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Human and animal behavior exhibits power law correlations whose origin is controversial. In this
work, the spontaneous motion of laboratory rodents was recorded during several days. It is found
that animal motion is scale-free and that the scaling is introduced by the inactivity pauses both by
its length as well as by its specific ordering. Furthermore, the scaling is also demonstrable in the
rates of event’s occurrence. A comparison with related results in humans is made and candidate
models are discussed to provide clues for the origin of such dynamics. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3211189�

Recent findings of heavy tailed distributions in the pat-
terns of human activity reemphasized our poor under-
standing on the mechanisms responsible for such type of
dynamics. To shed light on the most significant features of
these fluctuations, the problem is here oversimplified by
studying a much elementary system: the spontaneous mo-
tion of rodents recorded during several days. The analy-
sis of the animal motion reveals a robust scaling not only
in univariate distributions, comparable with the results
previously reported in humans, but also in its correlation
structure. It is shown that the most relevant features of
the experimental results can be replicated by the statistics
of the activation-threshold model proposed in another
context by Davidsen and Schuster. It constitutes an alter-
native mechanism to queuing, cascading, and nonhomo-
geneous processes, currently contemplated as candidates
to account for the statistics of diverse human activities,
but that seem not suitable for motion patterns.

I. INTRODUCTION

Much debate has been dedicated recently to the dynam-
ics of human activity, including the temporal patterns of dis-
parate activities such as letters1,2 or e-mail correspon-
dence,1–5 visiting a library, trading in a stock market, access-
ing the web,1 or initiating a movement.6–8 The interest in the
topic is triggered by the existence of a seemingly common
feature, namely, the heavy tails of the waiting and interevent
time distributions.

There are two fundamental issues in this problem. First,
it is still unclear which is the precise character of the heavy
tails, whether they are power law, log normal, or something
else. Second, there is no agreement on the mechanisms gen-
erating such statistics. The simplest example probably is the
temporal spacing between -even inconsequential- motor ac-
tivities, which appears to be scale-free.6–9 Despite these re-
cent efforts the mechanisms behind such statistical behavior
are not understood yet. This lack of plausible models calls
for alternatives which can be helpful to identify the mecha-
nisms at work.

To that end, it may be advantageous to simplify the pro-
cess by eliminating numerous cognitive factors present in all
experiments with human subjects. This can be done by ana-
lyzing more elementary processes such as records of long-
term spontaneous motor activity of laboratory animals, as
recently reported in mice experiments.9

In the present work, the activity of rats was recorded
during several days. Each, even minute, movement of the
animal was detected and the experimental data series
analyzed from the perspective of a point process.

The paper is organized as follows. In Sec. II the experi-
mental details are described. Section III contains the statisti-
cal analysis, first for the interevent times, then for the rates of
motion events, and finally for the variance of counts. Section
IV describes an activation-threshold model which is able to
replicate the most relevant experimental observations. Fi-
nally, Sec. V closes the paper with a discussion of further
implications of the present results.

II. EXPERIMENTAL SETTING AND DATA RECORDING

Six male 4-month-old Wistar rats were kept in a sound-
proof room temperature ��20–22 °C� and humidity
��50%–80%� conditioned chambers. The animals were in-
dividually isolated in transparent cages of 25�25
�12 cm3 with food pellets and tap water ad libitum. Note
that the cage’s dimensions correspond to those used for hous-
ing adult laboratory rats. It is well known that rodents prefer
relatively small environments and are stressed by relatively
large open spaces. They were exposed to a 24-h cycle of
light-dark conditions: cycles of 12 h of light �fluorescent
lamps with intensity of 300 lx� and 12 h of darkness �dim red
light with intensity less than 0.1 lx�.10

Each animal’s movement was monitored with infrared
activity meters, able to scan each rodent housing cage and to
report, at a frequency of 1 Hz, animal movements even in
absence of locomotion. Given the sensor’s sensitivity, the
detection includes even minute head motion, grooming, etc.
Then, the raw data are a binary sequence composed of 1’s
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�whenever the animal moves� and 0’s �during immobility�.
An example of the recording for the first 3 days is plotted in
Fig. 1, where changes from activity to immobility, and vice
versa, are marked by a vertical bar with a resolution of 1 s. In
the bottom plot of Fig. 1, we also show the group average of
the activity rate R, which is a coarse graining of the raw data,
exhibiting the well known circadian rhythmicity.

As discussed in Sec. I, our interest here focuses exclu-
sively on understanding the dynamics of the irregular fluc-
tuations and not on the circadian periodicity.

III. STATISTICAL PROPERTIES

The spatial and temporal resolution of our experimental
setting is such that from the original �binary� data recorded,
we can precisely estimate the duration of motion �sequences
of consecutive 1’s� and immobility �sequences of consecu-
tive 0’s� episodes. Thus, the animal motor activity can be
interpreted as a point process where the beginning of a mo-
tion event i occurs at a definite discrete time ti. The point
process can be then specified by the sequence of event times
ti or, alternatively, by the series of increments �or interevent
intervals� �i= ti+1− ti. A typical plot of the �-series is pre-
sented in Fig. 2. It is evident that beyond the circadian rhyth-
micity, clustering or bursts of activity occur.

In order to characterize this point process we will first
consider the �-series, obtaining its distribution and correla-
tion structure. Next, rates of events will be inspected. Finally,
the statistics of event’s counts11 as a function of observation
times will be described.

A. Interevent intervals

Figure 3 shows the estimation of the probability density
P��� through the relative frequency of occurrence of inter-
event times and durations. It was computed over the 9-day
binary sequence of activity for each one of the six animals.

We have overimposed the plots from all the animals to dem-
onstrate the robustness of the results. It can be clearly seen
that from few seconds to several thousands seconds �about 1
h�, the distribution of interevent times decays as a power law
�with exponent � falling within the interval of 1.75�0.05
for all six animals�.

In contrast, the distribution of the duration of motion
episodes does possess a characteristic time scale �see Fig. 3�.
It can be described by a superposition of two exponentials
with characteristic times of the order of 1 and 4 s, close to
the smaller data resolution and to the average duration of
motion episodes, respectively. Let us note that for human
�arm� motor activity data, instead of two exponentials, a
stretched exponential fit was reported.7,9

Meanwhile, quiescence intervals are also power law dis-
tributed with exponent �. Because motion intervals are in
average much shorter than quiet ones, then, the statistics of
interevent times is mainly dominated by that of immobility
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FIG. 1. Three day activity plot obtained from six laboratory animals �“A”–
“F”� exposed to a cycle of 12 h of light �6 a.m.–6 p.m.� and darkness
�6 p.m.–6 a.m.�, individually housed and continuously monitored by an
infrared device scanning the field at a rate of 1 Hz. The bottom time series
depicts the group average activity �R� computed with a binwidth of 1 min
and normalized.
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FIG. 2. Interevent time �i as a function of the event number i �data from
animal A�.
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FIG. 3. Normalized distributions of interevent times � �empty symbols�,
duration of motion episodes �gray symbols�, and duration of immobility
periods �black symbols� computed from 9 days of continuous recording.
Symbols joined by dotted lines correspond to the results from each one of
the six animals. The solid lines correspond to a double exponential fit �with
characteristic times of the order of 1 and 4 s�. The dashed line, drawn for
comparison, has a slope of �1.75. Inset: representation of the distribution of
motion episodes in log-linear scale. Statistics computed individually for
each of the six animals and plotted overimposed.
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periods, in particular, sharing the same power-law decay.
Hence, discrepancies between both histograms are evident
for small time intervals only �see Fig. 3�. For comparison, let
us note that for the power-law exponent of the cumulative
histogram of inactivity periods of human �arm� motor activ-
ity, the values 0.92 �control� and 0.74 �depressed individu-
als�, with about 10% relative error, have been reported.7

Meanwhile, recent experiments with wild and mutant mice
give exponents of 0.93 and 0.84, respectively.9

Daytime and nighttime fluctuations were also analyzed
separately. The results are illustrated in Fig. 4 with the his-
togram of duration of mobility and immobility sequences for
a representative animal. The figure shows that �i� activity
episodes follow the same exponential statistics at day and
night periods, �ii� the interevent times statistics has a good
agreement between both periods up to �10–20 min, and a
discrepancy seems to occur for longer times, although the
statistics at that range is dominated by a few events, as it is
always the case for heavy tails. To emphasize the small num-
ber of counts in the tails, the figure shows also the histo-
grams in the insets. In addition this figure shows that the
main difference between day and night statistic is a shift in
the curves by a constant factor �of about 4�. In other words,
even though the animals are more active at night, the statis-
tics of duration and intervals are similar. The agreement be-
tween day and nighttime results up to several hundred sec-
onds, despite the statistical fluctuations for longer times,
suggests a single scaling mechanism.

To assess correlations between consecutive motion epi-
sodes, first we computed the spectral density of �. The results
displayed in Fig. 5 show that the interevent intervals are not
independent, exhibiting long-range correlations. Therefore,
the stochastic point process of motor activity cannot be con-
sidered a renewal one. Because of the relatively small value
of the exponent of the � power spectrum, we computed also
that of the increments, which helps to confirm that it is not
white noise. Although not shown, we verified also that mo-
tion and quiescent intervals are anticorrelated.

Correlations of day and night data were also computed
separately. For all animals, a similar behavior to those exhib-

ited for the whole data set is observed for f �10−2, corre-
sponding to at least 100 events, as illustrated in the inset of
Fig. 5.

B. Local rates

Due to the presence of correlations in interevent times,
local rate analysis may provide additional nonredundant in-
formation. A typical plot of the cumulative number of events
N�t�=m versus time t=�n=1

m−1�n is shown in Fig. 6�a�. One
observes that the local rate �local slope� is not constant as in
standard Poisson processes, rather there is an irregular rap-
idly changing component superimposed to the circadian
modulation.

In order to depict more precisely rate inhomogeneities,
we estimated local rates as follows. By dividing the whole
observation time interval in W �nonoverlapping� uniform
windows of length T and counting the number of events Nn

in each time window n, one obtains the series of counts. The
local rate Rn is the ratio Nn /T. In the scale of half-day, one
observes two characteristic mean rates associated with the
half-periods of low and high activity levels. However, for
shorter time windows T, rates fluctuate in time, as exhibited
in the inset of panel 6�a�. However, the distribution of rates is
not simply bimodal but scale-free, as displayed in Fig. 6�b�.
It follows a power law �with exponent �	0.75� with expo-
nential cutoff. Furthermore, rate densities computed at vari-
ous time window lengths �from 128 to 1024 s� show finite
size effects, demonstrated by the good collapse obtained for
all curves by an ansatz of the form P�R�� f�RT	� /R�, where
f�x� goes to a constant value for small x and decays expo-
nentially for large x. The separate analysis of day and night
data �panel 6�c�� reveals the same scaling function describing
both statistics, although the value of the exponent � is dif-
ferent for each case.
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FIG. 4. �Color online� Distributions of duration of �a� immobility and �b�
mobility episodes at day �circles� and night �triangles� for animal A. Insets:
normalized distributions of the same data. A linear binning was used to
emphasize the tail fluctuations.
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FIG. 5. �Color online� Long-range correlations of interevent times. Log-log
plot of the power spectra for the six series of interevent intervals �open
symbols� and of their increments �filled symbols�. Data were logarithmically
binned. Here f is the inverse of the instantaneous period between consecu-
tive events. Dotted lines are a guide to the eyes. Dashed lines with slopes of
�0.4 and 1.6 are drawn for comparison. Notice that 
=0.4 and �=1.6
verify 
=2−�. Inset: separate analysis of day and night periods for animal
B. Spectra were normalized for better comparison.
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Nonhomogeneous Poisson processes with �uncorrelated�
stochastic rates have been considered to explain the emer-
gence of scaling in the statistics of interevent times �see, for
instance, Ref. 12�. Since in the present case the interevent
intervals are not independent, such inhomogeneous Poisson
processes can be excluded as responsible for this dynamics.

To estimate rate’s linear correlations, we performed a
spectral analysis of the time series of increments In=Rn

−Rn−1. Figure 7 is a log-log plot of its power spectrum S�f�.

It is approximately linear on a wide range of biologically
relevant temporal scales implying that S�f�� f� with ��1.
Since ��0, consecutive values of the process I are nega-
tively correlated, meaning that increases in activity are, on
the average, more likely to be followed by decreases and
vice versa. The same applies for day and night separate data,
as shown in the inset of Fig. 7. Shuffling the time series of
increments yields white noise. Recalling that R is the inte-
gration of I, then the spectral density of the original R time
series decays as 1 / f
 with 
=2−�.13

C. Variance of counts

Common measures for detecting correlations in se-
quences of counts are the Fano �FF� and Allan �AF�
factors.11 The former is the ratio of the variance to the mean
of the number of events in each time window, FF= ���Nk�2�
− �Nk�2� / �Nk�, an index of dispersion of counts. The latter
quantifies the discrepancy of counts between consecutive
windows, being AF= ���Nk+1−Nk�2�� / �2�Nk��. Although re-
lated, they reflect different features; therefore we kept track
of both of them.

In Fig. 8, the two factors are plotted as a function of the
length of the counting time window T. There is a range
where they increase as Td. The exponent of FF is d
� �0.65,0.73� �that is d	�−1 within error bars� for the six
laboratory animals, while that of AF is about 0.1 higher. The
discrepancy may be due to the fact that FF�AF� tends to the
power law from above �below�. Shuffling the series of inter-
event intervals modifies both factors mostly by reducing the
upper bound of the power-law scaling region. This indicates
that the scaling properties are partially due to the distribution
of interevent intervals itself, but also that longer range cor-
relations are associated with the specific ordering of the in-
tervals.
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FIG. 6. �Color online� �a� Cumulative number of events as a function of
time. A zoom is displayed in the inset. �b� Scaled distribution of local rates
R computed over nonoverlapping time windows of lengths T indicated on
the figure. Data collapse is obtained for 		0.2. and �=0.75. Inset: time
series of local rates R for time window length of 256 �black� and 1024 s
�green�, vertically shifted for better visualization. �c� Separate analysis of
nighttime and daytime data: 		0.2, �=0.75 /� with �
0.5 �daytime� 1.5
�nighttime�. Inset: unscaled plots of the same data. Note the absence of any
characteristic scale for the local rates demonstrated by the fact that the three
calculated rate densities follow a truncated scale-free distribution. The
dashed lines with slope �=0.75 are drawn for comparison. All data are from
animal A.
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FIG. 7. �Color online� Long-range anticorrelations in the increments In of
activity rates Rn computed over 1-min windows. Log-log plot of the power
spectra for the six I time series �symbols�. The dashed line with slope �
=1 indicates the correlations expected for pink noise �data from six ani-
mals�. Inset: the same analysis performed separately for day and nighttime
data of animal F. �In all cases spectra were log binned and normalized for
better comparison.�
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IV. MODELING THE DYNAMICS

The observed super-Poissonian behavior discussed in
Sec. III points in the direction of a multiplicative or cluster-
ing process, where the occurrence of an event increases the
probability of a subsequent one.14 A class of clustering Pois-
son process was introduced by Grüneis et al.,15 where there
is a primary Poisson process triggering the occurrence of a
sequence of events �clusters�, each following a secondary
Poisson process. In each cluster the number m of events is a
random variable.

The statistical properties of this two-stage cascade are
determined also by the cluster size distribution p�m�. A spe-
cial case of interest in the context of 1 / f
 fluctuations is
p�m��1 /m
 for m�N0 and null otherwise. For 3 /2�

�3, in the limit N0→�, it was reported15 that the exponent
of the variance/mean curve is d	�7−2
� /4 while the expo-
nent of the spectral density is 3−
. If 
=2, 1 / f noise is
obtained and d=3 /4, which is in good accord with the
present outcomes. Although the clustering Poisson process of
Grüneis et al. can reproduce some of the observed scalings, it
is not clear how such a cascade process would precisely be
originated in the present context.

The same difficulty applies to other fractal or fractal-rate
stochastic point processes.11 Recall also that for many pro-
cesses cited in Ref. 11, solely the distribution of rates is
scale-free, while interevent times present a more trivial sta-

tistics. In the present case, however, interevent times are not
only scale-free but also present long-range correlations, indi-
cating nonrenewal processes.

It is plausible that animal activity is triggered when
some internal dynamical state variable reaches some value.
Without being too specific, an animal can move to eat when
glucose level reaches some low value, for instance. Of
course, biological reality will indicate that nothing in the
judgment of the state variable nor in the threshold value can
be very precise. Therefore, one can imagine a quantity relax-
ing toward a fluctuating threshold that resets upon crossing
it. Variants of this scenario are very common in the literature
where fluctuations are introduced in either the threshold level
or in the activation function.16–19 In particular, we examine
here the variant where the threshold fluctuates following a
�bounded� Wiener process with diffusion constant D. This
version was introduced by Davidsen and Schuster19 and is
closely related to a previously proposed model for 1 / f
noise.20

In Fig. 9�a�, we present a representative example of the
fluctuating threshold � and the relaxation dynamical variable
V as functions of time. Figures 9�b�–9�d� show the model
dynamics. The distribution of interevent times depends on
the specific shape of the decay of V�t�, the relaxation pro-
cess. If the decay has the shape V�t�=V2−K�t− tlast��, where
tlast is the time of the previous adjacent trigger, then the
power-law distribution of interevent times has exponent �
=2−�.19 In particular �=0.25 yields �=1.75 close to the
observed values, and as soon as � approaches zero �abrupt
decay�, the exponent can increase up to a value slightly
smaller than 2. This relaxation ruled by � might explain the
observation in Ref. 7 of ��1.7 in depressed individuals and
��1.9 in control ones. At the same time it is clear that the
power law embedded in the model is crucial for replicating
the observations; however it will be premature to speculate
too much about the precise physiological justification for it.
It needs to be noted that the decay can be also seen as re-
sulting from multiple exponentials, such as in the case of
diffusion across many barriers.

Besides the interevent time distributions, the other main
correlation features seen in the data are reproduced as dis-
played by the FF and AF measures �notice, though, the rela-
tively larger dip for short T in the AF�. It is known that the
model dynamics yields 1 / f spectral properties.19 We have
verified �not shown� that the interevent times are power law
correlated and that the distribution of rates is scale-free, as
observed for real data, although the exponents are different
for the chosen set of parameter values.

Overall, this simple model is able to reproduce the ob-
served phenomenology and it is known to be robust under
the addition of noise over the activation signal.19 Finally, the
duration of individual events could also be incorporated eas-
ily into the model by an additional integration process con-
sistent with the observed statistics.

V. FINAL OBSERVATIONS

In summary, the results show that animal motion is
scale-free in all of the relevant statistics analyzed. It is par-
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FIG. 8. �Color online� Fano and Allan factors as a function of the counting
time-window length T. �a� For comparison, the same analysis over the series
of shuffled time intervals is also shown. Solid lines are the results of fits
giving slopes d	0.7 and d	0.8, respectively. �b� Separate analysis for
daytime and nighttime data �data are from animal A�.
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ticularly clear that the scaling is introduced by the inactivity
pauses both by its length as well as by its specific ordering.
These results are robust for all animals studied and invariant
when day and night data are analyzed separately. While mo-
tion episodes do possess a definite time scale and are basi-
cally exponentially distributed, the distribution of interevent
intervals is scale-free over a broad time scale from a few up
to thousands of seconds. Scaling is also demonstrable in the
rates of event’s occurrence.

The present results resemble those reported for human
activity patterns exhibiting similar heavy tailed distributions.
However, it is unclear that the explanation given in Ref. 3 for
the bursty patterns of human activity could be applied here,
given the relative absence of sophisticated cognitive pro-
cesses in the animals. In other words, the queuing process,
attributed to give rise to the power-law tails in humans,
hardly can be imagined to intervene in the rat’s activity.

It is interesting that human motor activity shows very
similar statistics6,8 to that demonstrated here. The quantita-

tive aspects for the scaling laws were reported to remain
unchanged under usual daily activities or periodic scheduled
work. These observations were consistent with earlier results
from the study of time series of heartbeat intervals13,21,22

from healthy humans. Then, it has prompted the suggestion
that multiscale physiological mechanisms are responsible for
the observation of these long-term correlated dynamics.6

Other related approaches23 consider that animal motion
could be visualized as the output of a large nonlinear dy-
namical system �e.g., the brain-body-environment ensemble�
whose repertoire includes the kind of dynamics observed in
these experiments. Finally, the possibility that the complexity
of the environment in itself influences animal behavior needs
to be carefully considered.24 The fluctuating-threshold dy-
namics discussed here is biologically plausible and repro-
duces well the observed rat motor activity. It is possible that
appropriate modifications of this model can provide insights
on the long-term rhythm alterations observed on individuals
with mood disturbances, depression, and other neurological
disorders such as chronic pain.
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