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ABSTRACT
We present a comparative analysis of several methods, known as local Lagrangian approximations,

which are aimed to the description of the nonlinear evolution of large-scale structure. We have investi-
gated various aspects of these approximations, such as the evolution of a homogeneous ellipsoid, col-
lapse time as a function of initial conditions, and asymptotic behavior. As one of the common features of
the local approximations, we found that the calculated collapse time decreases asymptotically with the
inverse of the initial shear. Using these approximations, we have computed the cosmological mass func-
tion, Ðnding reasonable agreement with N-body simulations and the Press-Schechter formula.
Subject headings : cosmology : theory È dark matter È gravitation È large-scale structure of universe
On-line material : color Ðgures

1. INTRODUCTION

Large-scale structures are believed to have formed from
the gravitational ampliÐcation of primordial perturbations.
At its Ðrst stages, the process of gravitational clustering can
be investigated using linear perturbation theory. However,
as the universe evolves, nonlinear concentrations of mass
arise. Many structures we see today correspond to Ñuctua-
tions several orders of magnitude higher than the mean
density of the universe ; for example, clusters of galaxies
have typically For larger scalesocluster/ouniverseD 102È103.
this ratio decreases, approaching unity in the largest
structures.

As there is no analytical treatment for the nonlinear
regime, N-body simulations are often resorted to. The
numerical simulations had an enormous development in the
last decade (see Bertschinger 1998 and references therein),
being able to reproduce many features of the large-scale
structure. However, they do not always provide a clear
insight of the physics of nonlinear gravitational collapse.
Moreover, they are usually very time consuming, making it
difficult to scan a large part of the parameter space of the
cosmological models.

For this reason, semianalytical methods have been
devised to tackle such a complex problem. The Ðrst approx-
imation developed to study the nonlinear regime was intro-
duced by Zeldovich (1970). There are now various
approximation schemes to analyze di†erent aspects of non-
linear clustering, including extensions of the Zeldovich
approximation (ZA; for a review see Sahni & Coles 1995).
Among them, the so-called local Lagrangian approx-
imations have been introduced rather recently. The basic
feature of these local approximations is that the kinematical
parameters in each Ñuid element evolve independently of
those of other elements. Thus, the time evolution of a self-
gravitating Ñuid is replaced by a set of ordinary di†erential
equations. This comes at the expense of losing information
about the positions of each Ñuid element. Only local quan-
tities, such as the density contrast, shear, and expansion
rate, can be determined.

Because of their handy applicability compared to the
numerical simulations, as seen in the case of the widely used
ZA, they deserve a closer investigation. For some of these
methods, certain aspects of their performance and applica-
bility have already been discussed. However, to the authorsÏ
knowledge, no systematic comparison among them has ever
been done. We consider it worthwhile to analyze them in a
uniÐed way in order to exploit general properties of these
approximations, clarifying their similarities and di†erences.
It is also important to compare their performance in some
practical applications. In this paper we discuss the following
four approximations, in addition to the ZA: the local tidal
approximation (LTA; Hui & Bertschinger 1996), the
deformation tensor approximation (DTA; Audit & Alimi
1996), the complete ZA (CZA; Betancort-Rijo & Lo� pez-

2000), and the modiÐed ZA (MZA; ReiseneggerCorredoira
& 1995). All of them intend to be applica-Miralda-Escude�
ble to the highly nonlinear regime. To the best of our know-
ledge, these comprise all existent local approximations in
the literature, which are exact for planar, spherical, and
cylindrical symmetries (except for the ZA).

The paper is organized as follows. In ° 2 we brieÑy review
various local approximations in a uniÐed way. In ° 3 these
methods are applied to several cases. First, we discuss the
homogeneously collapsing ellipsoid. We then study their
behavior under general initial conditions. Finally, we apply
some of these approximations to the calculation of the
cosmological mass function. We sum up our results and
present conclusions in ° 4. In two appendices we present
useful formulae for the calculation of the mass function
together with Ðtting formulae for the collapse time in the
approximations considered here.

2. LOCAL APPROXIMATIONS

Throughout this paper we will only consider the case of
cold dark matter (CDM), which is assumed to be collision-
less, at least on large scales. This is well justiÐed since
80%È90% of the matter that clusters is composed by CDM
(Turner 2000 ; Durrer & Novosyadlyj 2000). Furthermore,
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as long as the trajectories do not intersect, we can treat the
CDM as a pressureless Ñuid.

We will be working in a matter-dominated Ñat universe
(the EinsteinÈde Sitter [EdS] universe). Recent obser-
vational evidences are consistent with a zero-curvature uni-
verse (de Bernardis et al. 2000 ; Hanany et al 2000). Even if
we had a nonÑat universe, we would only require that the
curvature be negligible in the scales of interest. The assump-
tion of matter dominance may seem unrealistic since the
observations indicate that the universe is now dominated
by a repulsive homogeneous cosmological term (Perlmuter
et al. 1998 ; Riess et al. 1998 ; Zehavi & Dekel 1999).
However, the energy density of this term decays more
slowly than the matter density. In the case of a cosmological
constant we would have whereas for mattero" \ constant,
we have where a is the scale factor of the uni-o

M
P a~3,

verse. Since most structures form at a time when o" >o
M

,
we can safely ignore the e†ect of the cosmological term on
the collapse process.

The peculiar motions in the universe are much smaller
than the speed of light. For perturbations on scales smaller
than the Hubble radius, we can use the Newtonian approx-
imation to describe the gravitational clustering. The basic
equations for nonrelativistic pressureless matter in a per-
turbed EdS universe are the Euler, the continuity, and the
Poisson equations (Bertschinger 1996) :

1
a

dv
i

dq
] a5

a2 v
i
\ [ L/

Lxi
, (1)

dd
dq

] a(1] d)h \ 0 , (2)

L2/
LxiLx

i
\ 4nGa2o6 d , (3)

where is the density contrast, isd \ (o[ o6 )/o6 v
i
\ (dx

i
/dq)/a

the peculiar velocity, h \ Lvi/Lxi is the expansion, / is the
peculiar gravitational potential, and the time variable q is
related to the cosmic time t (also known as proper time) by
dq\ dt/a2. The comoving coordinate is given in terms ofx

ithe position by The left-hand side of equation (1)r
i

x
i
\ r

i
/a.

is simply so that it looks like the usual Euler(d2x
i
/dq2)/a2,

equation (apart form the factor a~2). In an EdS background
the scale factor is proportional to q~2. We set a \ q~2 such
that The present value of the scale4nGa2o6 \ 6q2\ 6/a.
factor is Ðxed to be unity.a0The Lagrangian coordinates are often used instead ofq

ithe position in nonlinear analyses. In terms of thex
i

q
iconvective derivative is simplyd/dq\ L/Lq o

x
] v

i
L/Lx

igiven by the time derivative at Ðxed q : Thed/dq\ L/Lq o
q
.

Lagrangian coordinates are chosen to be the initial
comoving positions : q

i
\ lim

a?0 r
i
/a.

The Jacobian matrix of the transformation x
i
] q

i
,

J
ij
\ Lx

i
Lqj

, (4)

is known as the deformation tensor. The velocity gradient
can be expressed in terms of asLv

i
/Lxj J

ij
Lv

i
Lxj

\ 1
a

J
kj
~1 dJ

i
k

dq
. (5)

The density is given by o(x, t) where J is the determi-\ o6 J,
nant of It is easy to see that the continuity equation (2) isJ

ij
.

solved exactly with d \ J~1[ 1.
Di†erentiating equation (1) with respect to we Ðndx

j
,

J
jk
~1 d2J

i
k

dq2
1
a2\ [ L/

LxiLxj
, (6)

whose trace furnishes RaychaudhuriÏs equation

J
ij
~1 d2Jji

dq2 \ [4nGa4o6 (J~1[ 1) . (7)

This is a local equation for in the sense that it has noJ
ijspatial derivatives, although it is not sufficient for determin-

ing the nine components of the deformation tensor. Usually
this equation is written in terms of the kinematical param-
eters, h, (shear), and (vorticity), deÐned byp

ij
u

i
Lv

j
Lx

i
\ 1

3
hd

ij
] p

ij
] u

ij
, p

ij
\ p

ji
,

u
ij

\ v
ijk

uk\ [u
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. (8)

The linear initial conditions have no vorticity, and if ui\ 0
initially, it remains zero. Thus, we will consider only the
case of vanishing vorticity.

Equations (1)È(3) form a set of nonlinear partial di†eren-
tial equations. However, for certain speciÐc conÐgurations
the time evolution of the deformation tensor behaves asJ

ijif each space point evolves independently from the others.
One might then expect that for more general situations the
locality may hold, at least approximately, for these vari-
ables. Accordingly, several methods have been introduced
that are known as local approximations. In their frame-
work, the inÑuence of the neighbors may enter only through
the initial conditions.

In addition to the solution of the continuity and Euler
equations, the local approximations discussed here will
replace the essentially nonlocal exact equation (3) either by
some Ansatz inspired on equation (7) or by local evolution
equations for the second derivative of the peculiar gravita-
tional potential / (see also Kofman & Pogosyan 1995 for a
discussion).

One of the basic features of local approximations is that
the eigenvectors of the deformation tensor do not change
with time. Thus, once diagonalized, remains diagonal inJ

ijthe same frame, along all the evolution. This condition is
either assumed from the beginning or appears as a conse-
quence of the approximation introduced in the evolution
equations. Actually, this assumption is not strictly consis-
tent with the evolution of the mapping so that theq

i
] x

i
,

reconstruction of space coordinates in these local approx-
imations is not possible (see ° 2.6).

In the basis where is diagonal,J
ij
J
ij

\ (1] w
i
)d

ij
, (9)

RaychaudhuriÏs equation (7) is written as

;
i/1

3 w�
i

(1] w
i
)
\ [4nGa4o6

]
C 1
(1] w1)(1] w2)(1] w3)

[ 1
D

. (10)

The local approximations discussed here are required to be
exact for planar, spherical, and cylindrical symmetries. In
the spherical case we have for a cylindricalw1\ w2\ w3,
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perturbation and and for planar symmetryw1 \w2 w3\ 0,
In these three cases, as we have only one inde-w2\ w3\ 0.

pendent eigenvalue of the deformation tensor, this equa-w
ition can be solved for w

i
.

2.1. Zeldovich Approximation
The ZA (Zeldovich 1970) can be viewed as a solution of

the linearized form of equation (10) :

;
i/1

3
w�
i
\ 4nGa4o6 ;

i/1

3
w
i
. (11)

Zeldovich used the solution of the linearized equations (1)È
(3), and extrapolated it into the nonlin-x

i
\ q

i
[ D(t)(

i
(q),

ear regime. The eigenvalues of the deformation tensor are
thus given by

w
i
\ [D(t)j

i
0(q) , (12)

where are the eigenvalues of Substituting thisj
i
0 L(

i
/Lxj.

expression into equation (11), we Ðnd two solutions for D,
known as the growing and decaying modes. For an EdS
universe we have

w
i
`\ [`j

i
0 a , w

i
~ \ [~j

i
0 a~3@2 . (13)

Since the decaying mode becomes negligible very quickly,
only the growing mode is relevant for our discussion. The
initial conditions are speciÐed in terms of the which arej

i
0,

functions of the initial positions q. The principal axes of
are generally di†erent for each point. We willL(

i
/Lxj

denote the linear growing mode solution by [j
i
:

j
i
\ j

i
0 a . (14)

In the linear regime the density contrast d will be given by
d
L
\ (j10] j20] j30)a \ d0 a.
The gist of the ZA is that the linearized trajectories can

lead to nonlinear density perturbations. Analogous ideas
have been applied in many approximations. An example is
the higher order Lagrangian expansions, where the per-
turbed quantity is the displacement Ðeld. In an EdS uni-
verse the solution may be written in the form x

i
\ q

iThe Ðrst-order solution is the ZA.] £
n/1an(

i
(n)(q). (

i
(1)

The determination of the higher order follows from the(
i
(n)

lower order ones through the solution of Poisson equations.
The second-order solution is known as the post-ZA
(Moutarde at al. 1991 ; Buchert 1992 ; 1993),Lachièze-Rey
and the third-order solution is called postÈpost-ZA
(Juszkiewicz, Bouchet, & Colombi 1993 ; Buchert 1994). The
domain of validity of the Lagrangian perturbation theory is
restricted to the quasi-linear regime, where d D 4
(Mancinelli & Yahil 1995) ; after that all the terms contrib-
ute roughly the same and the approximations are no longer
valid.

The ZA is widely used for the weakly nonlinear regime
and for generating initial conditions for numerical simula-
tions. It gives the exact solution for the case of planar
symmetry.

2.2. ModiÐed Zeldovich Approximation
In the ZA the time factor in equation (12) is independent

of the initial conditions, and it is valid only for the
linearized limit in (eq. [11]). Reisenegger &w

i
Miralda-

(1995) have proposed a generalization of the ZAEscude�
where D may depend on the position through the initial
conditions The Ansatz is substi-j

i
0. w

i
\ [D(q, j

i
0)j

i
0(q)

tuted in equation (10) to give

d2D
dq2 \ 4nGo6 a4 g1D[ g2 D2] g3D3

g1[ 2g2D] 3g3D2 , (15)

where andg1\ j10 ] j20] j30, g2\ j10 j20] j10 j30] j20 j30,
This equation, which must be solved numeri-g3\ j10 j20 j30.cally, determines completely the function D(q, andj

i
0)

deÐnes the MZA. It is exact for spherical, planar, and cylin-
drical symmetries. However, for underdense regions (d0\
0), the MZA may not work, as pointed out by Reisenegger
& (1995). This is due to the fact that, whenMiralda-Escude�
not all of the three eigenvalues have the same sign, thej

idenominator in the right-hand side of equation (15) will
eventually vanish. Thus, MZA cannot be used with this
kind of initial condition.

2.3. Deformation Tensor Approximation
In the two local approximations discussed above, the

time dependence of the three is the same and it can bew
icompletely determined from equation (10). The next two

approximations will provide an equation for each of the
three and an analytical solution of in terms of thew

i
w

ilinear solution (eq. [14]). As a result of the symmetryj
iamong the axes, both the equation for and the explicitw

isolution in terms of should be invariant under anyj
iexchange of indices, (i, j, k).

Equation (10) may be written in the form

;
i/1
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j
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w

i

D
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where (i, j, k) is a permutation of (1, 2, 3). Audit & Alimi
(1996) have, as an Ansatz, split this equation into three
equations for each w

i
:

(1] w
j
] w

k
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k
)w�
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\ 4nGa4o6
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j
] w
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]w
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i
. (17)

This equation deÐnes the DTA. Another motivation for the
above equation is that it is exact for planar, spherical, and
cylindrical perturbations. We have thus a set of local equa-
tions that allows us to determine each completely. Ofw

icourse, this splitting of equation (16) is not unique, and we
could add more local terms in equation (17) that would
obey the symmetry requirement.

2.4. Complete Zeldovich Approximation
The CZA (Betancort-Rijo & 2000)Lo� pez-Corredoira

assumes that the can be expanded in terms of the linearw
isolution (eq. [14]). To satisfy the symmetries required, thej

ipower series must have the following expression :

r
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(j

i
, j

j
, j

k
) \ 1 ] ;
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=
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j
] j

k
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] (j
j
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k
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i
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where

w
i
\ [j

i
r
i

(19)

and are the coefficients of the pth order terms, withC
l,m,np

p 4 l ] 2n ] m. The ZA corresponds to The second-r
i
\ 1.



No. 1, 2001 LOCAL APPROXIMATIONS: LARGE-SCALE STRUCTURE 91

order term

w
i
(2)\ [j

i
3
14

(j
j
] j

k
) (20)

coincides with that of the DTA.
For planar conÐgurations one should have thusr

i
\ 1,

The other coefficients of the expansion areC0,m,0p \ 0.
determined from equations (1) and (3) through a recursive
scheme. Betancort-Rijo & (2000) calcu-Lo� pez-Corredoira
lated explicitly the coefficients up to the terms ofC

l,m,np
fourth order in j in an EdS universe.

When the higher order terms become important, all of
them contribute roughly the same. Thus, Betancort-Rijo &

(2000) have chosen to truncate the seriesLo� pez-Corredoira
at the fourth order and approximate the rest by a function

This function is parameterized in such a wayR(j
i
, j

j
, j

k
).

that the result is in agreement with the exact planar, spher-
ical, and cylindrical dynamics. Their expression for R is

R(j
i
, j

j
, j

k
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C
1 [ 9
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j
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[ j
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1 [ j

i
] j
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C
Rsp(ji
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[ Rsp(ji
)] Rsp

Aj
j
] j

k
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, (21)

where is the correction term R corresponding to theRspspherical symmetry. By comparing the numerical results for
overdense perturbations with the truncated series solution,
they Ðtted asRsp

Rsp(x)\ 2.58] 10~3x5
A
1 [ x

2.06
B~1

. (22)

The expansion (eq. [18]) up to p \ 4, together with equa-
tion (21), gives nearly exact results for spherical and cylin-
drical overdense perturbations and the exact result in the
planar case. Indeed, the CZA predicts that a spherical per-
turbation with will collapse at whereas thed0\ 1 a

c
\ 1.72,

exact solution gives a
c
\ 1.69.

The CZA does not apply for perturbations with negative
values of For example, when all of the three arej

i
0. j

i
0

negative, the volume element should expand indeÐnitely,
hence the will approach inÐnity and therefore the seriesj

iexpansion breaks down. It can be easily seen that, as all
are positive, if we truncate the series in an odd powerC

l,m,np
of j, r will change sign, and the Ñuid element will eventually
collapse.

2.5. L ocal T idal Approximation
The general relativistic equations for the kinematical pa-

rameters in the projection formalism are very akin to the
Newtonian ones (see Ellis 1973). The analog of the Poisson
equation is obtained from the equation for the Weyl tensor.
Barnes & Rowlinson (1989) pointed out that by neglecting
the magnetic part of the Weyl tensor the evolutionHkl,equation for the electric part becomes local. TheEkldynamics of kinematical parameters is then reduced to a
closed set of local equations. This result was Ðrst applied to
structure formation by Matarrese, Pantano, & Saez (1993).

Since the magnetic part of the Weyl tensor has no Newto-
nian analog, Bertschinger & Jain (1994) introduced the non-
magnetic approximation, by simply discarding the magnetic
part in the equation for in the application to theHkl EklNewtonian cosmology. This approximation is exact for
spherical and planar conÐgurations but fails for cylindrical
symmetry. In addition, it was not able to reproduce the
dynamics of the collapse even for a homogeneous ellipsoid.
Thus, we will not consider this approximation further in
this work.

Bertschinger & Hamilton (1994) pointed out that, in a
““ Newtonian ÏÏ limit, the role of the magnetic part is notH

ijaltogether negligible (see also Ellis & Dunsby 1997). Within
this framework, Hui & Bertschinger (1996) have proposed
the LTA, which consists in discarding some terms in the
evolution equation for to getE

ij
,

dE
ij

dq
] 1

a
da
dq

E
ij
\ [4nGa3o6 p

ij
, (23)

where is the Newtonian limit of which gives the tidalE
ij

Ekl,Ðeld :

E
ij
\ L2/

LxiLxj
[ 1

3
L2/

LxkLx
k
d
ij
\ L2/

LxiLxj
[ 4nGa2o6 d

3
d
ij

. (24)

Equations (23) and (6) written in terms of form a closedE
ijset of local equations. It was shown that the LTA is exact

for spherical, planar, and cylindrical symmetries. In general,
it is exact whenever the orientation and axis ratios of the
gravitational and velocity equipotentials are equal and con-
stant for the mass element under consideration (Hui &
Bertschinger 1996).

It is possible to show that in the LTA, once the velocity
gradient is diagonalized, it will remain diagonal (Hui &
Bertschinger 1996) and so will the deformation tensor. We
may write equation (23) in terms of by using equationw

i(24) together with equation (6). We will then have a set of
three third-order equations for that completely deter-w

imines their evolution, once appropriate initial conditions
are provided. Alternatively, equation (23) can be solved in
terms of the kinematical parameters. In this case, the arew

icalculated by (eqs. [5] and [8])

dw
i

dq
\ a
A
p
i
] 1

3
h
B
(1] w

i
) , (25)

where are the eigenvalues of the shearp
i

p
ij
.

2.6. General Features
The local approximations discussed above are either a

system of ordinary di†erential equations or explicit expres-
sions in terms of the linear solution. In these approx-
imations each point evolves independently of the others.
The inÑuence of the other Ñuid elements enters only
through the initial conditions. They give the time evolution
of the deformation tensor and thus the kinematical parame-
ters for each volume element.

These local approximations are exact under some geo-
metrical symmetries. In particular, they are exact whenever

or with or arew1\ w2\ w3, w1\ w2 w3 \ 0, w2\ w3\ 0
satisÐed locally. They are nonperturbative, i.e., valid, in
principle, for any d or j

i
.

We have veriÐed that the CZA and DTA have the same
second-order solution (eq. [20]) and are consistent with the
result of second-order Lagrangian perturbation theory
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(Sahni & Coles 1995 ; Betancort-Rijo & Lo� pez-Corredoira
2000). We veriÐed also that the third-order solution of the
CZA is consistent with that of the third-order Lagrangian
perturbation theory up to 4%. Both the MZA and the ZA
fail at second order (Betancort-Rijo & Lo� pez-Corredoira
2000).

The local approximations are not appropriate for recov-
ering the positions. To see this, let us consider an initial
conÐguration such that the deformation tensor is diagonal
at every point :

J
ij

\ Lx
i

Lqj
\ (1] w

i
)d

ij
. (26)

If this holds initially, it will be valid throughout the evolu-
tion, according to the local approximations. In this case x

iwould be given by

x
i
\
P

(1] w
i
)dq

i
. (27)

If had an explicit dependence on or nondiagonalw
i

q
j

q
k
,

terms would arise in equation (26) ; hence, must be aw
ifunction of only. Consequently, for this particular choiceq

iof initial conditions, each must depend only on the coor-j
i
0

dinate However, as the evolve, they will in generalq
i
. w

idepend on the three and, ultimately, on the three coordi-j
i
0

nates : Thus, equation (26)w
i
\ w

i
[j10(q1), j20(q2), j30(q3), q].

can no longer be satisÐed. This shows that the local approx-
imations in general violate the integrability of the deforma-
tion tensor. In other words, we cannot recover the actual
positions in the local approximations (except when isw

iindependent of the initial position).
Another way of seeing that the integrability is violated is

as follows. If it were possible to reconstruct from forx1 J1j,example, then ought to be a gradient Ðeld in LagrangianJ1jspace. Therefore, its curl should vanish. In the particular
case of equation (26), this implies that andLw1/Lq2\ 0

These conditions are satisÐed, in general, onlyLw1/Lq3\ 0.
by the ZA for which [provided thatw

i
\ [aj

i
0 j

i
0\ j

i
0(q

i
)].

Thus, the only approximation that always permits the
direct computation of the positions is the ZA. In spite of the
nonintegrability, these methods o†er an approximate solu-
tion for the deformation tensor, allowing us to calculate
local quantities, such as the kinematical parameters.

If any eigenvalues of the deformation tensor approach
[1, the density contrast d will diverge. Since they are func-
tions only of a and the initial conditions, we can expandj

i
0,

them near the collapse time asa
c
,

w
i
\ [1 [

K dw
i

da
K
a/ac

(a
c
[ a)] É É É . (28)

Therefore, the density contrast d behaves, at the collapse
time, as

d P (a
c
[ a)~c , (29)

where c is the dimensionality of the collapse (c\ 1 for the
collapse in only one axis, c\ 2 for the collapse in two axes
simultaneously, and c\ 3 for the collapse in three axes). On
the other hand, for the expansion h, we have from equation
(2)

h ] [ 2Ja
c
c

(a
c
[ a)

(30)

for The asymptotic behavior of the other kine-a ] a
c
.

matical parameters can also be determined in a similar
fashion.

3. APPLICATIONS

In order to compare the performance of these approx-
imation schemes, we apply them to some speciÐc situations
in the following subsections.

3.1. T he Homogeneous Ellipsoid
An initially homogeneous ellipsoid in an expanding uni-

verse develops in such a way that the homogeneity is almost
preserved during all of the evolution. Therefore, the homo-
geneously collapsing ellipsoid (HCE) model is considered to
be very accurate (Eisenstein & Loeb 1995 ; Hui & Bert-
schinger 1996). The results of local approximations have
been compared to this model. Such a comparison is useful
since it o†ers the possibility of checking these approx-
imations in a less symmetrical situation (Hui & Berts-
chinger 1996 ; Audit & Alimi 1996 ; Betancort-Rijo &

2000). It is worthwhile to compare theseLo� pez-Corredoira
analyses including the MZA.

The equation of motion for the HCE model is given by
(Icke 1973 ; White & Silk 1979)

d2Y
i

dq2 \ [ 2
9

aY
i
(X1X2X3[ Y1Y2 Y3)CD

(Y
k
2, Y

j
2, Y

i
2) , (31)

where, as before, (i, j, k) are permutations of (1, 2, 3), Y
irepresent the axes of the ellipsoid in comoving coordinates,

and are their asymptotic values for a ] 0. The functionX
iis the degenerate case of CarlsonÏs integral of the thirdC

Dkind (Carlson 1977 ; Press et al. 1992) :

C
D
(x, y, z) \ 3

2
P
0

= ds

(z] s)3@2J(x ] s)(y ] s)
.

The linear growing mode is

Y
i
^
a?0

X
i
[1[ 13X1 X2X3C

D
(X

k
2, X

j
2, X

i
2)d0 a] . (32)

As there is no rotation, the orientation of the principal
axes does not change. Thus, the position of each element
will be proportional to the expansion in each direction. If an
element inside the ellipsoid has initial position then itsq

i
,

coordinates at a later time will be given by

x
i
\ Y

i
X

i
q
i
. (33)

With this expression we may compute the kinematical pa-
rameters that will not depend on the position. The same
holds for the tidal Ðeld. Hence, we can compute the evolu-
tion of a Ñuid element according to the local approx-
imations and compare with the evolution of d, and hE

ij
, p

ij
,

as derived from the ellipsoid solution with the same initial
conditions.

From equation (33) we can see that the deformation
tensor does not depend on inside the ellipsoid :q

i

J
ij
\ Y

i
X

i
d
ij

. (34)

As discussed in the previous section, the positions of the
Ñuid elements may not necessarily be recoverable in the
local approximations. However, the choice of the same w

ifor any Ñuid element independent of is consistent with(w
i

q
i
)
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FIG. 1.ÈEvolution of the three axes of an ellipsoid according to theR
ihomogeneously collapsing ellipsoid model (HCE; solid curve), and the Ðve

approximations considered in the text : Zeldovich (ZA; dotted curve), modi-
Ðed Zeldovich (MZA; short-dotted curve), deformation tensor (DTA; dot-
dashed curve), complete Zeldovich (CZA; short-dashed curve), and local
tidal (LTA; long-dashed curve). The initial axis ratios are 1 :1.25 :1.5, and
the density contrast linearly extrapolated to a \ 1 is The ZA over-d0\ 1.
estimates the collapse time, whereas all other approximations are close to
the HCE. [See the electronic edition of the Journal for a color version of this
Ðgure.]

the HCE model. In this case, we may recover the positions
from the asw

i
x
i
\ (1] w

i
)q

i
. (35)

In Figure 1 we compare the time evolution of the axes
of an ellipsoid in the Ðve approximations discussedR

i
\ aY

iin this paper. Here the initial values of the axes wereX
iarbitrarily chosen to be 1:1.25 :1.5 with The generald0\ 1.

conclusion does not depend substantially on the choice of
these values, as will be seen in the next section. We see that
the results of these approximations, except for the ZA, are
very close to the one given by the HCE model. The ZA
overestimates the collapse time, showing that a simple
extrapolation of the linear trajectories underestimates the
nonlinear e†ects. The common feature we observe in the
local approximations is that the collapse occurs a little bit
earlier in the directions of the two initially larger axes than
the HCE case, whereas the collapse in the direction of the
shortest axis is slightly delayed compared to the HCE. In
other words, in the local approximations, the tidal forces
are reduced compared with the HCE model.

Concerning the collapse time all these approximationsa
c
,

give very similar results as shown in Table 1. The di†erences
are less than 5%. The MZA gives the closest value to that of
the HCE model. Considering, however, that the HCE
model itself neglects the e†ect of the interaction of the back-

TABLE 1

COLLAPSE TIME FOR A

HOMOGENEOUS ELLIPSOID

Approximation a
c

HCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.569
MZA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.578
CZA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.582
LTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.612
DTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.633

ground with the ellipsoid, this will not necessarily indicate
that the MZA has the better performance among the other
local approximations. In fact, for larger shear, the MZA
deviates from the others as will be seen in the next section.

3.2. Generic Initial Conditions
Following Bertschinger & Jain (1994), we will param-

eterize the initial conditions in the following way :

j
i
0\ 23e0Q

i
(a0) ] 13d0 , (36)

where are the diagonal terms of the traceless quadru-Q
i
(a)

pole matrix

Q
ij
(a) \ diag

C
cos
Aa ] 2n

3
B
, cos

Aa [ 2n
3
B
, cos

Aa
3
BD

.

(37)

It is easy to show that is related to the magnitude of thee0shear and tide, gives ratios of the eigenvalues ofQ
i
(a0) E

ijand (note that in the linear regime and is thep
ij

E
ij
P p

ij
), d0density contrast. The parameter varies from 0 to O,e0 a0varies from 0 to n, and can go from [O to O. However,d0it is sufficient to study the dynamics for andd0 \ 1 d0\

[1, as we shall see below.
The initial perturbation is deÐned as the ratio betweend0d and the growth factor D in the linear regime :

d0\ lim
a?0

d
D

. (38)

In an EdS universe we have D\ a. Thus, choosing di†erent
values of d is equivalent to rescaling a. This is so for all the
kinematical parameters. Therefore, the equations of motion
in the local approximations are invariant under the follow-
ing scaling :

d0] cd0 , e0] ce0 , a ] c~1a . (39)

As a result of this invariance, we can express the collapse
time as (Audit, Teyssier, & Alimi 1997)a

c

a
c
(d0, e0, a0)\

4

5

6

0
0
o d0~1 o a

c
`
Ae0
d0

, a0
B
, if d0[0 ,

o d0~1 o a
c
~
A e0

o d0 o
, a0
B

, if d0\0 ,
(40)

where Hence, we justa
c
B(e0/d0, a0) \ a

c
(^1, e0/ o d0 o , a0).need to compute the two functions and whicha

c
` a

c
~,

depend on and only.e0/d0 a0In Figures 2 and 3 we plot the collapse time as aa
cfunction of and for overdense and underdense pertur-e0 a0bations, respectively. Since the MZA and CZA do not apply

for some underdense regions, we have not displayed the
results of these approximations in Figure 3. We also show
the signs of corresponding to the initial conditions inj

i
0

these two Ðgures.
The parameter space of initial conditions that can be

spanned by an ellipsoid with any axis ratios is equivalent to
having the three positive. The region corresponding toj

i
0

the homogeneous ellipsoid is limited to relatively small
shear, and all the local approximations, except for the ZA,
agree signiÐcantly well in this region. The ZA overestimates
the collapse time for spherical conÐgurations. We see that
they are still quite similar for overdense perturbations in
general. The MZA substantially deviates from the others for
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FIG. 2.È(a) Collapse time as a function of the initial conditions for overdense perturbations with The contours of constant collapse time, expressedd0\ 1.
by the scale factor are displayed for the ZA. The thin (thick) contours are spaced by 0.1 (0.5) in with the outermost contour being and thea
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central value (b) Same as (a) except that the MZA is used. The innermost contour is (c) Same as (a) except that the DTA is used. Thea
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innermost contour is (d) Same as (a) except that the CZA is used. The innermost contour is (e) Same as (a) except that the LTA is used. Thea
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\ 1.7.

innermost contour is ( f ) Signs of in each region of the parameter space of initial conditions, with The inner region corresponds to thea
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values of that can be spanned by a homogeneous ellipsoid with any axis ratios. Spherical, planar, and cylindrically symmetric perturbations are markedj
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with a cross, a plus sign, and an asterisk, respectively. The upper parts of these graphs, which correspond to have The lower one0 ¹ a0¹ n, j30[ j20[j10.covers the same values of through a permutation of the indices. [See the electronic edition of the Journal for a color version of this Ðgure.]j
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Fig. 3a Fig. 3b

Fig. 3c Fig. 3d

FIG. 3.È(a) Collapse time as a function of the initial conditions for underdense perturbations with The contours of constant collapse time,d0\ [1.
expressed by are displayed for the ZA. The thin (thick) contours are spaced by 0.1 (0.5) in with the innermost contour being Initiala

c
~1, a

c
~1, a

c
~1\ 0.

perturbations in the central region do not collapse. (b) Same as (a) except that the DTA is used. (c) Same as (a) except that the LTA is used. (d) Signs of j
i
0

corresponding to each region of the parameter space of initial conditions, with Spherical, planar, and cylindrically symmetric underdensed0\[1.
perturbations are marked with a cross, a plus sign, and an asterisk, respectively. The upper parts of these graphs, which correspond to have0 ¹ a0¹n,

The lower one covers the same values of through a permutation of the indices. [See the electronic edition of the Journal for a color version ofj30[j20[j10. j
i
0,

this Ðgure.]

high shear. In all the cases the shear accelerates the collapse,
which is a well-known nonlinear e†ect. Thus, the Ðrst
regions to collapse are not necessarily those with higher
density. We can also see that oblate initial conÐgurations
(for which collapse Ðrst. Thus, planar collapse iscos a0[ 0)
favored by these approximations.

For negative perturbations the di†erence among the
approximations is enhanced. The LTA systematically gives
slightly larger collapse times than the DTA. The collapse
time given by the ZA is the shortest among the three. It is
important to notice that in the local approximations under-
dense regions may also collapse, as a result of the e†ects of
the shear.

The relevance of the shear in the nonlinear phase of
gravitational clustering is in agreement with N-body simu-
lations (Katz, Quinn, & Gelb 1993), yet it is sometimes
ignored in structure formation studies. Any model based on
the spherical collapse would miss this e†ect.

An interesting aspect of the local approximations is that
the collapse time has the same asymptotic behavior

a
c
(d0, e0, a0) ^

C
e0

(41)

for high initial shear in all the approximations,(e0? d0)where C is a (slowly varying) function of only (see Appen-a0dix A). That is, the collapse time for large shear does not
depend on and is inversely proportional to the initiald0shear e0.

3.3. T he Cosmological Mass Function
The mass function n(M) is deÐned such that n(M)dM

gives the number density of collapsed dark matter clumps
with masses between M and M ] dM. These clumps are
associated with protogalactic halos and with galaxy groups
and clusters. Comparing theoretical mass functions with
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Fig. 4a Fig. 4b

FIG. 4.È(a) Universal mass function calculated for the ZA (dotted curve), the DTA (dot-dashed curve), and the LTA (dashed curve). For comparison, we
display in this Ðgure the Ðt to N-body simulations (crossed curve) obtained by Jenkins et al. (2001), together with the standard PS mass function (solid curve).
(b) Same as (a), but now a logarithmic scale is used in the y-axis. Here the x-axis scale is limited to the range 0.332¹ *¹ 3.32 covered by the N-body
simulations. [See the electronic edition of the Journal for a color version of this Ðgure.]

observations provides important constraints on the cosmo-
logical parameters (Bahcall & Cen 1993 ; Girardi et al. 1998 ;
Rahman & Shandarin 2001) and the spectrum of primordial
perturbations (Lucchin & Matarrese 1988 ; Ribeiro,
Wuensche, & Letelier 2000). The approach of Press &
Schechter (1974) to calculate the mass function (hereafter
PS) has been extended to nonspherical collapse and applied
to some local approximations (Monaco 1995 for the ZA;
Audit et al. 1997 for the DTA). Here we extend such
analysis to the LTA and compare them.

Let be the fraction of collapsed objects atF(M ; a0) a0with mass higher than M ; then the mass function is given by

n(M)\ [ o6
M

dF
dM

. (42)

The fraction F may be calculated as an integral over all the
possible initial conditions weighted by their probabilities :

F\ 1
F0

P
0

n P
0

= P
~=

`=
s(a0 ; d0, e0, a0)

] P
M
(d0, e0, a0)dd0 de0 da0 . (43)

The function s is equal to 1 if an element with parameters
has already collapsed at and is 0 otherwise ;d0, e0, a0 a0 F0is a normalization factor. The collapse time of a Ñuida

celement with initial perturbations parameterized by d0, e0,
can be computed in the local approximations. As men-a0tioned in ° 2.6, the collapse is characterized by the diver-

gence of the density, which is equivalent to the Ðrst axis
collapse. Beyond this point the Lagrangian formalism
breaks down. Some authors (Audit et al. 1997 ; Lee & Shan-
darin 1998 ; Sheth, Mo, & Tormen 2000) have suggested
other alternatives for the deÐnition of collapse in the calcu-
lation of the mass function. Here we will prefer to keep the
simplest assumption of Ðrst axis collapse, since it does not
introduce any free parameter.

What we need now is the probability distribution func-
tion for the initial conditions. AssumingP

M
(d0, e0, a0)

Gaussian initial Ñuctuations, Doroshkevich (1970) derived
the joint probability for the three eigenvalues of the defor-
mation tensor and Using this result,j10, j20, j30.is given by the product of three independentP
M
(d0, e0, a0)probabilities for each parameter andd0, e0, a0 :

Pl(d0) \
1

J2n*2
exp

C
[ 1

2
Ad0

*
B2D

, (44)

Ps(e0) \
50
3
S 5

2n*2
Ae0

*
B4

exp
C
[ 5

2
Ae0
*
B2D

, (45)

Pa(a0) \ sin
Aa0

3
BC3

2
[ 2 sin2

Aa0
3
BD

. (46)

The variance * is related to the mass M and the power
spectrum of the primordial density Ðeld throughp

k

*2(R) \
P
0

= dk
2n2 W

k
2(R)k2p

k
2 , (47)

where and is the Fourier trans-M \ (4n/3) f
W

R3o6 W
k
(R)

form of a Ðlter with width R in physical space. The factor f
Wdepends on the shape of the Ðlter function ; for a top-hat

Ðlter we have whereas for a sharp-k Ðlterf
W

\ 1, f
W

\ 9n/2.
The mass function can now be written in the form

n(M) \ [ o6
M

d*
dM

'(*) , (48)

where '(*) \ dF(*)/d*. The function '(*) contains all the
inÑuence of the dynamics and depends neither on the par-
ticular form of the power spectrum nor on the Ðlter W ; it is
referred to as the universal mass function (Audit et al. 1997).

We calculate the universal mass function for the ZA,
LTA, and DTA but not for the MZA and CZA since they
do not apply for negative density perturbations. In Appen-
dix B we show the detailed calculation.

In Figure 4 we show the mass functions for those approx-
imations. For comparison, we also display in this Ðgure the
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Ðt to N-body simulations obtained by Jenkins et al. (2001),
together with the standard PS mass function.

We see that the results of the DTA and LTA are very
similar. Furthermore, in the high-mass tail they(*[ 0.5),
reproduce well the results of the N-body simulations.
However, we can see that these approximations overesti-
mate the concentration of masses near *\ 1. The right-end
tail of the distribution decays more rapidly compared to the
N-body simulations. This tendency is still enhanced in the
ZA. However, in these approximations, the position of
the maximum of the distribution is close to that of the
N-body simulations, giving a better estimate than that of
the PS; in particular, the LTA and DTA give nearly the
same value as the N-body results.

As for the normalization factor there exists an exten-F0,sive discussion on its origin (see, for example, Peacock &
Heavens 1990 ; Bond et al. 1991 ; Jedamzik 1995 ; Yano,
Nagashima, & Gouda 1996). The normalization factors for
the local approximations are close to 1 (1/0.92 for the DTA
and 1/0.89 for the LTA), whereas in the original PS deriva-
tion the normalization factor needed is This isF0\ 1/0.5.
due to the fact that, in the spherical collapse model, only
overdense regions collapse.

The fact that around *\ 1 the number of objects is over-
estimated in the local approximations implies, as a result of
the normalization of the mass function, that they should
provide a lower estimate than the N-body simulations for
large enough *. There the contribution from the low-mass
objects is dominant ; in any realistic process, they may also
arise from the fragmentation of larger clusters. The criterion
for the formation of a clump from the direct collapse of an
initially perturbed region does not account for these
complex processes of fragmentation. Therefore, the discrep-
ancy of the mass function for high * might be attributed to
the use of equation (43) rather than equation (42).

4. DISCUSSION

We have investigated local Lagrangian approximations
to the nonlinear dynamics of pressureless dark matter. We
have selected the modiÐed Zeldovich approximation
(MZA), the deformation tensor approximation (DTA), the
complete Zeldovich approximation (CZA), and the local
tidal approximation (LTA), in addition to the original Zel-
dovich approximation (ZA). These four approximations
were designed to improve the ZA and are in fact exact for
planar, spherical, and cylindrical symmetries, whereas the
ZA is only exact for the planar case. They are semianalytic
and easy to be implemented in any application in which
local quantities are involved, such as the calculation of the
mass function in the PS approach.

All the local approximations discussed here, except for
the ZA, provide quite a similar evolution for an ellipsoid,
reproducing the results of the HCE model. Thus, for these
kinds of positive density perturbations, these methods work
fairly well. However, the MZA turns out to deviate substan-
tially for large values of the shear as was shown in ° 3.2,
reÑecting the fact that it does not give the correct second-
order solution. Furthermore, the MZA cannot deal with
initially underdense regions that will eventually collapse.
Therefore, its applicability is rather limited when compared
to the other approximations.

We note that the second-order expansions of the CZA,
LTA, and DTA coincide with the second-order Lagrangian
perturbation theory, whereas those of the MZA and ZA do

not. It is interesting to recall that the LTA and DTA have
very di†erent origins from the CZA, but still they give the
correct second-order result.

The CZA, LTA, and DTA give quite analogous results
for generic initial conditions. However, at least in its orig-
inal form, the CZA cannot be used for negative values of j

i
.

One possible solution to this problem might be achieved
through an expansion such as

r
i
\ 1 ] ;
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)2nj
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1 ] ;
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j
[ j

k
)2nj

i
m

. (49)

The coefficients E and D should be appropriately chosen to
adjust the asymptotic behavior ; in particular, we could use
the numerical solution for underdense cylindrical and
spherical perturbations to Ðt some of these coefficients, as
done for the overdense case in the CZA. Besides, to agree
with the perturbative solution (eq. [18]) we should have

E
l,m,n1 [ D

l,m,n1 \C
l,m,n1 . (50)

For higher orders, the determination of these coefficients is
rather complicated. Further investigations on this possi-
bility should be pursued.

Concerning the mass function, it is found that the LTA
and DTA give an accurate result for large masses as com-
pared to the N-body simulations. The position of the peak
is also in good agreement, whereas its amplitude is overesti-
mated by a factor of 2 compared to the N-body results.
Since the mass function is normalized to unity, this means
that the local approximations, together with the PS formal-
ism, underestimate the density of low-mass clusters.
However, this might be a consequence of the criterion for
the formation of a collapsed object based only on the col-
lapse time.

It is interesting to notice that the collapse time, as a
function of and has an approximate scaling propertya0 e0,(see eq. [A1]), which is very precise for We con-e0/d0? 1.
clude that this may be a general feature of gravitational
collapse in local approximations, whose validity is worth
checking in a more general setting.

While there is still not a clear theoretical understanding
or support to the local approximations, they proved to be
very accurate in the situations investigated here. They
reproduce some well-known features of nonspherical col-
lapse, such as the possibility of collapse of some initially
underdense regions and the fact that the shear accelerates
the collapse (see Sahni & Coles 1995). The main limitation
of these approximations is that they only provide informa-
tion about the internal state of a given mass element but do
not determine its position. Even so, their simplicity is highly
expedient for practical applications, such as the calculation
of nonlinear corrections to the microwave background
anisotropies and the Gunn-Peterson e†ect. In particular,
they are suitable for obtaining statistical properties of the
present Ðelds as a function of the primordial ones, as in the
case of the mass function. Further studies on the validity of
these approximations, based on a comparison to N-body
simulations, are required. Such a comparison would allow
one to test fully the approximations described in this paper
and, more generically, the locality hypothesis. If they still
provide accurate results in this case, the local approx-
imations could represent good alternatives to the computer
simulations, taking much less computational time, allowing
thereby a larger scanning of initial conditions. They could
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give complementary information to the N-body simulations
and would provide a better physical understanding of the
nonlinear dynamics of self-gravitating systems.

Most of the results of this paper may be extended to more
general backgrounds. The inÑuence of any smooth com-
ponent only alters the behavior of a(t) and of the growing
mode growth factor D(t), which will not be equal any more.
It would be interesting to study the relativistic analog of the
LTA. Another interesting extension would be to include
vorticity in the local approximations as was done for the
ZA in Buchert (1992) and Barrow & Saich (1993). We could

use them to test the e†ects of a possible primeval vorticity
on large scales (Li 1998).
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APPENDIX A

FITTING FORMULAE FOR THE COLLAPSE TIME

In order to avoid repeated numerical integrations of di†erential equations in the LTA and DTA, we have parameterized the
collapse time as a function of initial conditions. For both of these local approximations, the following scaling property is
approximately satisÐed :

a
c
B(x, a0)^ HB( f ) , with f \ xgB(a0) , (A1)

where HB and gB are functions to be Ðtted for each approximation and This relation becomes more accurate forx \ e0/ o d0 o .
increasing x. In any case the error of the Ðt is less than a few percent.

For g(a) we found that a kind of truncated Fourier series can be used to a very good approximation :

g(a)\ c1 cos
Aa
2
B

] c2 cos a ] c3 cos
A3a

2
B

] c4 cos (2a) ] c5 cos
A5a

2
B

] (1[ c1[ c2[ c3[ c4[ c5) cos (3a) . (A2)

The values of the parameters for each case are shown in Table 2.
For the dependence of on x for Ðxed we Ðtted the function f \ H~1 rather than H itself because this is the quantity wea

c
a0,will need to compute the mass function. Taking into account the boundary value and asymptotic behavior, we parameterize f

by

f ` \ d1 z(1] d2 z] d4 z2)
(1] d3 z] d5 z2)a

c
, with z\ d0[ a

c
, (A3)

for overdense regions and(d0 [ 0),

f ~\ d0] d1 a
c
~1@2(1] d2 a

c
~1] d4 a

c
~5@2)

1 ] d3 a
c
~1] d5 a

c
~2 , (A4)

for underdense regions The parameters for the LTA and DTA are given in Table 3.(d0\ 0).
Notice that for high shear (x ? 1) we have such thata

c
> 1

a
c
` ]

x?=

d1 d0(1] d2 d0 ] d4 d02)
(1] d3 d0] d5 d02)

1
xg`(a0)

(A5)

TABLE 2

PARAMETERS OF g(a) FITTED FOR THE LTA AND DTA

g c1 c2 c3 c4 c5
gLTA` . . . . . . 1.546 [1.015 0.786 [0.462 0.182
gLTA~ . . . . . . 1.461 [0.767 0.473 [0.231 0.079
gDTA` . . . . . . 1.505 [0.842 0.508 [0.228 0.066
gDTA~ . . . . . . 1.497 [0.836 0.513 [0.234 0.068

TABLE 3

PARAMETERS OF f FITTED FOR THE LTA AND DTA

f d0 d1 d2 d3 d4 d5
f LTA` . . . . . . 1.686 8.469 19.88 78.49 17.03 163.2
f DTA` . . . . . . 1.686 14.14 13.34 87.68 8.676 163.8
f LTA~ . . . . . . 0.591 1.064 0.678 [1.335 16.054 8.613
f DTA~ . . . . . . 0.495 0.942 0.322 [2.083 25.718 12.961
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and

a
c
~ ]

x?=

d1 d4
d5

1
xg~(a0)

. (A6)

In the ZA we have an analytical expression for As the collapse occurs when the greatest reaches the value 1, using thea
c
. j

iparameterization of equation (36) we get

a
c
ZA \ 3

d0] 2e0 cos (a0/3)
. (A7)

In this case we can clearly see the features of a
c
:

a
c
ZA(d0, e0, a0)\

1
o d0 o

3
^1 ] 2(e0/ o d0 o ) cos (a0/3)

\ 1
o d0 o

a
c
ZA(^1, e0/ o d0 o , a0) . (A8)

Note that equation (A1) is satisÐed exactly for the ZA.

APPENDIX B

CALCULATION OF THE MASS FUNCTION

With the integral of equation (43) we may write the universal mass function '(*) \ dF/d* in the form

'(*)\ 1
F0

d
d*
P
0

n P
0

= P
~=

`=
s(l*, s*, a0)P(l, s, a0)dl ds da0 , (B1)

where and With these new variables the dependence on * will be present only in the function s, which mayl\ d0/* s \ e0/*.
be written as

s \ #[1 [ a
c
(d0, e0, a0)] . (B2)

Note that in the case of the PS original approach this function is given by where is the value ats \#(d0[ d
c
), d

c
\ 1.686

which a spherical perturbation collapses at a \ 1.
To calculate ds/d*, one uses equation (40), obtaining

ds
d*

\ dD[1[ a
c
(l*, s*, a0)]

a
c
B(s/l, a0)
o l o*2 , (B3)

where is the Dirac delta function. Therefore, we may eliminate one of the integrals in equation (B1), with the mass functiondDbeing calculated over the surface For this sake we need to write one of the threea
c
(l*, s*, a0)\ o l* o ~1a

c
B(s/l, a0) \ 1.

variables in terms of the others on this surface.
Let us assume that we have s as a function of l* and a : where the subscript a indicates that s is calculateds \ s

a
(l*, a),

over the surface . The integral in s in equation (B1) is thus eliminated using the relationa
c
\ 1

dD[1[ a
c
(l*, s*, a0)]\ dD(s [ s

a
)
K La

c
Ls
K~1

. (B4)

The mass function (eq. [B1]) is now given by

'(*)\ 1
F0

P
0

n P
~=

`= 1
*
K La

c
Ls
K~1

Pl(l)Ps(sa
)Pa(a0)dl da0 , (B5)

where is evaluated in We can simplify this expression further if the collapse time is only a function ofLa
c
/Ls s

a
(l*, a). a

c
(x, a)

the product xg(a), which we have seen is an excellent approximation for the local approximations studied here (see Appendix
A). Using equation (A1), we have

s
a
\ l

g(a0)
H~1( o l* o ) (B6)

and

K La
c

Ls
K
\
K 1
l*

LH
Lf

g(a0)
l
K

, (B7)
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where the superscript ““ ] ÏÏ is implied for positive l and ““[ ÏÏ for negative l. Replacing these results in equation (B5), we get
Ðnally

'(*)\ 1
F0

P
~=

`= P
0

n
l2
K ALH

Lf
B~1 1

g(a0)
K
Pl(l)Ps(sa

)Pa(a0)da0 dl , (B8)

where with and LH/Lf, is calculated in This is why we have chosen to Ðt the functions
a
\ o l o f

a
/g(a0), f

a
(l*)\H~1( o l* o ) f

a
.

H~1, instead of its inverse.
As P(l) and LH/Lf are independent of we integrate Ðrst in this variable :a0,

I1(l, *)\
P
0

n 1
g5(a0)

exp
G
[ 5

2
C lf
g(a0)

D2H
Pa(a0)da0 . (B9)

The universal mass function will now be given by

'(*)\ 1
F0

N
P
~=

`=
I1(l, *)l6f

a
4
K A K LH

Lf
K
fa

B~1 K
exp

A
[ l2

2
B
dl , (B10)

where N \ 50(5)1@2/6n is the product of the normalizations for and (eqs. [44] and [45]). Note that the above integral isPl Pslimited for positive values of l, as H~1( o l* o )\ 0 for for the DTA and LTA and for the ZA).l*[ f0 (f0\ 1.686 f0 \ 3
Although our Ðtting formulae (Appendix A) become less accurate for l] [O and the mass function is not a†ected,l] f0/*,
since the integrand in equation (B10) goes to zero in these regions. Here it is clear that the underdense regions do contribute to
the mass function, as pointed out by Audit et al. (1997).

As an example, let us consider the ZA. In this case we have

H
B
( f )\ 3

^1 ] 2f
, g(a) \ cos

Aa
3
B

. (B11)

Using the following transformation of variables,

x \ sin
Aa
3
B

] Pa da \ x
A3
2

[ 2x2
B
3

dx

J1 [ x2
, (B12)

we Ðnd an analytical expression for the integral of equation (B9) :

I1\ 1
(lf )2 exp

C
[ 5

2
(lf )2

DA 3
25

1
(lf )2

G
exp

C
[ 15

2
(lf )2

D
[ 1
H

] 9
10
B

, (B13)

where f B\ (3/( o l o*) < 1)/2. The mass function will be given by

'(*)\ 1
F0

15J5
8n

P
~=

`= 1
*4 exp

A
[ l2

2
B

] exp
C
[ 5

8
(3[ l*)2

*2
DA12

5
*2
G
exp

C
[ 15

8
(3[ l*)2

*2
D

[ 1
H

] 9
2

(3[ l*)2
B
dl . (B14)
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