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Nonlocal electrodynamics is a formalism developed to in-
clude nonlocal effects in the measurement process in order
to account for the impossibility of instantaneous measure-
ment of physical fields. This theory modifies Maxwell’s elec-
trodynamics by eliminating the hypothesis of locality that
assumes an accelerated observer simultaneously equivalent
to a comoving inertial frame of reference. In this scenario,
the transformation between an inertial and accelerated ob-
server is generalized which affects the properties of physical
fields. In particular, we analyze how an uniformly acceler-
ated observer perceives a homogeneous and isotropic black
body radiation. We show that all nonlocal effects are tran-
sient and most relevant in the first period of acceleration.

1 Introduction

In physics, the principle of relativity establishes the
equivalence between all inertial observers but at the
same time raises them to a special class in the sense
that the laws of physics are the same in all inertial
frames of references. The transition from classical me-
chanics to special relativity maintains this assumption
intact and only modify the group of symmetry associ-
ated with these inertial observers. In classical mechan-
ics we have the galilean invariance of Newtonian physics
while in special relativity we have the Poincaré group
connecting different inertial observers. To each of these
groups of symmetry there is a geometrical absolute ob-
ject and an invariant physical quantity associated to it.
In particular, in classical mechanics the tridimensional
euclidean metric is an absolute object and the length
of material bodies is invariant under the action of the
galilean group. Accordingly, in special relativity the abso-
lute and invariant objects are respectively the minkowski
four-dimensional metric, which in cartesian coordinates
reads ημν = diag(1,−1,−1,−1), and the spacetime inter-
val defined by ds2 = c2dt2 − dx2 − dy2 − dz2.

However, inertial frames of reference are only ide-
alizations inasmuch real physical observers are always

interacting and hence they are actually accelerated ob-
servers. In order to connect the laws of physics de-
fined for inertial observers with actual measurements
performed by accelerated observers there is an extra
assumption that following Bahram Mashhoon [1–3] we
shall call the hypothesis of locality. This hypothesis
states that an accelerated observer is instantaneously
equivalent to a momentarily comoving inertial observer.
In other words, the path of an accelerated observer
can be understood as a continuous sequence of iner-
tial observers with appropriate instantaneously veloci-
ties. This hypothesis of locality is consistent with the
newtonian world-view of point-like particles where the
state of a physical system is completely determined
by the position and velocity of its parts at a given
time. Notwithstanding, wave phenomena are intrinsic
nonlocal and as Mashhoon have shown [4–9] this hy-
pothesis of locality is, in general, only approximately
valid.

The accuracy of the locality approximation depends
on the relative variability between the observer’s veloc-
ity and the typical timescale of the system under consid-
eration. Suppose that the physical process has a typical
size λ or a typical timescale that can always be associated
with a length through the velocity of light, i.e. λ/c and let
the magnitude of the observer’s acceleration be a such
that the timescale over which his/her velocity changes be
given by c/a , or in terms of length L = c2/a. The condi-
tion for the validity of the hypothesis of locality can be
cast as

λ � L . (1)

This relation encodes the idea that during a measure-
ment the velocity of the observer should not vary signif-
icantly such that he/she does not depart too much from
an inertial frame of reference.

As an example, consider a monochromatic electro-
magnetic wave with frequency ω. To properly measure
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the frequency of this wave, an observer needs to cap-
ture the oscillations of the electromagnetic fields. The
number of oscillations can vary with the adequacy of
the experimental apparatus but he/she will need at min-
imum two oscillations for such a measurement. Thus,
the experiment should last longer than the wave’s period,
i.e. 2π/w. If an observer has instantaneous velocity �v(t),
then the timescale over which it changes its velocity ap-
preciably is |�v|/|�a|. Therefore the hypothesis of locality
requires that |�v| � |�a|/w.

The two typical cases are for a linearly accelerated ob-
server and for a rotating observer with fixed radius. For
an observer describing a circle of radius r and angular
velocity � the centripetal acceleration is given by ac =
v2/r = �v. Thus, in terms of the wave-length λ = 2πc/w,
for a linear acceleration aL the conditions for the hypoth-
esis of locality reads λ � c2/aL . Similarly for a rotating
observer we have λ � c/�.

Generally, these quantities are too small to be de-
tected in laboratory experiments since the Earth gravi-
tational field gives c2/g⊕ � 1 light year � 1013 Km while
its rotation gives c/�⊕ � 28 a. u. � 5 × 109 Km that are
much larger than typical dimensions of laboratory sys-
tems. Thus one should expect the hypothesis of locality
to be very suitable to everyday physics. Notwithstand-
ing, there are situations where it might break-down as for
instance an electric charged particle interacting with an
electromagnetic field. It is well known that charged par-
ticles irradiates when accelerated, hence, its equation of
motion must include a term to account for its lost of en-
ergy. As a consequence the state of the accelerated parti-
cle is not completely specified by its position and velocity
at a given instant of time, i.e. the hypothesis of locality is
violated in this case.

Let us consider an arbitrary physical field ψ written
in terms of a global inertial coordinate system x. In an
another inertial frame of reference x′, associated with a
moving observer, the same field becomes

ψ̂(x′(τ )) = 
(τ )ψ(x(τ )) (2)

where 
 is a Lorentz matrix connecting both systems and
τ is the proper time of the observer. In the case of an
accelerated observer, one shall use a set of vectors at-
tached to him/her, namely his/her tetrad field, to project
the ψ field in his/her local frame of reference. Therefore
we have

ψ̂(x(τ )) = ϒ(τ )ψ(x(τ )) (3)

with the ϒ matrix builded from the tetrad field.

Let us designate by Ψ̂ (τ ) the actual measurement per-
formed by the observer. Then the hypothesis of locality
identifies Ψ̂ (τ ) = ψ̂(τ ), i.e. the observer measures exactly
the instantaneously projected field ψ̂(τ ).

In order to account for nonlocal effects due to ac-
celeration, one has to generalize this relation. Following
Mashhoon’s ansatz [4], we shall maintain a linear rela-
tion between the physical field ψ̂(τ ) and the measured
field Ψ̂ (τ ). The most general linear relation that satisfies
causality is of the form

Ψ̂ (τ ) = ψ̂(τ ) +
∫ τ

τ0

K (τ, τ ′)ψ̂(τ ′)dτ ′, (4)

with τ0 being the moment when acceleration starts and
K (τ, τ ′) is the kernel associated with the observer’s ac-
celeration. In particular, without acceleration, the kernel
must vanish so that we recover the relation Ψ̂ (τ ) = ψ̂(τ ).

The ansatz equation (4) is a Volterra integral equation
of the second kind which, for a given kernel, uniquely de-
termine the field Ψ̂ (τ ) in terms of ψ̂(τ ′) (see refs. [10–12]).
The choice of the kernel can be motivated by requir-
ing that no electromagnetic radiation field can be at rest
with respect to any observer, inertial or accelerated. In
other words, if ψ̂(τ ) is a static field for a given observer
than necessarily Ψ̂ (τ ) is also static. This condition im-
plies that

ϒ(τ ) +
∫ τ

τ0

K (τ, τ ′)ϒ(τ ′)dτ ′ ≡ ϒ0 , (5)

where ϒ0 is a constant. This relation still doesn’t deter-
mine uniquely the kernel so we must add the assumption
that the kernel is a function of a single variable.

There are two proposals in the literature for single
variable kernels (see refs. [13, 14]), namely, the kinetic
kernel K (τ, τ ′) = k(τ ′) and the dynamic kernel K (τ, τ ′) =
k(τ − τ ′). However, the dynamic kernel might endure
even after the end of the acceleration hence producing,
in some cases, divergencies of the fields. For this reason,
we shall hereon focus only on the kinetic kernel.

Differentiating equation (5) we find

k(τ ) = −dϒ(τ )
dτ

ϒ−1(τ ) , (6)

where the existence of the inverse matrix ϒ−1(τ ) is guar-
anteed by the existence of the inverse of the tetrad field.
Note that as soon as the acceleration stops the ϒ(τ ) ma-
trix no longer varies and the kinetic kernel vanishes. This
shows that the kinetic kernel is free of the endurance
issue of the dynamic kernel. Using the above result we
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have

Ψ̂ (τ ) = ψ̂(τ ) −
∫ τ

τ0

dϒ(τ ′)
dτ ′ ϒ−1(τ ′)ψ̂(τ ′)dτ ′ , (7)

or integrating by parts

Ψ̂ (τ ) = ψ̂(τ0) +
∫ τ

τ0

ϒ(τ ′)
dψ(τ ′)

dτ ′ dτ ′. (8)

One can immediately check from Eq. (8) that two
generic observers will always agree if the physical field is
constant or not. Indeed, if an observer measures a con-
stant ψ̂(τ ) field then the other observer will also measure
Ψ̂ (τ ) = ψ̂(τ0).

In this paper we are interested in examining the ac-
celeration induced nonlocal effects in a black body ra-
diation. As it is well know, the universe is filled with a
homogenous and isotropic radiation thermal bath that
presents the most perfect black body spectrum ever
measured. Thus, it is suitable to analyze nonlocal con-
tribution to this radiation field. The paper is organized
as follows. In the next section we apply the nonlocal the-
ory for electromagnetic fields and construct the nonlocal
energy-momentum tensor measured by an accelerated
observer. In Section 3 we describe the black body radi-
ation field and the average procedure to achieve a ho-
mogenous and isotropic radiation field. Section 4 we an-
alyze the nonlocal effects and conclude with some final
remarks.

2 Nonlocal electrodynamics

The nonlocal formalism described in the last section
is general in the sense that ψ(τ ) can be any physical
field (see refs. [15, 16]). In particular, for an electromag-
netic field, the Faraday tensor has two spacetime indices.
Given the tensor field Fμν , an accelerated observer will
measure the projected tensor

F ′(a)(b) = e(a)
μe(b)

ν F μν, (9)

where e(a)
μ is its associated tetrad field. In what follows,

it will be convenient to define a six-dimensional vector

F ≡
(

E
cB

)

such that

F′(τ ) = ϒ(τ )F(τ ) , (10)

where ϒ is a 6 × 6 matrix. The six-dimensional vector
F(τ ) plays the role of the ψ(τ ) field, hence, it is the elec-
tromagnetic field measured by an inertial observer. The
hypothesis of locality claims that the accelerated ob-
server will measure F′(τ ) given by Eq. (10). However, ac-
cordingly to Eq. (7), the nonlocal electromagnetic fields
F = (E, cB) are given by

(
E

cB

)
=

(
E′

cB′

)
−

∫ τ

0

dϒ

dτ ′

(
E

cB

)
dτ ′. (11)

The nonlocal fields (E, cB) depend on the observer’s
world-line. Thus, to go further on our analysis, we must
specify a particular trajectory (for a general discussion
see [17]). We shall develop our analysis for a linear accel-
erated observer. Since we are neglecting any gravitational
effects, in other words, the background is the Minkowski
flat spacetime, we can choose, without restriction, the
observer trajectory along the ẑ direction.

2.1 Linear accelerated observer

Let us consider a linearly accelerated observer along a
given direction, say the ẑ axis. If its comoving acceler-
ation is a constant g0 then the Lorentz transformations
give

a =
(

1 − v2

c2

) 3
2

g0, (12)

where a is the observer’s acceleration along the ẑ direc-
tion. Integrating Eq. (12) we find the well known hyper-
bolic trajectory for a rindler observer (see refs. [18, 19])

(
z − z0 + c2

g0

)2

− (ct)2 = c4

g0
2
. (13)

Using the observer’s proper time dτ =
√

1 − v2/c2 dt,
we can parametrize the hyperbolic motion as

t = c
g0

sinh θ, (14)

z = z0 + c2

g0

(
cosh θ − 1

)
,

where we have define θ(τ ) ≡ g0
c τ for later convenience.

The perpendicular directions remain intact, i.e. x =
x0 and y = y0. The tetrad fields associated with this
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accelerated observer read

e(a)
μ =

⎛
⎜⎜⎝

cosh θ 0 0 sinh θ

0 1 0 0
0 0 1 0

sinh θ 0 0 cosh θ

⎞
⎟⎟⎠ .

A direct calculation shows that the electric and mag-
netic fields

(
E′, cB′) are given by

E ′i = E j (
e(0)

0e(i)
j − e(0)

j e(i)
0) − cBmε jlme(0)

j e(i)
l ,

B′i = εi jk
(

1
2

e( j)
le(k)

nεlnpB p − e( j)
0e(k)

l El

c

)
,

or explicitly in components, the local electromagnetic
fields

(
E′, cB′) can be written in terms of the background

fields as

E ′
1 = E1 cosh θ − cB2 sinh θ,

E ′
2 = E2 cosh θ + cB1 sinh θ, (15)

E ′
3 = E3,

and

B′
1 = B1 cosh θ + E2

c
sinh θ,

B′
2 = B2 cosh θ − E1

c
sinh θ, (16)

B′
3 = B3.

The above equation allow us to identify the six by six
ϒ(τ ) matrix appearing in Eq. (10) as

ϒ =
(

C S
−S C

)
,

where C and S are two three by three matrix given by

C =
⎛
⎝ cosh θ 0 0

0 cosh θ 0
0 0 1

⎞
⎠ ,

S =
⎛
⎝ 0 − sinh θ 0

sinh θ 0 0
0 0 0

⎞
⎠ .

The nonlocal fields are obtained by using ϒ(τ ) in Eq.
(11), i.e.

E1(τ ) = E ′
1(τ ) + c

g0

c

∫ τ

0
B′

2(τ ′)dτ ′ ,

E2(τ ) = E ′
2(τ ) − c

g0

c

∫ τ

0
B′

1(τ ′)dτ ′ ,

E3(τ ) = E ′
3(τ ) ,

(17)

and

B1(τ ) = B′
1(τ ) − g0

c

∫ τ

0

E ′
2(τ ′)
c

dτ ′ ,

B2(τ ) = B′
2(τ ) + g0

c

∫ τ

0

E ′
1(τ ′)
c

dτ ′ ,

B3(τ ) = B′
3(τ ).

(18)

The thermal properties of the electromagnetic radi-
ation fields are encoded in the decomposition of the
energy-momentum tensor. This decomposition depends
explicitly on the observer’s world-line and hence will also
carry nonlocal effects. For an arbitrary observer, the lo-
cal energy-momentum tensor is simply the projection of
the standard energy-momentum tensor in its tetrad field,
i.e.

T ′
ab = e(a)

μe(b)
ν Tμν

= − 1
μ0

(
F ′

ac F ′
b

c − 1
4
ηabF ′cd F ′

cd

)
. (19)

Projecting the electromagnetic energy-momentum
tensor along and perpendicular to the observer’s world-
line, we can define the thermodynamics quantities such
as the energy density, isotropic pressure, Poynting vector
and Maxwell’s stress tensor.

Let the observer’s world-line be given by the velocity
field vμ. The energy density ρ is defined as the double
projection of Tμν along the observer’s world-line, while
the isotropic pressure p is one-third of the energy den-
sity minus its trace. The Poynting vector �S is given by
projecting one indices of the Tμν along the observer’s
trajectory and the other in its local space by using the
projector hμν = ημν − vμvν . Finally, the Maxwell’s stress
tensor Ti j is defined as the double projection in the
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observer’s local space. Thus, we have

ρ ′ = ε0

2

(
E′2 + c2B′2) , p′ = 1

3
ρ ′

S′i = 1
μ0

(
E′ × B′)i

, (20)

T ′
i j = ε0

[
1
2

(
E′2 + c2B′2) δi j − (E ′

i E ′
j + c2 B′

i B′
j )
]

.

The transformation in the electromagnetic fields, Eqs.
(15) and (16), induces a transformation in the energy-
momentum tensor such that

(
T ′

10

T ′
13

)
= R(θ)

(
T10

T13

)
(21)

(
T ′

20

T ′
23

)
= R(θ)

(
T20

T23

)
(22)

(
T ′

11 T ′
12

T ′
21 T ′

22

)
=

(
T11 T12

T21 T22

)
(23)

(
T ′

00 T ′
03

T ′
30 T ′

33

)
= RT (θ)

(
T00 T03

T30 T33

)
R(θ) (24)

with the two by two matrix given by

R(θ) =
(

cosh θ sinh θ

sinh θ cosh θ

)
. (25)

Therefore, the description of an electromagnetic ra-
diation in terms of the thermodynamics quantities equa-
tion (20) depends on the state of motion of the observer.
We shall be interested in how nonlocal effects change
these properties. In particular we shall analyze the case
for a homogeneous and isotropic black body radiation.

3 Homogeneous and isotropic black body
radiation

As it is well known, a black body radiation is a thermal ra-
diation whose spectrum has an universal feature, i.e. its
spectral distribution satisfies Planck’s law and is com-
pletely characterized by its temperature. Let ρT (ν)dν be
the energy density contained in the range of frequencies
ν and ν + dν.

The black body Planck distribution is given by

ρ(ν)dν = 8πh
c3

ν3

eβhν − 1
dν, (26)

with β−1 = kB T , kB is the Boltzmann constant and T the
temperature. Integrating over all frequencies we obtain
the Stefan-Boltzmann law

ρ = 4σ

c
T 4, (27)

where σ ≡ 2kB
4π5

15c2h3 ≈ 5, 67 × 10−8 J · s−1 · m−2 · K−4.
Given a generic bath of radiation, the energy den-

sity depends both on position and time, i.e. ρ = ρ(r, t).
However, a homogenous and isotropic radiation must be
such that the average of the electric and magnetic fields
vanish. In this case, the average energy density has no
spatial dependence and becomes only a function of time.

The electromagnetic fields are vector fields that at a
given position and instant of time have well defined mag-
nitude and direction in space. However, an incoherent
configuration will change chaotically in space and time.
In order to characterize the mean value of these fields we
shall define an ensemble average.

Consider an ensemble of identical systems each with
an adapted coordinate system. At a given position (rela-
tive to its own coordinate system) and at a specific time
each system of the ensemble will have definite values for
its thermodynamic quantities. For a quantity �(r, t), the
ith ensemble will have a value �i(r, t). The ensemble av-
eraged value of a quantity �(r, t) can be defined as

〈�(r, t)〉 ≡ lim
N→∞

1
N

N∑
i=1

�i(r, t). (28)

It is evident that if �(r, t) is an incoherent quan-
tity then its average will not depend on the position,
i.e. 〈�(r, t)〉 = �(t). An incoherent electromagnetic field
(refs. [20–23]) must have 〈E(r, t)〉 = 〈B(r, t)〉 = 0. On the
other hand, its average energy density depends on the
square of the fields

ρ = 〈ρ(r, t)〉 = ε0

2

(
3∑

i=1

〈Ei
2〉 + c2

3∑
i=1

〈Bi
2〉

)
. (29)

For an incoherent field we expect to have

〈Ei
2〉 = c2〈Bi

2〉 = 1
3ε0

ρ. (30)

A third condition for homogeneity and isotropy is that
the electromagnetic fields have no energy flux, hence the
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fields must satisfy

〈Ei(r1, t1)Bj (r2, t2)〉 = 0 , (31)

in such a way that it has zero Poynting vector. These con-
ditions can be put in a more compact expression as

〈Ei(r, t)E j (r, t)〉 = c2〈Bi(r, t)Bj (r, t)〉 = ρ

3ε0
δi j . (32)

Even though in general the average quantities can de-
pend on time, we will assume hereon that the average
thermodynamics quantities are constant.

An electromagnetic field configuration can be de-
scribe in several ways. In particular, instead of using the
microphysics description of the fields themselves, the
quadratic average of the electric and magnetic fields can
provide an adequate characterization of the system. In
our case the coherence function (see refs. [20] and [22]) is
a useful tool inasmuch nonlocal terms correlate the fields
at different times. In order to describe the correlation of
the same components of the fields but in two different
positions and/or times we shall assume that the fields are
stationary in space and time such that its correlation de-
pends only on the differences r = r2 − r1 and t = t2 − t1.
In this way we can define a coherence function as

Ci j (r, t) ≡ 〈Ei(r1, t1)E j (r2, t2)〉

= c2〈Bi(r1, t1)Bj (r2, t2)〉. (33)

As already mentioned, the nonlocal contributions ap-
pear as correlations of the fields at different times. All
nonlocal effects in an homogeneous and isotropic black
body radiation can be written in terms of the coherence
function equation (33). Thus, in the rest of this section
we shall characterize this function.

In vacuum, the electromagnetic fields satisfy the wave
equation which implies that the above function must
also satisfy an identical wave equation(

∇2 − 1
c2

∂2
t

)
Ci j (r, t) = 0. (34)

Then, it follows that Ci j can be written as a linear com-
bination of periodic functions

Ci j (r, t) =
∫

fi j (k) cos (kct) exp
(
ik · r

)
d3k, (35)

with fi j (k) = fi j (−k) .
There is a close analogy between the present situation

and the hydrodynamic flow of a homogeneous fluid (see

ref. [24]). In particular, the vanishing of the divergence of
the electric field, ∇.E = 0, is analogous to the vanishing
of the divergence of the velocity field for an incompress-
ible fluid ∇.v = 0. In this case, it can be shown that

fi j (k) = A(k)kikj + B(k)δi j, (36)

where in principle A(k) and B(k) are arbitrary real func-
tions. Notwithstanding, the continuity condition

ki fi j (k) = kj fi j (k) = 0, (37)

implies that B(k) = −A(k)k2. Therefore, fi j (k) depends
only on one generic function and can be written as

fi j (k) = A(k)(k2δi j − kikj ). (38)

Using this result back in Eq. (35), the coherence func-
tion for the same spatial point r = 0 becomes

Ci j (t) =
∫ ∞

0
dk

∫ π

0
dθ sin θ

∫ 2π

0
dφ

A(k)k2(k2δi j − kikj ) cos (kct) (39)

To simplify the above integral we recall that

∫ 2π

0

∫ π

0
kikj sin θdθdφ = 4π

3
k2δi j, (40)

which give us

Ci j (t) = 8π

3
δi j

∫ ∞

0
A(k)k4 cos (kct)dk. (41)

For a black body radiation

kA(k) = �c
8π3ε0

1
exp(�βck) − 1

(42)

and hence

Ci j (t) = �c
3π2ε0

δi j

∫ ∞

0

k3

exp(�βck) − 1
cos(kct)dk. (43)

Defining the quantity ξ ≡ π
�β

t, direct integration
gives

Ci j (t) = − π2

6ε0�3c3β4
L′′′(ξ )δi j, (44)

where L(x) is the Langevin function defined as

L(x) ≡ coth x − 1
x
. (45)
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Figure 1 Langevin function and its first
three derivatives.

The general behavior of the L(x) function and its
three first derivatives is plotted in Fig. 1. Note that
these functions are smooth and restricted to the interval
[−0.2, 1]. In particular, L(x → ∞) = 1 while its first three
derivatives go to zero for the same limit. Thus, the cor-
relation given by Eq. (44) decays as time differences in-
creases. Another property worth mentioning is that the
Langevin function has a symmetry given by

L(i)(−x) = (−1)i+1L(i)(x) for i = 0, 1, 2, . . . (46)

4 Black body radiation in an accelerated frame

In the previous sections, we have developed the mathe-
matical machinery to describe the nonlocal effects in a
thermal bath. However, the thermodynamics properties
of radiation fields depend on the observer’s state of mo-
tion even assuming the hypothesis of locality.

An observer moving through an homogenous and
isotropic thermal bath will, in general, detect a non-
zero Poynting vector even though an inertial observer at
rest with respect to the same radiation field will mea-
sure zero Poynting vector. As an example, let us con-
sider the linear accelerated observer with velocity in
the ẑ direction described in Section 2.1. The energy-
momentum transformation equations (21)–(25) show
that if the observer at rest measures a null Poynting
vector, i.e. T 0i = 0, the hypothesis of locality says that
the accelerated observer will measure a Poynting vec-
tor given by T ′

10 = sinh θ T13 , T ′
20 = sinh θ T23 and T ′

30 =
sinh θ cosh θ (T00 + T33). Therefore, we should keep in

mind that in order to extract the purely nonlocal effects
we will have to disentangle them from the common local
relativistic effects.

The nonlocal effects are taken into account by the
map (E′, B′) → (E,B) in the energy-momentum tensor
equation (19)

Tμν = − 1
μ0

(
FμαFν

α − 1
4
ημνFαβFαβ

)
, (47)

where Fαβ is the nonlocal Faraday tensor. The average
value of each of its components can be calculated by
using the properties of homogeneity and isotropy intro-
duced in Section 3.

4.1 Energy density

The average energy density measured by an accelerated
observer is given by

ρac = ε0

2

3∑
i=1

(〈Ei
2〉 + c2〈Bi

2〉) . (48)

A typical term of this expression is

〈E1E1〉 = 〈E1E1〉loc + 〈E1E1〉nl1 + 〈E1E1〉nl2,

where the subscripts stand for the nature of each term.
The first term with subscript “loc” is simply the common
local term. The “nl1” is the first nonlocal correction and
it is linear in the observer’s acceleration. The last term
“nl2” is also a nonlocal correction but it is quadratic in
the observer’s acceleration.
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One can show that the relativistic local part is given
by

〈E1E1〉loc = ρ

3ε0
(1 + 2 sinh2

θ).

The linear nonlocal term “nl1” has integral terms of
〈Ei(τ ′)E j (τ )〉 and 〈Bi(τ ′)Bj (τ )〉. These quantities can be
associated to the correlation function equation (44) for
different proper times such that

〈Ei(τ ′)E j (τ )〉 = Ci j
(
t′(τ ′) − t(τ )

) = C(τ ′, τ )δi j, (49)

with

C(τ ′, τ ) ≡ − π2

6ε0�3c3β4
L′′′

(
π

�β

c
g0

(
sinh θ ′ − sinh θ

))
.

(50)

Using Eqs. (17), (18) and (49), we can then write

〈E1E1〉nl1 = −2
g0

c

(
cosh θ

∫ τ

0
C(τ ′, τ ) sinh θ ′dτ ′

+ sinh θ

∫ τ

0
C(τ ′, τ ) cosh θ ′dτ ′

)
. (51)

Simirlarly, the quadratic term reads

〈E1E1〉nl2 =
( g0

c

)2
∫ τ

0
dτ ′

∫ τ

0
dτ ′′C(τ ′′, τ ′)

×
(

sinh θ ′ sinh θ ′′ + cosh θ ′ cosh θ ′′
)
. (52)

The other terms present in Eq. (48) are trivial or
equals the above result. A straightforward calculation
shows that

〈E2E2〉 = c2〈B1B1〉 = c2〈B2B2〉 = 〈E1E1〉, (53)

and

〈E3E3〉 = c2〈B3B3〉 = ρ

3ε0
. (54)

Equations (51) and (52) shows that the nonlocal
effects appear as power of g0/c which is expected
to be small. Thus, if the integrals in Eq. (52) do not di-
verge, we can neglect the second order correction and
keep just the linear term. To evaluate these integrals let
us define the two functions

ICC (τ ) ≡
∫ τ

0

∫ τ

0
C(τ ′′, τ ′) cosh θ ′ cosh θ ′′dτ ′dτ ′′, (55)

ISS(τ ) ≡
∫ τ

0

∫ τ

0
C(τ ′′, τ ′) sinh θ ′ sinh θ ′′dτ ′dτ ′′. (56)

The first one of these integrals can be directly inte-
grated to give

ICC (τ ) = 1
3ε0c3�β2

(
L′(0) − L′

(
π

�β

c
g0

sinh θ

))
, (57)

where we have used the property L′(−x) = L′(x). Note
that only the constant term survives for long times since
lim x→∞ L′(x) = 0. The other integral can be recast as

ISS(τ ) = − 1
6ε0c3�β2

∫ x

0

∫ x

0

L′′′ (x′′ − x′) x′′x′√
α2 + x′′2

√
α2 + x′2

dx′′dx′,

(58)

where α ≡ π
�β

c
g0

is a dimensionless parameter. There is
no analytical solution for this integral so we shall use an
approximation given by

x√
α2 + x2

∼=
{ x

α
for x ≤ α

1 for x > α.
(59)

As can be seen in Fig. 2, Eq. (59) overestimate the in-
tegrant. Therefore, if the integral converge with this ap-
proximation then Eq. (58) will also converge. The integral
reads

ISS(τ ) ∼= − 1
6ε0c3�β2

∫ x

0
dx′ x′√

α2 + x′2
×

(
L′′(x − x′)

− 1
α

(
L′(α − x′) − L′(−x′)

))
. (60)

We can make a further approximation. Recall that
α−1 = �

πckB

g0
T which generally is much smaller than 1. In-

deed we have α−1 ≈ 5 × 10−20 g0/T which for nonzero
temperature is much smaller than unity. In this manner
we can write

ISS(τ ) ∼= − 1
6ε0c3�β2

∫ x

0
L′′(x − x′)

x′√
α2 + x′2

dx′

= 1
6ε0c3�β2

[
L′(x − α) + L′(0) − L′(x)

]
, (61)

or explicitly in terms of the proper time

ISS(τ ) ∼= 1
6ε0c3�β2

{
1
3

− L′
[

π

�β

c
g0

sinh
( g0

c
τ
)]

+L′
[

π

�β

c
g0

(
sinh

( g0

c
τ
)

− 1
)]}

. (62)

The ISS function is smooth and goes to a constant for
τ → ∞.

Therefore, we can conclude that the behavior of ICC

and ISS given by Eqs. (57) and (62) show that they do not
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Figure 2 Overestimation of the approxima-
tion given by Eq. (59). In this plot we have
used α = 1.

diverge which allow us to neglect the quadratic terms in
the nonlocal energy density.

To conclude the analysis of the nonlocal terms, we
need to calculate the two integral in Eq. (51). They can
be treated similarly to ICC and ISS, i.e.

IC (τ ) ≡
∫ τ

0
C(τ, τ ′) cosh θ ′dτ ′

= − π

6ε0�2c3β3
L′′

(
c

g0

π

�β
sinh θ

)
(63)

and

IS(τ ) ≡
∫ τ

0
C(τ, τ ′) sinh θ ′dτ ′

∼= − π

6ε0�2c3β3

(
L′′(x − a) + L′′(x − x) − L′′(x − a)

)
= 0. (64)

Summing all contributions, we find that the nonlocal
linear correction for the energy density reads

ρnl = 2π

3
g0

�2c4
(kB T)3 sinh θ L′′

[
c

g0

π

�β
sinh θ

]
. (65)

It is convenient to compare the total energy density
measured by an accelerated observer with the energy
density prescribed by the hypothesis of locality which is
given by the ratio

ρac

ρ ′ = 1 + ρnl

ρ
(

1 + 4
3 sinh2

θ
) . (66)

Note that L′′(x) is a negative function for x > 0 (see
Fig. 1) showing that, as defined, ρnl is a negative quan-
tity. Thus, the nonlocal contribution decrease the energy
density. In order to estimate the order of magnitude of

Figure 3 The nonlocal effect in the energy
density. We plot δρ = (ρac − ρ ′)/ρ ′ for val-
ues of g0 and T that makes η varies from
0.1 to 1.
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this effect, it is convenient to recast Eq. (66) as

δρ ≡ ρac − ρ ′

ρ ′ = −10λ2η2 f (θ) (67)

where we have defined

λ = 2π�

c kB

g⊕
Tcmb

, (68)

η = 1
2π2

g0

g⊕

Tcmb

T
(69)

x ≡ 1
λ

sinh θ (70)

f (θ) ≡ − ηx

1 + 4
3 λ2η2 (ηx)2

L′′(ηx). (71)

The above expressions are motivated to define di-
mensionless parameters. We have introduced the Earth
gravitational acceleration g⊕ ≈ 9.8 m/s2 and the temper-
ature of the cosmic microwave background radiation
Tcmb ≈ 2.73 K . In particular, the parameter x plays the
role of time while η gives a measure of how non-inertial
is the observer.

The function f (θ) is positive given that L′′(x) is al-
ways negative. In addition, L′′(x) decays faster than its
argument and ηx.L′′(ηx) is maximum around ηx = 1.
Therefore, the function f (θ) is of the order of unit at its
maximum.

On the other have, the parameter λ ≈ 5, 23 × 10−19 so
that the nonlocal effects in the energy density are of the
order of 10−36 η2. Given its definition, we don’t expect
the parameter η to be much higher than unit. Thus, we
conclude that the nonlocal effects in the energy density
should be negligible.

4.2 Heat flux

Let us now analyze the nonlocal contributions to the heat
flux. The average nonlocal Poynting vector reads

Si = 1
μ0

εi jk〈E jBk〉. (72)

However, the homogeneity and isotropy conditions
impose that any cross term should vanish. The only con-
tributions to the nonlocal Poynting vector comes from
〈Ei

2〉 and 〈Bi
2〉. Thus, the components of the Poynting

vector that are perpendicular to the observer’s trajectory
should vanish inasmuch they contain only cross terms.

Indeed, for S1 and S2 there is only terms of the form
〈Ei E j〉, 〈Ei Bj〉 and 〈Bi Bj〉 with i �= j. All these terms van-
ish and we find

S1 = S2 = 0. (73)

For the direction parallel to the observer’s trajectory
we have

S3 = 1
μ0

[〈E1B2〉 − 〈E2B1〉] = 2
μ0

〈E1B2〉,

since 〈E1B2〉 = −〈E2B1〉. In terms of the background aver-
ages we have

〈E1B2〉 = − 2ρ

3cε0
cosh θ sinh θ

+ 2
c

g0

c

(
cosh θ IC (τ ) + sinh θ IS(τ )

)

− 2
c

( g0

c

)2
ISC (τ ), (74)

where we have defined the integral

ISC (τ ) ≡
∫ τ

0
sinh θ ′ IC (τ ′)dτ ′

=
∫ τ

0

∫ τ

0
C(τ ′′, τ ′) sinh θ ′ cosh θ ′′dτ ′dτ ′′. (75)

The above integral can be recast as

ISC (τ ) = − 1
6ε0c3�β2

∫ x

0

∫ x

0

L′′′ (x′′ − x′)√
α2 + x′2

x′dx′′dx′

= 1
6ε0c3�β2

∫ x

0

L′′(x′ − x) − L′′(x′)√
α2 + x′2

x′dx′

∼= 1
6ε0c3�β2

{
1
3

− L′
[

πc
�βg0

sinh
( g0τ

c

)]}
,

(76)

where the sign ∼= refers to an approximation similar to
the one used in the ISS(τ ) evaluation. This term is mul-
tiplied by a square correction of the observer’s accelera-
tion and as before will be neglected. Thus, keeping only
first order terms, the non-zero component of the Poynt-
ing vector reads

S3 = −4ρ

3
cosh θ sinh θ

− 2π

3�2c3β3

g0

c
cosh θ L′′

(
c

g0

π

�β
sinh θ

)
.
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Figure 4 The nonlocal effect in the Poynting vec-
tor. Here we show the magnitude of the its com-
ponent parallel to the observer’s trajectory. We
plot δS3 = S3−S′

3
S′

3
for values of g0 and T that

makes η varies from 1 to 2.

We can recast this expression as the ratio between the
nonlocal and the local measurement which gives

S3

S′
3

= 1 + 1
2ρ

π

�2c3β3

g0

c

L′′
(

c
g0

π
�β

sinh θ
)

sinh θ
,

= 1 + 15
2

(
c

g0

π

�β
sinh θ

)−1

L′′
(

c
g0

π

�β
sinh θ

)
.

Using the same parameters λ, η and x defined in Eqs.
(68)–(70), we can rewrite this expression as

δS3 ≡ S3 − S′
3

S′
3

= 15
2

L′′(ηx)
ηx

.

Again this contribution goes to zero for large times.
As can be seen from Fig. 4, the nonlocal effect is relevant
only at the beginning of the acceleration.

Note also that, in the case of the heat flux, the nonlo-
cal effects are of the same order of magnitude than the
local effects. The δS3 start at −1 and then decays rapidly
to zero.

However, this process dies out too fast. The parameter
x is inversely proportional to λ ≈ 5, 23 × 10−19 , and as
soon as x ∼ 2 the nonlocal effect is already much smaller
than unit, δS3 ∼ 0.1. Thus, even though the intensity of
the nonlocal effects in the heat flux could be in principle
detected, its experimental limitation is the time scale of
this effect.

4.3 Maxwell stress tensor

The last terms remaining to be analyzed are the com-
ponents of the stress tensor. The stress tensor for an

accelerated observer can be written as

Ti j = ε0

[
1
2

(
E2 + c2B2) δi j − EiE j − c2BiB j

]
. (77)

Recalling relations Eqs. (53) and (54), one can imme-
diately check that

〈T11〉 = 〈T11〉 = 1
3

ρ, (78)

〈T22〉 = 〈T22〉 = 1
3

ρ, (79)

while

〈T33〉 = ε0

(
2〈E1E1〉 − 〈E3E3〉

)

= 1
3

ρ
(

1 + 4 sinh2
θ
)

+ 2π

3�2c3β3

( g0

c

)
sinh θ L′′

(
c

g0

π

�β
sinh θ

)
. (80)

All cross terms like 〈T12〉 or 〈T23〉 are zero. Thus, the
ratio of the nonlocal contribution to the local measure-
ment of the nonzero components of the stress tensor
read

〈T11〉
〈T ′

11〉 = 〈T22〉
〈T ′

22〉 = 1 (81)

〈T33〉
〈T ′

33〉 = 1 + 30
g0�β

πc
sinh θ

1 + 4 sinh2
θ
L′′

(
c

g0

π

�β
sinh θ

)
.

(82)

The perpendicular directions do not change while the
tangential component is only linear in g0/c. Following
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Figure 5 Nonlocal change in the T33 com-
ponent of the stress tensor for an observer
world line with linear acceleration in this
same direction. We plot δT33 = T33−T ′

33
T ′

33
for

values of g0 and T that makes η varies from
.1 to 1.

the same procedure we have adopted for the energy den-
sity and for the heat flux, we can define the fractional
nonlocal effect for the stress tensor as

δT33 = −30λ2η2 j(θ), (83)

where we have defined

j(θ) ≡ − ηx
1 + 4λ2η2(ηx)2

L′′(ηx).

Similarly to the function f (θ) defined for the frac-
tional nonlocal energy density, the function j(θ) is pos-
itive and at most of order 1. Thus, the nonlocal effects
scales with λ2, i.e. this effects is of the order of 10−35 η2.

The above nonlocal correction represents a change in
the measured pressure of the background radiation. The
transverse direction with respect to the observer’s tra-
jectory do not change while the pressure along the ob-
server’s path is suppressed by the nonlocal effect. Anal-
ogously to the heat flux and the energy density, the
Maxwell’s tensor decrease due to nonlocal effects.

5 Conclusion

In this paper we applied the nonlocal formalism for ac-
celerated observers, developed by Mashhoon and collab-
orators, to analyze how it modifies the thermodynam-
ics properties of an electromagnetic radiation field. In
particular, we studied the case of a homogeneous and
isotropic black body radiation using an average over en-
semble to define the space average fields. Considering
a linear accelerated observer, we disentangled the pure
nonlocal effects from the common relativistic effects. In
this case, the coherence function shows that the nonlocal

effects are all transient and quickly decay. Thus, at least
for the specific example studied in this paper, we do not
except to identify any measurable effect. Notwithstand-
ing, there is no reason for this quickly transient decay
to be a general behavior. For circularly accelerated ob-
server, the nonlocal effects might leave some measurable
imprint in the black body radiation.
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