [10,22] (or, simi-
larly, the nonselective weak continuous measurement of §
and/or p [22,23]). In the formalism of quantum trajectories
[22], the quantum jumps associated to such an environment
(or weak measurement scheme), amount to random rigid
translations in phase space [24]. The alternation of random
translations with Hamiltonian evolution leads to a final
density matrix represented by a weighted ensemble of
pure WKB states, each one related to a particular history
of random translations. The corresponding Wigner func-
tion is thus suggestively expressed as an average over
filamentary Wigner functions like the one depicted in
Fig. 1.
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