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Effect of scalar nonlinearity on zonal flow generation by Rossby waves
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Abstract

Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated
via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity
reduces the amplitude threshold of the zonal flow instability. In addition, it increases the range of wave vectors of unstable modes subjected to the
instability. The growth rate of the instability as a function of the spectrum of primary waves is calculated. The spectrum is assumed to be arbitrary
with emphasizing the case of two monochromatic waves.
© 2007 Elsevier B.V. All rights reserved.

PACS: 52.30.Jb; 52.35.Py
1. Introduction

Physics of Rossby waves in shallow rotating fluid in a grav-
itational field has been a subject of numerous theoretical and
experimental studies [1–10]. Such studies have been stimulated,
on one hand, by important applications of Rossby waves in as-
trophysics, space physics, physics of ocean and atmosphere [2].
On the other hand, general properties of Rossby waves are of
interest because of their close analogy to the drift waves in mag-
netized plasmas [1].

Earlier nonlinear theory of Rossby waves was focused on
studies of coherent solitary structures (solitons) [1,2]. Recently,
nonlinear generation of zonal flows by the Rossby waves has
been considered (see [5–10] and references therein) similar to
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the processes of zonal flow generation by drift waves in magne-
tized plasmas (see the review paper [11] with extensive bib-
liography). As a whole, this problem goes back to [12], see
also [13].

In the theory of solitary coherent structures associated with
the Rossby waves both effects of scalar and vector nonlinear-
ities were considered [1]. Meanwhile, in the theory of zonal
flows generation by the Rossby waves as well as drift waves in
plasmas, as a rule, only the vector nonlinearity was mostly in-
cluded. An important development therefore has been made in
Ref. [8] where the scalar nonlinearity was taken into account
for the problem of zonal flow generation by drift waves in mag-
netized plasmas. (The importance of scalar nonlinearity in the
context of drift waves in plasmas containing density and elec-
tron temperature gradients was originally noticed in [14,15].
The excitation of zonal flows by drift waves in nonuniform
magnetoplasma was properly considered in [16,17].) Similarly
to Ref. [8] the present work aims to include both the scalar
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and vector nonlinearity into the problem of generation of zonal
flows by the Rossby waves in the shallow fluid approximation.
However, in contrast to Ref. [8], dealing with a monochromatic
wave packet of the primary waves, we consider an arbitrary
spectrum of these modes emphasizing the case of two mono-
chromatic waves.

2. Basic equations and their analysis

The scalar nonlinearity can be properly considered within
Rossby waves model described in review article [1]. Eq. (1.21)
of Ref. [1] gives for the dimensionless depth of the fluid

(1)
∂h

∂t
+ VR(1 + h)

∂h

∂y
− r2

R

(
∂

∂t
+ VD · ∇

)
�⊥h = 0.

Here h = H(r, t)/H0, H0 is the equilibrium depth of the fluid
layer, rR = (gH0)

1/2/f is the Rossby–Obukhov radius, f (x)

is the Coriolis parameter, VR = −(gH0/f )d lnf/dx is the
Rossby velocity, g is gravity, and �⊥ = ∂2/∂x2 + ∂2/∂y2. The
velocity of the gravity drift VD is defined by the expression

(2)VD = g

f
[∇H × ez],

where ez is the unit vector along the z direction.
Similar to [9] we represent

(3)h = h̃ + ĥ + h̄,

where h̃, ĥ, and h̄ describe primary modes, secondary (side-
band) perturbations, and zonal flow, respectively. The zonal
flow perturbation is taken in the form

(4)h̄ = h̄0 exp(iqxx − iΩt) + c.c.,

where Ω and qx are frequency and radial wave number of the
zonal flow perturbation, respectively, c.c. is the complex con-
jugative. The function h̃ is represented in the form

(5)h̃ =
∑

k

[
h̃+(k) exp(ikr − iωt) + h̃−(k) exp(iωt − ikr)

]
,

where ω and k are the frequencies and wave vectors of the pri-
mary modes, h̃−(k) is complex conjugate of h̃+(k), h̃−(k) =
(h̃+(k))∗, and the sum is taken over spectrum of the primary
modes. At last, the function ĥ is given by (cf. (5) of [9])

(6)

ĥ =
∑

k

[
ĥ+(k) exp(ik+r − iω+t)

+ ĥ−(k) exp(ik−r − iω−t) + c.c.
]
.

Here ĥ±(k) are the amplitudes of the secondary small-scale
modes, ω± = Ω ± ω, and k± = (qx ± kx,±ky).

We assume that qx � kx , which is typical for the current
theory of zonal flow generation by Rossby waves [9,18].

For primary modes Eq. (1) yields (cf. (6) of [9])

(7)ω = ωR

1 + k2⊥r2
R

.

Here k2⊥ = k2
x + k2

y , ωR = kyVR is the Rossby wave frequency

in the long wavelength limit, k2 r2 � 1.
⊥ R
Taking the zonal part of Eq. (1), we obtain in neglect of
scalar nonlinearity

(8)−iΩh̄0 − r2
R

〈
(VD · ∇)�⊥h

〉 = 0.

Taking into account Eq. (2) this equation is transformed to the
form (cf. with (7) of [9])
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h̄0 = f q2

x r4
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By using (5) and (6) this equation is transformed to

(10)

iΩh̄0 = − q2
x r4

R

1 + r2
Rq2

x

∑
k

ky

[
2kx(ĥ+h̃− + ĥ−h̃+)

+ qx(ĥ+h̃− − ĥ−h̃+)
]
.

Note that in the mentioned equation of [9] the sign minus has
been missed under the summation over k.

Now we turn to the part of Eq. (1) corresponding to the sec-
ondary small-scale modes. Then we obtain (cf. (9) of [9])

(11)ĥ± = ±kyV0ĥ±
k2⊥r2

R(1 − iδk)

(1 + k2⊥±r2
R)D±

.

Here

(12)δk = 1

qxk
2⊥r2

R

d lnf

dx
.

The remaining definitions are the same as in [9], so that V0 is
the zonal part of the “cross-field” drift velocity,

(13)V0 = −i
gH0

f
qxh̄0,

(14)k2⊥± = k2
y + (qx ± kx)

2,

(15)D± = ω± ∓ ωR/
(
1 + r2

Rk2⊥±
)
.

Following transformation of Eq. (10) is performed in com-
plete analogy with Ref. [9]. Then we arrive at the following
generalization of zonal flow dispersion relation of form (19) of
Ref. [9]:

(16)1 +
∑

k

(1 − iδk)F (k)

[Ω − qxVg(k)]2
= 0.

Here F(k) is given by Eq. (20) of Ref. [9] (on the right-hand
side of Eq. (20) of Ref. [9] the sign minus has been missed)

(17)F(k) = −gH0
q2
x r4
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Here Vg is radial group velocity for the primary modes given
by (cf. with (14) of [9])

(18)Vg(k) = ∂ω

∂kx

= − 2kxωr2
R

1 + k2⊥r2
R

,

V ′
g = ∂Vg/∂kx is its derivative, so that
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Note that Eq. (16) is the generalization of Eq. (20) of [10].
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According to (16), allowing for scalar nonlinearity in the
problem considered is formally reduced to the renormalization

(20)1 → (1 − iδk).

Let us compare (16) with the result of Ref. [8]. In contrast to
us, the authors of [8] have assumed that the primary modes are
a single monochromatic wave. Then (15) reduces to

(21)(Ω − qxVg)
2 + (1 − iδk)F (k) = 0

in this approximation.
Note that in the expression Ω − qxVg of Ref. [8] the term

independent of the primary mode amplitude was also kept. If
one omits this term the result of [8] (see Eq. (26) of [8]) transits
qualitatively into (21). Here one should have in mind that the
topic of [8] was not the Rossby waves but the electrostatic drift
waves in magnetized plasma with cold ions. Then the Rossby
radius is substituted by the ion Larmor radius calculated for the
electron temperature, ρs , while, instead of our parameter δk,
one should take the value δ

(d)
k , where

(22)δ
(d)
k = −v∗ηT /

(
ωciρ

4
s k2

x

)
.

Here v∗ is the electron drift velocity, ηT ≡ ∂ lnT/∂ lnn0 is the
relative temperature gradient, T is the electron temperature,
n0 is the equilibrium plasma number density, ωci is the ion cy-
clotron frequency, and the superscript (d) denotes “drift”.

One can see from Eqs. (21) and (12) that in the problem of
monochromatic primary modes the scalar nonlinearity is impor-
tant only in the case when such modes are of sufficiently long
wavelength (cf. [8])

(23)k2⊥r2
R � 1

qx

d lnf

dx
.

Then, according to Eqs. (17), (7), (18), and (19),

(24)F(k) = 2q2
xk2

yk2⊥r6
RgH0|h̃+|2.

Therefore, our dispersion relation (18) can be considered as a
generalization of similar dispersion relation of [8] for the case
of non-monochromatic primary modes. Such a generalization
allows one to analyze more extended class of problems com-
pared with [8]. Let us consider an example of such a problem.

We assume that there are two monochromatic primary
modes: the “main” and the “additional” denoted by the super-
scripts (1) and (2), respectively. We take that the main mode
has not too small k2⊥, so that for it one has the condition oppo-
site to (23),

(25)
(
k2⊥r2

R

)(1) 	 1

qx

d lnf

dx
.

As for the additional mode, we assume it to be sufficiently long
wavelength so that
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.

Then dispersion relation (16) reduces to
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g to be a small parameter, we transform
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For sufficiently strong inequality (26) and for not too small
amplitude of the additional mode, when

(29)δ
(2)
k >

(
qxV

(1)
g

)2
/F (2),

this equation takes the form
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(
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)2 = −i
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.

Dispersion relation (30) describes a new oscillating zonal
flow instability of the Rossby waves due to the scalar nonlin-
earity. More detailed analysis of general dispersion relation (16)
can be topic of following studies.

3. Discussions

We have analyzed the generation of zonal flows induced by
a totality of non-monochromatic Rossby waves. A general dis-
persion relation taking into account both vector and scalar non-
linearities has been obtained. It is shown that scalar nonlinearity
significantly modifies the process of zonal flow generation. In
particular, the zonal flow instability extends into the short wave-
length region. This is demonstrated by Eq. (30), when the scalar
nonlinearity plays the leading role. Then the zonal flow gener-
ation may occur for smaller amplitude of primary waves and
does not depend on the sign of the group velocity. It is shown
that for the case of two primary waves the ratio of the wave
amplitudes strongly affects the instability which is especially
important at low amplitudes.

The generation mechanism described in this Letter can also
be revealed for internal gravity waves in the atmospheres of
planets as well as for Rossby waves turbulence in accretion
disks [19–21].
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