

Angra Neutrino Project: Present Status

V Antineutrino Applied Physics Workshop AAP-2009, Angra dos Reis March 19, 2009

João dos Anjos

& Laudo Barbosa for the ANGRA Collaboration

J.C. Anjos, G.L. Azzi, A.F. Barbosa, R.M.O. Galvão, H. Lima Jr, J. Magnin, H. da Motta, M. Vaz, R. Shellard, F. Simão

Collaborators: Ana Amélia Bergamini (CBPF, LNGS) L.M.Andrade Filho (COPPE) P.R.Barbosa Marinho (CNEN) R. Machado da Silva (UFRRJ)

Graduate students	: Anderson Schilithz(PhD)
	Andre G. Oliveira (MSc)
	Arthur B. Villar (MSc)
	Wallace R. Ferreira (MSc)
Undergraduate:	Valdir Salustino, Rodolfo Silva, Thamys Abrahão Tiago L. Rodrigues, Rosangela S. Ten, Thaynea Blanche

19/03/09

AAP 2009

Other Brazilian Institutions:

M.M. Guzzo, E. Kemp, O.L.G. Peres, P. Holanda, T. Bezerra, L. F. González, L. P.B. Lima

R. Zukanovich Funchal

PUC-RJ H. Nunokawa

UFABC Marcelo Leigui, R. Da Maceno, P. Chimenti

UFBa Iuri M. Pepe V.L. Filardi

UEFS Germano P. Guedes Paulo Cesar Farias

AAP 2009 19/03/09

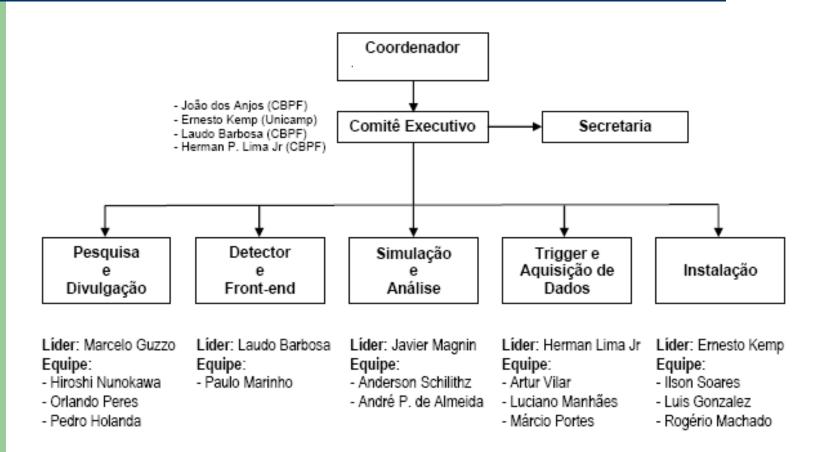
The ANGRA Collaboration: International group

A. Bernstein, N. Bowden

D. Reyna

L. Villaseñor, E. Casimiro Linares

Walter Fulgione, M.Aglietta


Thierry Lasserre (informal support)

AAP 2009 19/03/09

Projeto Neutrinos Angra

Estrutura Funcional 20/03/2007

19/03/09

AAP 2009

Angra Collaboration meetings

1st Angra Collaboration Meeting (CBPF, May 24-25, 2007)

2nd Angra Collaboration Meeting (CBPF, December 10-11, 2007)

3rd Angra Collaboration Meeting (CBPF, June 04-05, 2008)

4th Angra Collaboration Meeting (UNICAMP, December 2008)

AAP 2009

Motivations for ANGRA

- Very interesting for the Brazilian science:
 - Possibility to do frontier experimental neutrino physics profiting from already existing facilities: Angra-I and II nuclear reactors.
 - Low cost investment compared with Angra II reactor cost
 - Possibility to do neutrino applied physics: nuclear safeguards applications.

AAP 2009

Non-proliferation in Latin-America: ABACC

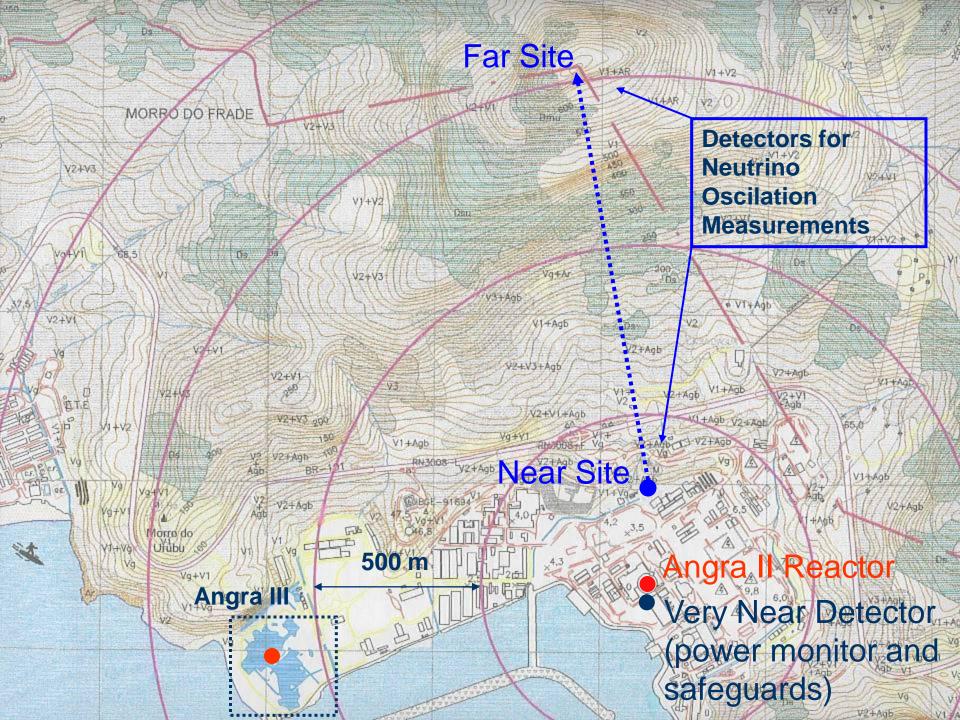
- Project is supported by ABACC:
- Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC)
- Binational agency created by Brazil and Argentina (1991), for verifying the pacific use of nuclear materials

AAP 2009

Why the interest in antineutrino detectors?

- Search for new methods on safeguards verification
- Antineutrinos coming from different isotopes have different energy spectrum: Antineutrinos measurement may reveal in principle fissile composition of nuclear fuel
- Non-intrusive, Real Time, Remote reactor monitoring: thermal power & fissile material

AAP 2009


AAP 2009

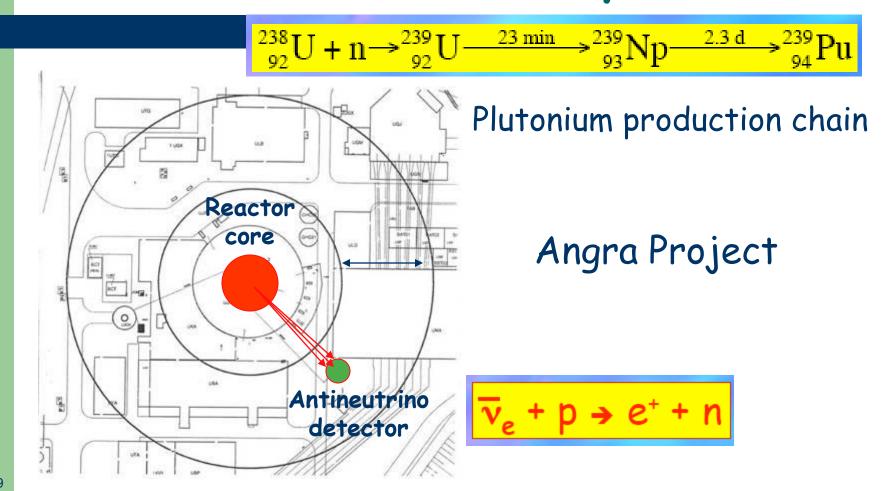
Angra dos Reis nuclear plant

• 3 PWR Reactors: 2 in operation + 1 planned

Reactor (starting date)	Thermal Power (GW)	Average Uptime	Fuel Cycle
Angra-I (1985)	2.0	83 %	~1.5 years
Angra-II (2000)	4.0 ~ 1.2 x 10 ²⁰ f/s	90 %	~1.3 years
Angra-III Construction starting 2009	4.0	-	-

AAP 2009

3-D Site View (Fluka input)



Safeguards Detector site:

Non intrusive method to check reactor activity

AAP 2009

Main Requirements for Safeguards Antineutrino Detectors:

Workshop on the ANGRA detector design (CBPF - May 16-19, 2006, Rio de Janeiro - BR)

• Prescriptions

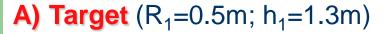
discussions \leftrightarrow agreements

main requirements for verification detectors

deployment strategies

AAP 2009

Workshop Prescriptions: SANDS & ANGRA approaches:


- SANDS (+)
 - Simple
 - Robust
 - Well known technologies
 - Easy to be adapted in a compact design

- ANGRA (+)
 - High performance
 - State-of-Art of antineutrino detection (Chooz, KamLAND)
 - Foot-print: at least the same as current experiments

- SANDS (-)
 - Restricted performance
- ANGRA (-)
 - Complex
 - Development Stage

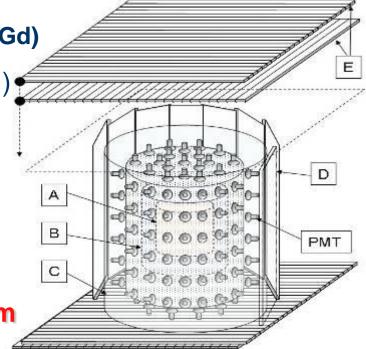
AAP 2009

Very Near Detector: Standard 3 volumes Design

- Acrylic vessel + lqd scintillator(+Gd)
- **B) Gamma-Catcher** (R_2 =0.8m h_2 =1.9m)
 - Acrylic vessel + lqd scintillator

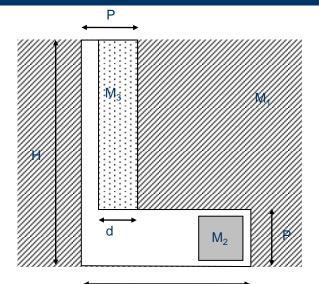
C) Buffer (R₃=1.4m; h₃=3.10m)

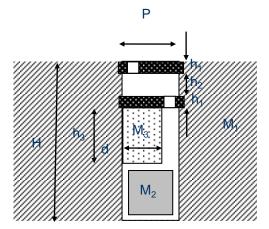
Steel vessel + mineral oil


D) Vertical Tiles of Veto System

- E) X-Y Horizontal Tiles of Veto System
 - Plastic scintillator paddles

AAP 2009


19/03/09


above and under the external steel cylinder: muon tracking through the detector

Underground laboratory: 2 designs to ELETRONUCLEAR

	Arquite	tura (a)	Arquite	tura (b)	comentário		
	Configuração I	Configuração II	Configuração I	Configuração II			
Н	20m	12.5m	20m	12.5m	Supondo densidade 2 para o solo		
Р	5.5m	5.5m	3.5m	3.5m	0.5m livre em torno do detector		
d	4m	4m	2m	2m			
L	12m	-	10m	-			
h ₁	-	1m	-	1m	densidade do material ≈ 7		
h ₂	-	2m	-	2m			
h₃	15m	7.5m	15m	7.5m			

AAP 2009

Expected Signal & Background

Cylindrical Detector dimensions R₃= 1.40m; H=3.10m target=1ton

Distance (m)	Signal(day-1)	Depth (mwe)	Muons (Hz)
60	1270	20	755
70	933	30	450
80	714	40	350
90	564	50	245
100	457	80	, 110

19/03/09

AAP 2009

FINEP - Funding Agency Present Status

- Project presented to the Minister of Science and Technology in September 2006, who then gave the "GO AHEAD"
- Detailed project presented to funding agency FINEP in December 2006
- Project Neutrinos Angra approved by FINEP Board of Directors in March 05, 2007 ~ 0.5 million dollars
- Contract FINEP-CBPF finally signed in November 06, 2007
- Funds already available: 1st installment in December 2007

AAP 2009

Diário Oficial da União - Seção 3

Nº 218, terça-feira, 13 de novembro de 2007

Espécie: ENCOMENDA VERTICAL PROJETO DE PESQUISA (01.07.0454.00) ref. n.º 5197/06; Data da Assinatura: 06/11/2007; Partes: Financiadora de Estudos e Projetos - FINEP; CNPJ n.º 33.749.086/0001-09 e Fundação de apoio ao Desenvolvimento da Computação Científica - FACC; CNPJ n.º 06.220.430/0001-03; Objeto: NEUTRINOS ANGRA: Valor: R\$ 942.843.60 Empenho: 2007NC002266 e 2007NC002267; Programa de Trabalho: 4884; Natureza da Despesa: 33.90 e 44.90; Fonte: Recursos Ordinários (0100); Executor/Co-Financiador: R\$ 1.800.000,00 sob a forma de recursos financeiros e R\$ 240.000,00 sob a forma de recursos NAO financeiros; Prazo de Vigência e Execução Física e Financeira do Projeto: até 24 (vinte e quatro) meses, a partir da data da assinatura do Convênio; Prestação de Contas Final: até 60 (sessenta) dias, contados da data do término da vigência, conforme previsto na Instrução Normativa n.º 01/97 - STN

Reactor Management Company Eletronuclear: present status

- Meeting in September 2006 with Eletronuclear President to define cooperation agreement and next steps.
- 1st draft Eletronuclear-CBPF-UNICAMP Agreement submitted in March 2007
- New 5-years Cooperation Agreement with modifications suggested by Eletronuclear layers submited in August 2008
- March 2008: informal authorization to place container next to the reactor building to start background measurements.

AAP 2009

NEUTRINOS ANGRA Project

23/09/2008

conteiner: 1st laboratory in Angra

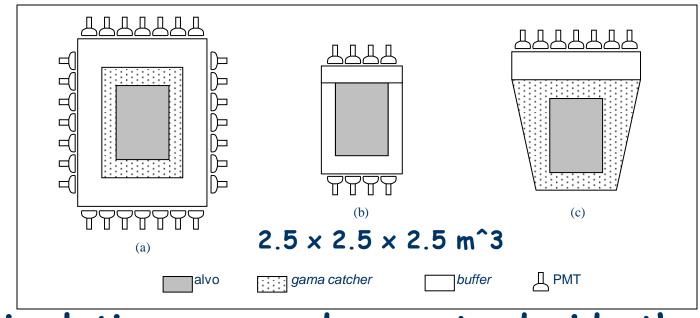
Phase I: Setup infrastructure at the Angra site:

- 20' container near reactor building

- Measurement of local muon flux: Cerenkov detector
 - (Auger test tank)
- Remote data acquisitio 5 IP's in Eletronuclear

network

Cerenkov muon detector: Remote DAQ system working


State of the local division of the local div	DAQ (for MPD)	
	Elle Bun DAQ Status DQGIS VEXECTOR VIEW Event (#) Charge (pC) 327 197.666667 Time (s) Risetime (ns) 43 -1.000000 Baseline (mV) Falltime (ns) 0.659375 -1.000000 Amplitude (mV) Preset Counts 33.140625 10000 Pause Run Quit	
	500 mV 250 mV 6 mV -250 mV -250 mV -482 ms -420 ms -213 ms 0 ms 213 ms 426 ms 639 ms 852 ms	

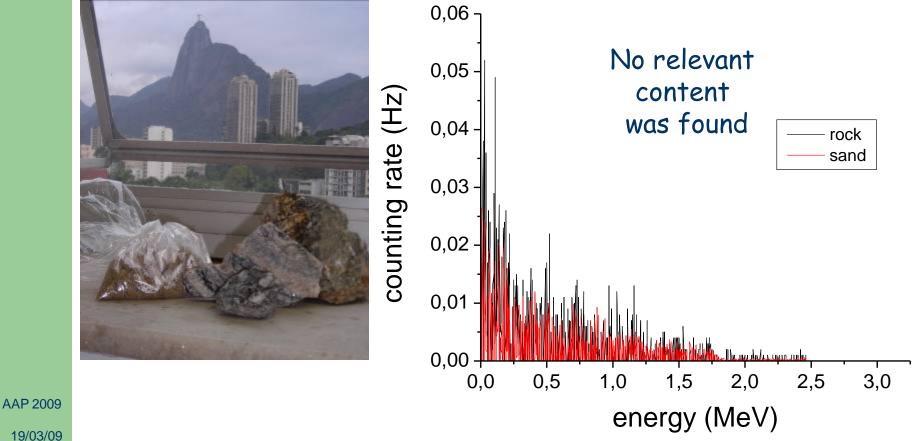
AAP 2009 19/03/09

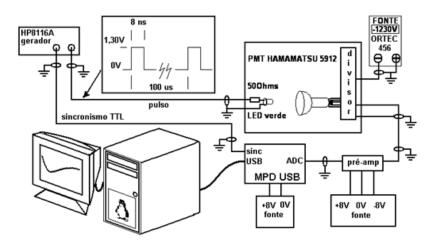
Detector geometries: High performance x simple & small

$4.5 \times 4.5 \times 4.5 \text{ m}^3$

Simulations are underway to decide the best configuration: minimum size + good energy resolution

AAP 2009

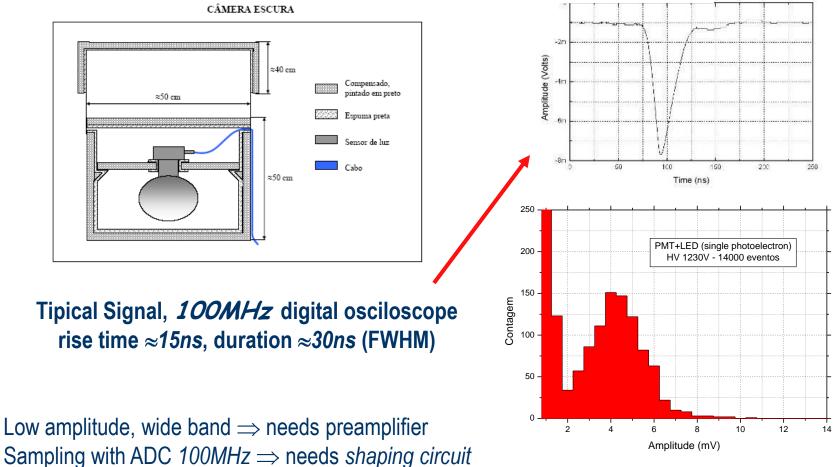



- Central detector: test 8" phototubes
- Muon veto: test 64-channel PMT's
- DAQ: design VME electronics
- High Voltage: design power supply
- Radioactivity background: test local material
- Network communications: build infrastructure

AAP 2009

R&D Phase I: Radioactivity Background (rock & sand)

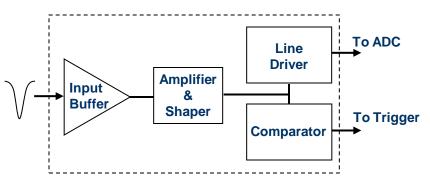
R&D Phase I at CBPF: Photomultiplier characterization


AAP 2009

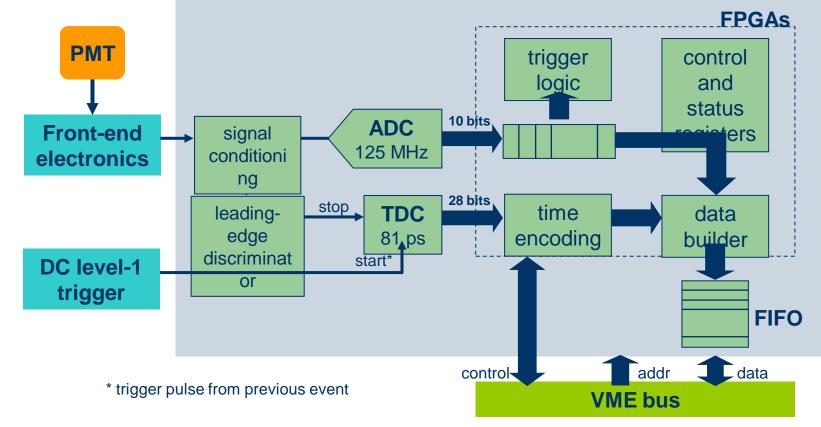
R&D Phase I at CBPF: Photomultiplier characterization

- Hamamatsu R5912 (8")

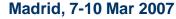
AAP 2009


Phase I: Electronics & DAQ

- Front-end electronics
 - ✓ input buffer + amplifier/shaper
 - ✓ To ADC: + line driver
 - ✓ To Trigger system: + comparator
- Data Acquisition (DAQ)
 - ✓ VME-based


AAP 2009

- ✓ off-the-shelf high-performance devices (ADCs, FPGAs, FIFOs)
- \checkmark two sub-systems: neutrino signal / VETO
- ✓ Neutrino: ~ 120 input channels sampled at 250Msps / 10-bit resolution
- \checkmark VETO: \sim 110 LVDS signals to a large/fast FPGA (Stratix II)



Muon electronics conceptual diagram:

AAP 2009

Double-Chooz Collaboration Meeting

Phase I: R&D at CBPF: waveform digitizer prototype

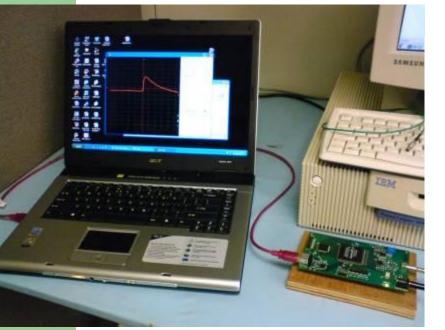
• 1 analog input channel (ADC)

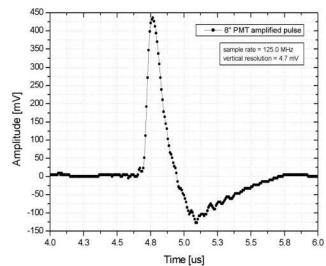
- sample rate = 125 MHz
- dynamic range = 1.2 Vpp

• 8 time-measurement channels (TDC)

- time resolution = 81 ps
- dynamic range = $9.8 \ \mu s$
- 10 input/output digital channels
- USB 1.1 compliant (~1 MB/s)

```
• programmable hardware (FPGA)
```


3 prototypes fully assembled



Prototype tests

ADC tests

TDC tests

START-STOP

applied

(ns)

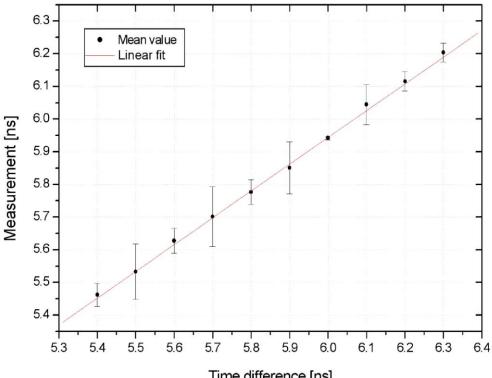
alavra lida do TDC para StartOffset = 0000H											measured (ms)								
Delay Gerador (nS)	1 6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Valor Hexa	Valor Lido x 82,3045pS (nS)
100	0	0	0	0	0	0	1	0	0	1	0	1	1	1	0	0	X	4B8h	99,42
200	0	0	0	0	0	1	0	0	1	0	1	1	1	X	Х	х	х	0970h	198,85
300	0	0	0	0	0	1	1	1	0	0	0	1	1	X	X	X	X	0E30h	298,93
400	0	0	0	0	1	0	0	1	0	1	1	1	1	0	1	X	х	12F4h	399,41

AAP 2009

Herman Lima Jr

Double Chooz Collaboration Meeting

computed resolution = 82.3 ps

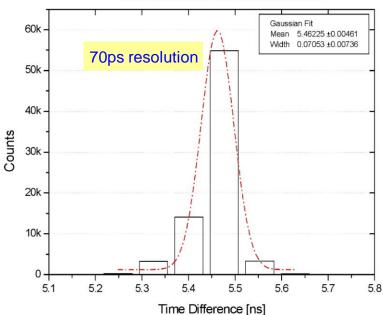

26-28 June 2008

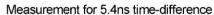
START-STOP measured (ns)

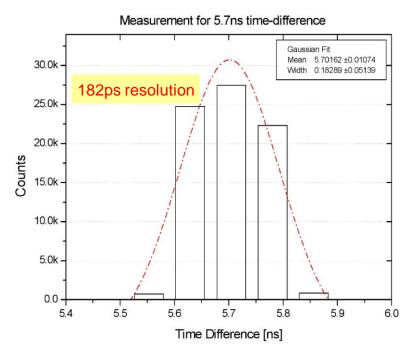
TDC results

Linearity in the lowest **1ns range** (steps of 100ps)

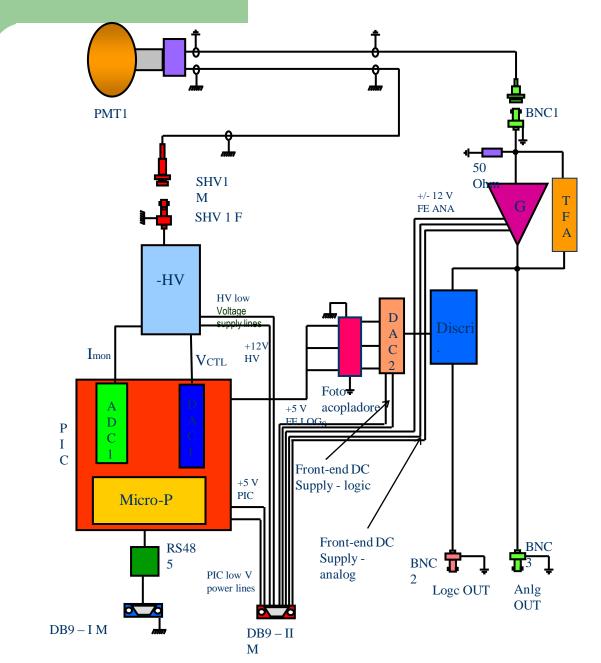
- setup:
 - testing only channel 1 of the TDC
 - START&STOP pulses generated by a dual-channel generator (AFG-3252 - Tektronix)
- errors due to skew between channels not taken into account
- statistics: 76200 measurements per time difference
- first input configuration is 5.4ns due to TDC lower-limit specification
- maximum error = 1.52% (deviation from mean)




Time difference [ns]


TDC results

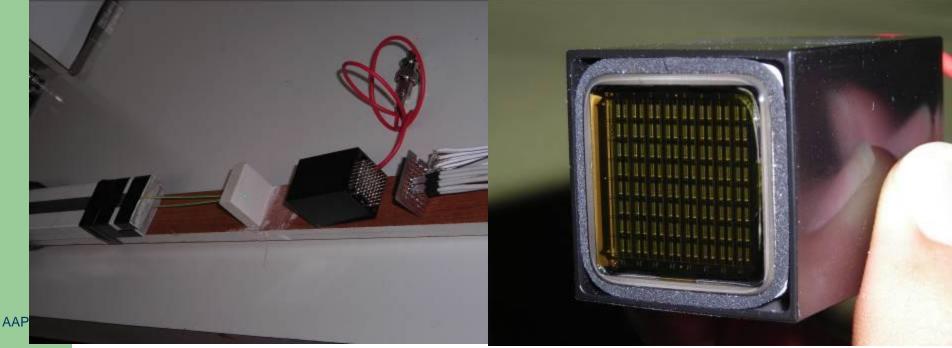
Resolution in the lowest 1ns range



AAP 2009

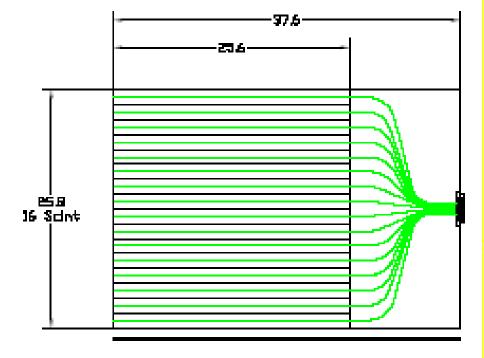
Front-end Integration

•Based on PIC microcontroller to set HV and Pre-Amp parameters


•HV and pre-amp decoupled by optoelectrical device: noise supression

AAP 2009

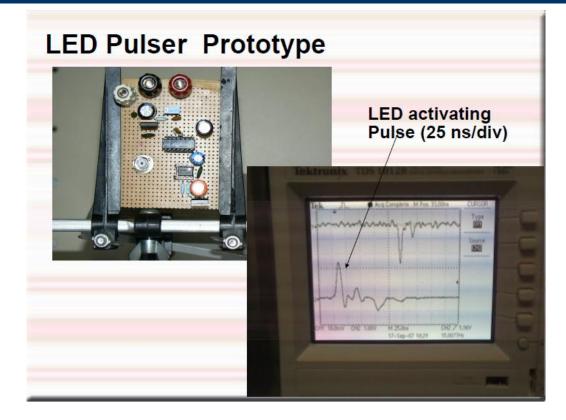
Phase I: R&D at CBPF: Outer muon veto tests


- 64-channel photomultipliers Hamamatsu R8520

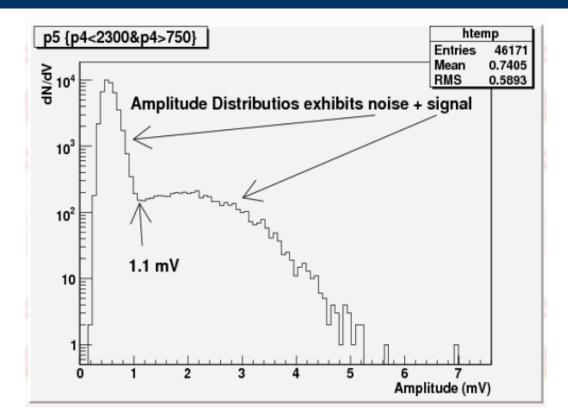
Phase I: R&D at CBPF: Outer Muon Veto tests

- Muon telescope: 4 planes (Minos type scintillator)
- September 2008: 270 scintillator strips: 1.6m x 5cm x 1cm

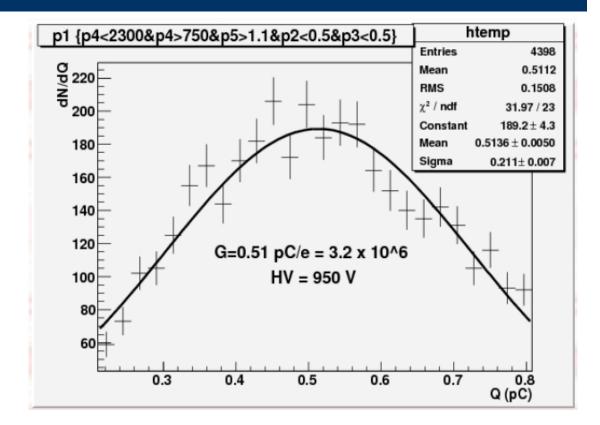
AAP 2009


Scintillating strips with WLS fibers to test PMTs

AAP 2009

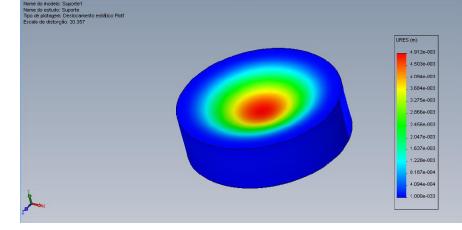

Photomultiplier Tubes Testing and Characterization

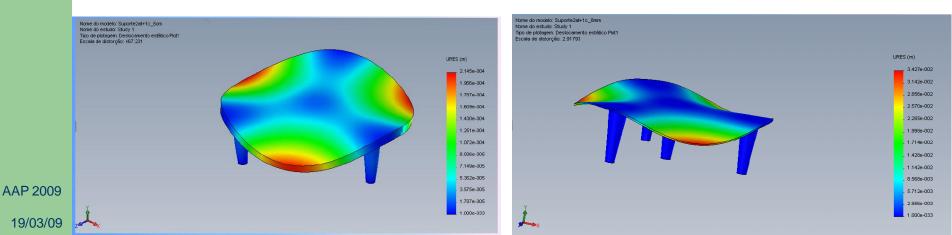
AAP 2009


Preliminary Results 1

AAP 2009

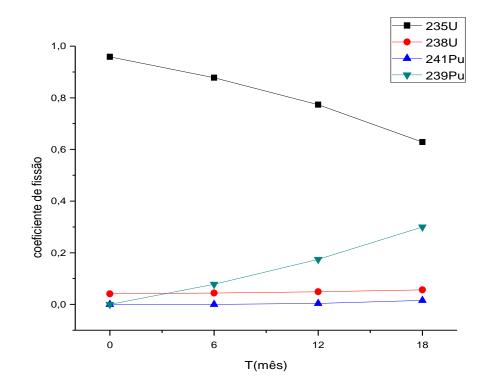
Single Photoelectron Charge Amplification


AAP 2009



Project of the detector structure

Calculations of mechanical


stress on the vessel botton lid

Reactor fuel evolution

AAP 2009

Angra Neutrino Project

AngraNote 004-2007

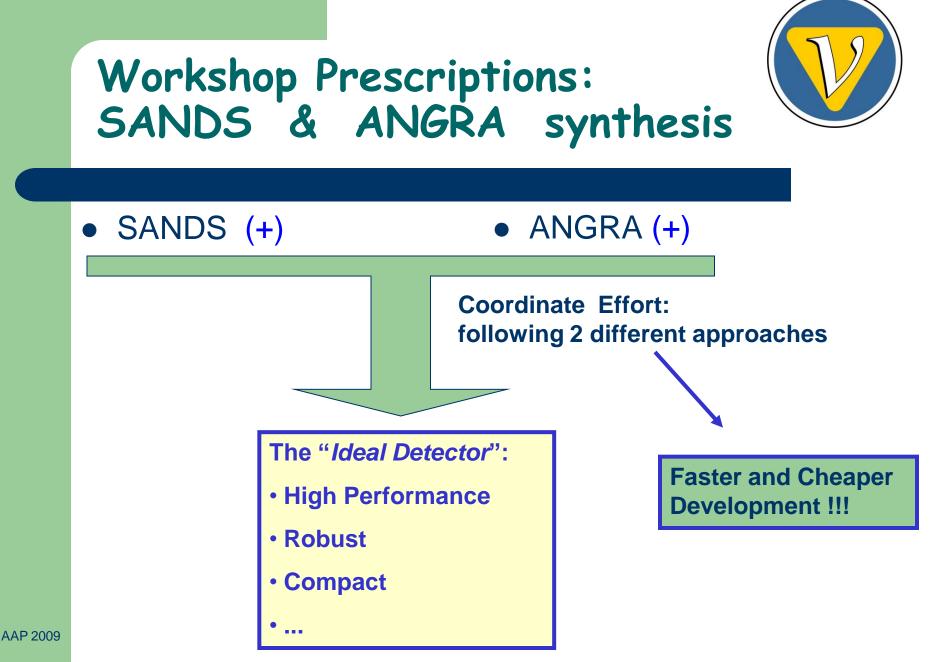
Measurements of Signals from Muons Crossing the Hamamatsu R5912 PMT Enclosure Vertically and Horizontally

W. Raposo, M. Vaz Centro Brasileiro de Pesquisas Fisicas - CBPF, Rio de Janeiro, Brazil L. Villasenor* Universidad Michoacana de San Nicolas de Hidalgo - UMSNH, Morelia, Mexico

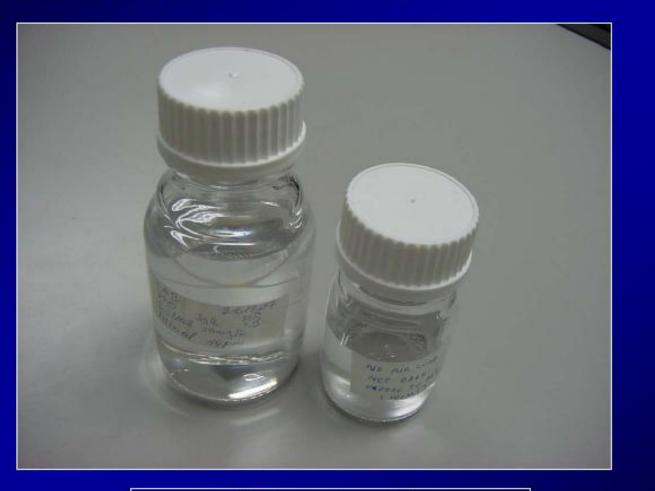
AAP 2009

Conclusions

- Previous experiments demonstrate a good capability of using antineutrinos for nuclear reactor distant monitoring.
- First Angra neutrino lab has been deployed.
- New neutrino detector design under development.
- Strategy: First step: on-off measurement Second step:thermal power measurement Third step: energy spectrum analysis
- Good opportunity to develop experimental neutrino physics in Brazil and to contribute to new safeguards techniques.
- Short baseline Neutrino Oscillations : Collaboration with Double Chooz High precision experiment for theta13 around 2013?


AAP 2009

Good opportunity for Collaboration with IAEA!


and a service

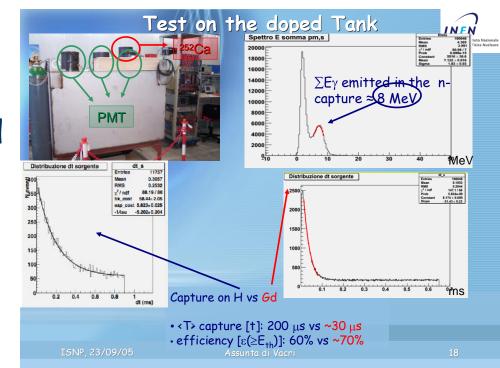
ANGRA III "preview" by T. Lassere - 2005

janjos@cbpf.br

Preparação de amostras do líquido cintilador

Testes: CBPF, UFABC, Unicamp

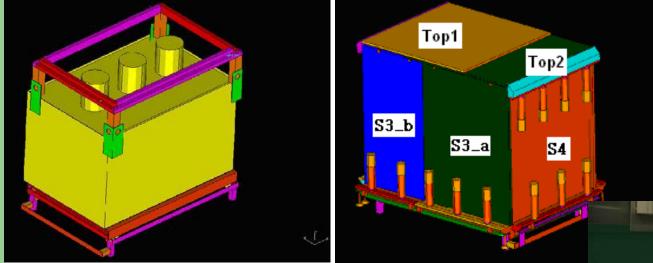
Primeiras amostras com LAB


(produzidas no estágio de Patrick Pfahler)

AAP 2009

Surface tank

- 1-ton Gd-dopped liquid scintillator tank
- test signal+background with Californium source
- Good performance, but high flashpoint



AAP 2009

surface tank

Muon veto construction at LNGS

AAP 2009

Muon Rates at ground level

Realizzazione di un veto su 4π a scintillatori plastici per misure in superficie con un modulo LVD drogato con Gd

M. Aglietta^{1,2}, A. Bonardi^{2,3}, G. Bruno², A.Giuliano^{1,2}

AAP 2009

19/03/09

termine delle prestazioni del nostro rivelatore. A tale scopo, presso la centrale da 4 GW_{th} della <u>Elettronuclear ad Angra dos Reis (Brasile</u>), la collaborazione LVD ha in allestimento un laboratorio distante 30 metri dal "core del reattore". La collocazione "in

Modulo	Spess. (cm)	Superf. (m ²)	Soglia D ₉₈ (mV)	Efficienza p.p.	Rate (Hz)
S1_a	3	1.4	40	99.3%	540
S1_b	3	0.98	40	99.8%	440
S2	3	1.54	40	99.7%	650
S3_a	3	1.4	40	99.1%	540
S3_b	3	0.98	40	99.8%	590
S4	3	1.54	40	99.5%	510
Bottom	3	1.62	30	97.4%*	1200
<top1+top2></top1+top2>	2	2.04	10	99.5%	1500

Conclusion: background too high, no clear signal