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We show that the relaxation dynamics near a glass transition with continuous ergodicity breaking can be
endowed with a geometric interpretation based on percolation theory. At the mean-field level this approach is
consistent with the mode-coupling theory (MCT) of type-A liquid-glass transitions and allows one to disentangle
the universal and nonuniversal contributions to MCT relaxation exponents. Scaling predictions for the time
correlation function are successfully tested in the F12 schematic model and facilitated spin systems on a Bethe
lattice. Our approach immediately suggests the extension of MCT scaling laws to finite spatial dimensions and
yields predictions for dynamic relaxation exponents below an upper critical dimension of 6.
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Percolation [1] is one of the most appealing examples of
phase transitions which has been successfully applied to a
variety of problems and has provided a deeper insight into
the theory of critical phenomena. Although its relevance to
amorphous magnets and structural glasses has been often
suggested, the geometrical interpretation of scaling laws
observed during glassy relaxation has been thwarted by several
difficulties and remains one of the fundamental issues of
condensed matter science.

In this Rapid Communication, we formulate a percolation
approach to glassy dynamics with continuously broken ergod-
icity and exploit its predictions to provide an interpretation
of the mode-coupling theory (MCT) of a continuous (or
type-A) liquid-glass transition [2] and to suggest some scaling
relations. Two key questions lie at the heart of our work: Is
there any universality—in the sense of critical phenomena—
hidden in MCT exponents? Is there any geometrical picture
underlying MCT scaling laws?

We develop our formalism for a generic spatial dimension
and in the mean-field limit, but our approach can in principle be
applied to a range of different systems whenever clusters play
an essential role. The mean-field limit will make transparent
and explicit the connection with MCT and will naturally
yield a finite-dimensional extension of MCT scaling laws.
Specifically, we generalize to finite dimensions the universal
scaling law relating the exponents of structural relaxation
time and critical decay law, and uncover an intermediate
relaxation regime close to criticality. In this regime, the time
correlation function is a combination of algebraic and stretched
exponential decay, with precise predictions in terms of
percolation critical exponents, and universal scaling relations.
Comparisons with the analytical and numerical solution of the
schematic MCT equation, and with Monte Carlo simulation
of facilitated spin models on a Bethe lattice, give excellent
results.
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Schematic mode-coupling theory. We first recall the MCT
results for the type-A liquid-glass transition. We focus on the
schematic F12 model which is known to reproduce the basic
features of glassy dynamics [2]. In this case, the memory kernel
functional M is

M[φ(t)] = v1φ(t) + v2φ
2(t), (1)

where v1,v2 are parameters controlling the system state and
the correlator φ(t) of density fluctuations at time t obeys the
integrodifferential equation

φ(t) + t0φ̇(t) +
∫ t

0
M[φ(t − s)]φ̇(s)ds = 0, (2)

where t0 is a characteristic microscopic time scale and
overdamped local motion is assumed for simplicity. We are
interested here in the region of the phase diagram in which
the ergodic-nonergodic transition is continuous. Continuous
glass transitions have recently attracted significant attention
in connection with the behavior of fluids confined in porous
media [3–5], which is related to the diffusion-localization
behavior of the Lorentz gas. In this context the relevance of
percolation was previously noticed [6].

In the F12 schematic model the continuous transition
line corresponds to the segment v1 = 1 and v2 ∈ [0,1]. At
criticality relaxation is algebraic, φ(t) ∼ t−a , and the structural
relaxation time τε at distance ε from the critical line behaves as
τε ∼ |ε|−ζ near the transition. The exponents a and ζ are not
independent but connected throughout the continuous glass
transition range by [2]

λ = 1

2

M′′(q)

[M′(q)]3/2
, ζ = 1

a
,

�2(1 − a)

�(1 − 2a)
= λ, (3)

where � is the Euler’s gamma function, the kernel derivatives
relative to φ are computed at criticality, and λ is the so-called
exponent parameter. For the F12 schematic model λ = v2/v

3/2
1

and, in particular, λ = v2 in the continuous glass transition
range. In the frozen phase the Edwards-Anderson order
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parameter q = limt→∞ φ(t) approaches zero as q ∼ εβ with
β = 1, which coincides with the mean-field value of the
order parameter percolation exponent. Following this hint we
develop a dynamical percolation model describing relaxation
dynamics near the type-A transition.

Before we proceed, the rather peculiar nature of MCT
should be emphasized: On one hand, it gives rise to relax-
ation patterns with a universal scaling relation between the
exponents ζ and a; on the other hand, these exponents must be
considered nonuniversal, because they depend on the kernel
parameters. Further, the MCT glass transition has a purely
dynamical nature unrelated to any equilibrium singularity.
These unconventional features are a major stumbling block in
understanding the glassy relaxation as an ordinary dynamical
critical phenomenon (see, however, Refs. [7–11] for recent
progress in this direction). In our cluster interpretation of
MCT we connect the parameter λ to the cluster lifetime and
disentangle the universal and nonuniversal features encoded
in the exponents a, ζ , and λ. These features turn out to be
related to the underlying geometric structure of percolation
clusters and to the cluster lifetime. From this connection,
universal scaling relations valid in generic spatial dimensions
will follow.

Percolation approach. We first note that the MCT relation
ζ = 1/a can be generally understood in terms of a simple
scaling argument. Indeed, if we write

φ(t,ε) = εβF
(

t

τε

)
, (4)

where the scaling function F(u) has limiting behaviors,

F(u) ∝
{

u−β/ζ , for u � 1,

const, for u 	 1,
(5)

then relation ζ = 1/a is correctly recovered with β = 1.
To explicitly obtain the scaling function we introduce a

percolation approach elaborating on the cluster formulation
used to describe the sol-gel transition [12]. We posit that our
reference glassy system can be described as a collection of
clusters, each of which decays exponentially in time over a time
scale ts that increases with the cluster size s. The structure and
relaxation of clusters evidently depend on the precise nature
of the system interaction and the underlying microscopic
dynamics. We shall assume a power-law behavior of a cluster
lifetime, ts ∝ sx , as borne out from experimental results and
simulations on polymers [13]. Under these hypotheses the
correlator φ(t), describing global relaxation, can be written as
the superposition of the decay of different clusters:

φ(t) =
∑

s

sn(s) exp

(
− t

ts

)/ ∑
s

sn(s), (6)

where n(s) is the cluster size distribution. This expression can
be evaluated exactly on a Bethe lattice, by using the results of
Ref. [14]. Alternatively, using the asymptotic expression for
the cluster size distribution [1] one can perform a saddle-
point integration for a general d-dimensional system near
the percolation threshold (for details, see Ref. [12]). Using
the latter method one finds the following relaxation regimes.
In the fluid phase, at distance ε from the threshold, one has

that the system relaxation is described by a combination of
algebraic and stretched exponential decay [15]:

φ(t,ε) ∼ εβ

(
τε

t

)c

exp

[
−

(
t

τε

)y]
, (7)

where exponents c and y are related to x, β, and γ (the
exponent defining the divergence of the mean cluster size at
the threshold) by [16]

c = 3β + γ

2(β + γ )(x + 1)
, y = 1

x + 1
. (8)

The relaxation time and the critical decay law turn out to be
τε ∼ |ε|−ζ and φ(t) ≡ φ(t,ε = 0) ∼ t−a , where

ζ = x(β + γ ), a = β

x(β + γ )
. (9)

In the frozen phase, where ergodicity is broken due to the
appearance of a percolating cluster, the asymptotic value of
the correlator is q ∼ |ε|β , and the nonarrested part, φ(t,ε) − q,
has the same form as Eq. (7) with exponents c′ and y ′ related
to those in the fluid phase by

c′ = c/y − 1/2d

1/y − 1/d
, y ′ = 1 − 1/d

1/y − 1/d
. (10)

Note that the above exponents depend on the microscopic
mechanism responsible for the single cluster relaxation, i.e.,
on x. Nevertheless, one can suitably combine them to get
universal scaling laws that only depend on the percolation
exponents. We shall come back to this important point later in
our comparison with MCT. For the moment, we remark that
Eqs. (8) and (9) imply

a ζ = β,
c

y
= 3 β + γ

2(β + γ )
, (11)

and that similar relations can be obviously found between
any pair of a, c, y, and ζ . Moreover, y ′ = y, c′ = c in the
mean-field limit d → ∞ [12].

These findings are naturally interpreted in the context of a
sol-gel transition where clusters consist of bonded multifunc-
tional monomers and gelation corresponds to the formation of
a percolating network of crosslinked polymers [1,17–19]. One
can distinguish two cases: (i) If clusters keep their identity for
all time and never break, as in chemical (or strong) gels with
permanent bonds, then Eq. (7) spans the entire range t � τε .
(ii) When the bonds’ lifetime is of the order of the relaxation
time, as for physical gels, Eq. (7) is restricted to t � τε , and
is eventually followed by a fast exponential decay. This latter
case is the one which is more relevant to the present context.
We now focus our attention on MCT and show that all these
scaling predictions, in their mean-field limit, are met by the
F12 schematic model.

Percolation approach versus MCT. In the mean-field per-
colation theory one has β = γ = 1 and the dynamical critical
exponents become

c = 1

x + 1
, y = 1

x + 1
, ζ = 2x, a = 1

2x
, (12)

from which mean-field universal relations can be derived,

ζa = 1,
c

y
= 1, c = 2a

2a + 1
. (13)
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Notice that the first scaling relation in Eq. (13) reproduces the
MCT scaling relation Eq. (3). Furthermore, this percolation
approach has precise predictions for the MCT solutions,
namely, for each value of λ, the correlator φ(t) is described,
close to the critical point, by an intermediate scaling regime
given by Eq. (7), with exponents given by Eqs. (12) and x

determined by

�2(1 − 1/2x)

�(1 − 1/x)
= λ. (14)

This last relation follows from the third relation of Eq. (3) and
the fourth of Eq. (12).

To check the above percolation predictions against the F12

schematic model we first consider the simplest case λ = v2 = 0
which gives x = 1 and, from Eq. (12), y = c = a = 1/2 and
ζ = 2. In this special case, corresponding to v2 = 0 and β = 1,
the MCT relaxation dynamics is exactly known [2]:


φ(t,ε) = |ε|
2

[√
τε

πt
exp

(
− t

τε

)
− erfc

(√
t

τε

)]
, (15)

where 
φ(t,ε) is the nonarrested part of the correlator, and
τε � ε−2 near the transition (with ε = 1 − 1/v1). Accordingly,
at short times t/τε � 1 relaxation is algebraic, φ(t,ε) ∼ t−1/2,
while at large times, t/τε 	 1, it is exponentially fast.
Expanding Eq. (15) for small t/τε one finds


φ(t,ε) � |ε|
2

√
τε

πt

[
1 −

√
πt

τε

+ t

τε

]
, (16)

that is, to the leading order in
√

t/τε , Eq. (7) with a normalized
relaxation time τ̃ε = πτε . Thus the early and late stage
relaxation behaviors are bridged by a scaling regime described
by Eq. (7) with exponents exactly matched by the percolation
predictions. Figure 1 shows how these three relaxation regimes
compare with the exact solution of the F12 schematic model
(for λ = v2 = 0).
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FIG. 1. (Color online) Nonarrested part of correlator 
φ(t,ε) vs
rescaled time t/τε for λ = 0. Solid lines are the numerical solution of
the MCT schematic model, Eqs. (1) and (2), above (ε > 0) and below
(ε < 0) the transition line. The dotted line is the stretched relaxation
regime Eq. (7) obtained by expanding the MCT exact solution to
the leading order in t/τε . The dashed line represents the late stage
exponential decay.
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FIG. 2. (Color online) Nonarrested part of correlator 
φ(t,ε) in
scaling form (top) and in natural units (bottom) for λ = 0.4. Solid
lines are the exact solution of MCT schematic model, Eqs. (1)
and (2). The dotted line is the stretched relaxation regime Eq. (7)
with exponents determined according to percolation predictions
Eqs. (12)–(14) as x = 1.186, c = y = 0.457, z = 2.372, and a =
0.422. The dashed line represents the late stage exponential decay.

For λ > 0 the correlator cannot be expressed in a closed
form. Therefore, we have numerically solved MCT Eq. (2)
in the continuous glass transition range and found excellent
agreement in an extended region of λ values. In Fig. 2(a) we
show the correlator scaling for λ = 0.4 and, to better appreciate
the quality of comparison, we replot in Fig. 2(b) the same set
of data in natural units. The characteristic relaxation time τε is
defined here as

τε =
∫ ∞

0
t φ(t,ε)dt

/∫ ∞

0
φ(t,ε)dt, (17)

and consistently reproduces the expected MCT scaling
τε ∼ |ε|−ζ .

The natural limits of the present description are reached
when λ = v2 → 1. In this case the quadratic term of the
MCT kernel becomes increasingly important as compared to
the linear one and, correspondingly, the intermediate scaling
regime shrinks. This is simply understood by considering that
the point λ = 1 marks a crossover to a completely distinct
critical behavior which is characterized by a discontinuous
ergodicity breaking.
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FIG. 3. (Color online) Rescaled persistence function φ(t,ρ) for a
facilitated spin model on a Bethe lattice with order parameter critical
exponent β = 2 and critical density ρc = 1/3. Relaxation time τρ is
computed according to Eq. (17) and δρ = 1 − ρ/ρc. The dotted line
is the stretched relaxation regime Eq. (7) with exponents determined
from the measure of critical relaxation exponent a and Eqs. (8) and (9).
The dashed line represents the late stage exponential decay.

Percolation approach versus cooperative facilitation. To
substantiate more generally the predictions of the percolation
approach to glassy systems with continuously broken ergodic-
ity characterized by β = 1, we finally investigate an instance
of cooperative facilitated dynamics on a Bethe lattice [20].
A set of N noninteracting binary spins in a magnetic field
favoring up states evolves with a Metropolis-like dynamics
in which a randomly chosen spin is flipped if and only if at
least f of its z neighbors are down. For f = 3 and z = 4
this facilitated dynamics undergoes a continuous ergodicity
breaking at a critical density of up spins ρc = 1/3. Since the
incipient cluster of frozen spins has a fractal structure with no
dangling ends, the order parameter critical exponent is β = 2.
We have simulated the dynamical behavior of this model
with a continuous time algorithm and studied the persistence
function φ(t) (the probability that a spin has never flipped
between times 0 and t) and the relaxation time τρ . To compare
persistence data with percolation predictions we first measure
a � 0.82 from the critical decay at ρc. The remaining critical
exponents are then inferred from Eqs. (8) and (9). Note that
for this backbone percolation problem the relevant value of

the mean-field critical exponent γ is γ = dν − 2β = −1. By
doing so we get x = ζ = 2/a � 2.4, y � 0.29, and c � 0.73.
Figure 3 shows the rescaled persistence versus t/τρ for several
values of the density of up spins ρ near the threshold. We
clearly see that also for this facilitated dynamics, the scaling
relations Eqs. (4), (5), and (7) provide an excellent description
of relaxation behavior.

Conclusions. To summarize, we have established a close
analogy between a dynamical percolation approach and glassy
systems with a continuous glass transition which is built upon
MCT as a mean-field starting point. Consequently, MCT for
a type-A transition provides a useful mean-field approach to
gelling systems, in the same way as MCT for a type-B transi-
tion provides a mean-field framework for structural glasses.

Our percolation approach yields detailed predictions for
the critical exponents in any spatial dimension and an
intermediate scaling regime of the correlation function. Any
finite-dimensional generalization of MCT for systems with
continuous transitions should be compared with the above scal-
ing laws, involving universal critical exponents of equilibrium
percolation along with a single parameter, governing the local
relaxation dynamics of finite clusters. Our framework directly
implies an upper critical dimension of 6 and a percolation
critical length for such systems.

Some of these quantitative predictions have been previously
confirmed by quasiscattering experiments [21] and large
scale numerical simulations [12,22] of permanent gels, and
we expect they have a much wider relevance for glassy
relaxation with continuous ergodicity breaking, including
quenched-annealed mixtures [3–5], colloidal gelation [23],
and vulcanization [24]. It would be also interesting to revisit
in this perspective systems for which a proper definition of a
cluster is rather tricky or lacking, such as random-field Ising
models and spin glasses [25]. In those cases, x could be inferred
indirectly through a measurement of global critical relaxation
and thus dynamic scaling laws should be readily tested.

Finally, it would be valuable to generalize the present
approach to glassy systems with a two-step relaxation scenario
and discontinuous ergodicity breaking. Cooperative facilita-
tion dynamics governed by a bootstrap percolation process
suggests that this may be possible [26].
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