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Fixed-point distributions of short-range Ising spin glasses on hierarchical lattices
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Fixed-point distributions for the couplings of Ising spin glasses with nearest-neighbor interactions on
hierarchical lattices are investigated numerically. Hierarchical lattices within the Migdal-Kadanoff family with
fractal dimensions in the range 2.58 ! D ! 7, as well as a lattice of the Wheatstone-Bridge family with
fractal dimension D ≈ 3.58 are considered. Three initial distributions for the couplings are analyzed, namely,
the Gaussian, bimodal, and uniform ones. In all cases, after a few iterations of the renormalization-group
procedure, the associated probability distributions approached universal fixed shapes. For hierarchical lattices
of the Migdal-Kadanoff family, the fixed-point distributions were well fitted either by stretched exponentials,
or by q-Gaussian distributions; both fittings recover the expected Gaussian limit as D → ∞. In the case of the
Wheatstone-Bridge lattice, the best fit was found by means of a stretched-exponential distribution.
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I. INTRODUCTION

In spite of considerable efforts carried throughout the past
decades, an appropriate theoretical framework for the Ising
spin glass (SG) is still lacking [1–3]. Its simple formulation
in terms of binary variables has attracted many workers,
which have followed several computational and analytical
procedures, leading to a wide variety of results and interpreta-
tions, some of them contradictory, so that the model remains
very controversial. From the analytical point of view, most
approaches were carried on its mean-field formulation, defined
in terms of infinite-range interactions. The appropriate mean-
field solution is expressed in terms of an infinite number of
order parameters, characterizing an order-parameter function,
manifesting the property of replica-symmetry breaking [1–6].
Among many controversial points, an identification of those
characteristics from this mean-field solution that should persist
in the limit of short-range (e.g., nearest-neighbor) interactions
represents one of the major questions in the Ising SG problem
nowadays. Motivated by this, a lot of work has been pursued
on nearest-neighbor-interaction three-dimensional Ising SG
models, for which it is generally accepted nowadays that a
SG phase occurs at finite temperatures [4–19]; it should be
emphasized that some of this work has required extensive
computational efforts.

Hierarchical lattices emerged in the context of real-space
renormalization group (RG), carrying the advantage that such
a technique becomes exact for pure systems defined on these
lattices [20]. They are constructed through successive similar
operations at each hierarchical level, e.g., at each level one
replaces bonds by unit cells, like those shown in Fig. 1. The
main motivation for their use concerns the fact that some of
these lattices approach Bravais lattices, e.g., the hierarchical
lattice defined by the cell of the Migdal-Kadanoff (MK) family
[21–23] in Fig. 1(a) with p = 4, as well as the one defined by
the cell of the Wheatstone-Bridge (WB) family in Fig. 1(b),
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have been both used in the literature to approach the cubic
lattice [20]. It should be mentioned that the MK approach is
exact only for pure one-dimensional systems [23], and due
to the parallel (i.e., independent) paths joining the external
sites of the unit cell of Fig. 1(a), it becomes progressively
a worse approximation when applied to higher-dimension
Bravais lattices. Surprisingly, in the case of short-range Ising
SGs, the MK approach has provided some estimates (e.g.,
critical temperatures of distinct SG models, characterized by
different probability distributions for the couplings, on the
D = 3 hierarchical lattice) that are relatively close to the most
recent ones from extensive numerical simulations on the
corresponding Bravais lattices. However, due to the simplicity
of the MK approach, these results are usually considered as
mere coincidences, having no fundamental reason to yield
small discrepancies from the estimates of more powerful
methods. In spite of this, they have been very useful in the
development of the SG theory throughout the years; some of
these results will be mentioned later on.

In general, the RG may not be considered as an exact proce-
dure for random systems on hierarchical lattices; however, it is
expected to represent a good approximation on these lattices,
since in many cases, pure systems appear as particular limits
of random models. These lattices has been very useful for
Ising SGs [7,10,11,16,24–38], mostly due to the possibility
of obtaining estimates that are, in some cases, very close
to those of more time-consuming techniques, by performing
relatively low-time-consuming numerical computations. Some
of these results concerning the lower critical dimension dl ,
above which one finds a SG phase at finite temperatures, as
well as critical-temperature estimates, should be mentioned.
(i) The bounds for the lower critical dimension, 2 < dl < 3,
were first obtained on MK lattices [7], a few years before
their confirmation in Refs. [10,39–42] through studies of
excitations from ground states; these domain-wall analyses
have been improved lately [43,44], reinforcing the early
conclusions. (ii) A recent combination of extensive numerical
and theoretical results on Bravais lattices [45] suggested the
lower critical dimension to be exactly dl = 5/2, confirming
the early estimate of Ref. [11] for MK lattices. (iii) The SG
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FIG. 1. Basic cells of the hierarchical lattices investigated herein,
both with scaling factor b = 2. (a) The diamond cell belongs to
the Migdal-Kadanoff family [21,22], is defined by p parallel paths,
and presents a fractal dimension D = [ln(2p)]/ ln 2. (b) The cell
of the Wheatstone-Bridge family (D ≈ 3.58) whose hierarchical
lattice approaches the cubic lattice [20]. The empty circles (µ and
ν) represent external sites of the cell, whereas the black circles are
internal sites to be decimated in the RG procedure.

critical temperatures on the MK lattice of fractal dimension
D = 3, for symmetric Gaussian and bimodal distributions [7],
present relative discrepancies of about 7%, when compared
with the recent estimates from Monte Carlo simulations on
a cubic lattice [14]. (iv) Recently, the estimates of item (iii)
were improved further through the hierarchical lattices defined
by the cell of Fig. 1(b) [36], which when compared with the
estimates of Ref. [14] yields a relative discrepancy of about
3% in the Gaussian case, whereas for the symmetric bimodal
distribution the two estimates essentially coincide (leading to
a relative discrepancy of about 0.3%). (v) Studies on a self-
dual hierarchical lattice with scaling factor b = 3 and fractal
dimension D = 2 led to an estimate for the stiffness exponent
y [25] (y = −1/ν, where ν is the exponent associated with
the divergence of the correlation length at zero temperature)
in agreement with those obtained from other, more time-
consuming, numerical approaches on a square lattice [44,46].
An analysis of the ±J Ising SG model [33] on the same
hierarchical lattice gave a ferromagnetic-paramagnetic critical
frontier that represents a good approximation for the one of
the corresponding model on a square lattice.

The above-mentioned results motivate us to study further
properties of SGs on hierarchical lattices. As usual in the
RG procedure, after each decimation step the set of coupling
constants {Jij }, as well as the temperature T , vary in such a
way that the probability distribution P (Kij ), associated with
the dimensionless ratios {Kij } [Kij = Jij /(kT )], changes its
shape. At the phase transition separating the phases param-
agnetic SG, the probability distribution remains unchanged,
i.e., fixed. The purpose of the present work is to investigate
the functional form for the fixed-point distribution of Ising
SGs on the hierarchical lattices defined by the unit cells of
Fig. 1. In the case of the MK family [Fig. 1(a)] we will
study hierarchical lattices with fractal dimensions varying in
the interval from D ≈ 2.58 (corresponding to unit cells with
p = 3 parallel paths), up to D = 7 (corresponding to unit cells
with p = 64 parallel paths). In the next section we define the
model and the numerical procedure to be used. In Sec. III

we exhibit the numerical data associated with the fixed-point
distributions, together with the analytical forms proposed for
their fits. Finally, in Sec. IV we present our conclusions.

II. MODEL AND NUMERICAL PROCEDURE

Herein we investigate short-range Ising SGs defined by the
Hamiltonian,

H = −
∑

⟨ij⟩
JijSiSj (Si = ±1). (1)

The sum
∑

⟨ij⟩ applies to pairs of nearest-neighbor spins on
the hierarchical lattices defined by the cells of Fig. 1, whereas
the {Jij } represent independent random couplings acting on
each pair of spins of the lattice. The couplings {Jij } will be
considered as initially following three different symmetric
distributions, namely, the Gaussian, bimodal, and uniform
ones, defined respectively, as

P (Jij ) = 1√
2πJ 2

exp

(

−
J 2

ij

2J 2

)

, (2)

P (Jij ) = 1
2

[δ(Jij − J ) + δ(Jij + J )], (3)

P (Jij ) =
{

1
2J

if − J ! Jij ! J,

0 (otherwise).
(4)

The RG procedure works inversely to the lattice gener-
ation, i.e., through a decimation of the internal sites of
a given cell, leading to renormalized quantities associated
with the external sites. Defining the dimensionless couplings,
Kij = βJij [β = 1/(kT )], the corresponding RG equations
may be written in the general form [35,36],

K
′

µν = 1
4

ln
(

Z−− Z++

Z−+ Z+−

)
, (5)

where ZSµSν
represent partition functions associated with the

Hamiltonian H for a given unit cell with the external spins
kept fixed (Sµ,Sν = ±1),

ZSµSν
= Tr{Si (i ̸=µ,ν)} [exp(−βH)]. (6)

As usual in random magnetic models, the RG scheme is
carried by following numerically the probability distribution
P (Kij ) associated with the dimensionless couplings {Kij }
[7]. Operationally, this probability distribution is represented
by a pool of M real numbers (M is kept fixed throughout
the whole RG procedure), from which one may compute
its associated moments, at each renormalization step; in the
limit M → ∞ these moments should approach those of
the distribution associated with {Kij }. The process starts by
creating M coupling constants {Jij } generated according to
one of the distributions in Eqs. (2)–(4), yielding an initial
pool of dimensionless couplings, {Kij } = β{Jij }, for a given
temperature. An iteration consists in M operations, where
in each of them one picks randomly a set of numbers from
the pool (each number is assigned to a bond of a cell in
Fig. 1) in order to generate the effective coupling according
to Eq. (5), which will correspond to an element of the new
pool. Following this procedure, one gets a new pool with the
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same size M of the previous one, representing the renormalized
probability distribution. During the RG procedure, the average,
⟨Kij ⟩, and the width, ⟨K2

ij ⟩1/2, are of particular interest for the
identification of the phases, in such a way that one may obtain
the paramagnetic (P) and spin-glass (SG) phases, as dominated
by the following attractors:

⟨Kij ⟩ → 0,
〈
K2

ij

〉1/2 → 0, P phase,

⟨Kij ⟩ → 0,
〈
K2

ij

〉1/2 → ∞, SG phase.
(7)

In fact, this procedure should be followed for many different
initial pools of real numbers, over which one may compute
sample averages. However, one may also get accurate critical-
frontier estimates by analyzing a sufficiently large single pool;
the results that follow were obtained by considering a single
pool of size M = 106 real numbers.

Precisely at the P–SG phase transition, one starts with a
given probability distribution P (Kij ) [e.g., constructed from
one of the distributions in Eqs. (2)–(4)], and after a few RG
iterations, one reaches the fixed-point distribution P ∗(Kij ),
which will not change in further RG steps. Strictly speaking, in
order to approach such a distribution, one needs to be exactly
at the critical temperature Tc associated with this transition.
Operationally, for a given initial distribution, the associated
critical temperature is estimated approximately, by following
numerically P (Kij ), within the standard narrowing RG proce-
dure (see, e.g., Refs. [7,35,36]). Herein, we have estimated Tc

in most cases with a three-decimal-digit certainty (error bars on
the fourth digit); therefore, we will deal with distributions that
will be considered as “fixed-point” distributions for a certain
number of RG iterations (typically around 10 iterations). At
a given iteration step n, the corresponding distribution is
obtained through a normalized histogram constructed from
the pool of M dimensionless couplings {Kij }, from which one
computes its odd moments (which are all very small), as well as
its even moments (which should remain essentially unchanged
at the fixed point). A particular attention is given to its kurtosis
κ and higher-order ratio of moments κ ′,

κ =
〈
K4

ij

〉

3
〈
K2

ij

〉2 , κ ′ =
〈
K6

ij

〉

15
〈
K2

ij

〉3 , (8)

which yield κ = κ ′ = 1, for a Gaussian distribution, whereas
κ,κ ′ > 1 (κ,κ ′ < 1) for distributions with longer (shorter) tails,
as compared with the Gaussian distribution.

Previous work on fixed-point distributions of Ising SGs on
D = 3 MK hierarchical lattices verified that such distributions
are close to a Gaussian; this conclusion was drawn essentially
by analyzing their moments and kurtosis κ [7,11,27–29,47,48].
Moreover, it was shown that, for a given lattice, different initial
distributions fall into a universal fixed-point distribution, after
a few RG steps [29]. We present a detailed analysis of the
functional form of this distribution for different hierarchical
lattices.

Herein, we will examine several well-known distributions,
as candidates for the universal fixed-point distribution of
a given lattice. These distributions are expected to present
some properties: (i) should be symmetric around the origin;
(ii) particularly for the MK hierarchical lattices, they should
converge to a Gaussian distribution for sufficiently large fractal

dimensions [49]; (iii) in this latter case, it is desirable to search
for distributions characterized by some tunable parameter such
as to recover the Gaussian as a particular case. It should be
mentioned that many distributions in the literature satisfy these
requirements (see, e.g., Refs. [50–53]), although some of them
are potentially most relevant, since they follow generalizations
of the central limit theorem [50,51]. Below, we define the
distributions that have provided the best fits for our data. First,
we introduce the q-Gaussian distributions, characteristic of
nonextensive statistical mechanics [50],

P (x) =
√

β

Aq

[1 − (1 − q)βx2]
1

1−q

+ , (9)

where [u]+ = u, for u > 0 and zero otherwise, in such a way
that they are characterized by a cutoff for q < 1. As usual, the
quantity β is related to the width of the distribution, whereas
Aq is a normalization factor that depends on the index q being
given by [50,51]

Aq =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
√

π

(3−q)
√

1−q
&

( 1
1−q

)[
&

( 3−q
2(1−q)

)]−1 if q < 1,

√
π if q = 1,

√
π√

q−1&
( 3−q

2(q−1)

)[
&

( 1
q−1

)]−1 if 1 < q < 3.

(10)
For q < 1 one gets distributions with a finite support, the
Gaussian distribution is recovered as the particular case q = 1,
whereas for q > 1 one has distributions with longer tails than
those of the Gaussian. The distributions to be presented in the
next section correspond to κ > 1 and, consequently, q > 1.

The second candidate for this purpose will be the stretched
exponential,

P (x) = λe−λδ |x|δ

2&
(
1 + 1

δ

) (δ > 0), (11)

where the parameter λ is associated with the width of the
distribution. Strictly speaking, the nomenclature “stretched
exponential” applies for 0 < δ < 1, although for any 0 < δ <
2 one has distributions with longer tails than those of the
Gaussian; the fits to be presented in the next section fall in this
latter category.

The third proposal, to be called hereafter “stretched q-
exponential” distribution, is given by

P (x) = β1/γ

Bq,γ

[1 − (1 − q)β|x|γ ]
1

1−q

+ . (12)

Considering 1 < q < 3, the distribution above generalizes
those defined in Eqs. (9) and (11), recovering such particular
cases in the limits γ → 2 and q → 1 (taking γ = δ and
β = λδ), respectively. The normalization factor depends on
both indices q and γ ,

Bq,γ =
2(q − 1)−1/γ &

(
1 + 1

γ

)
&

( 1
q−1 − 1

γ

)

&
( 1

q−1

) . (13)

One should notice that besides the usual parameter related
to the width of the distribution [β in Eqs. (9) and (12),
and λ in Eq. (11)] one has one extra parameter in Eqs. (9)
and (11), whereas in Eq. (12) one has two extra parameters,
namely, q and γ . A compromise between the quality of the
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SEBASTIÃO T. O. ALMEIDA AND FERNANDO D. NOBRE PHYSICAL REVIEW E 91, 032138 (2015)

fits and the number of parameters is certainly an important
condition for choosing an appropriate fitting distribution.
Other forms, like the Gaussian, Student’s t , and α-stable Lévy
distributions [52,53], were also considered for adjusting our
data. In order to choose the best candidates for fixed-point
distributions, we have investigated the quality of the fits
through the standard χ2 test, the agreement between the
corresponding numerical data and distributions by means of
different graphical representations, as well as by analyzing the
quantities κ and κ ′ defined in Eq. (8). As it will be shown in the
next section, the distributions defined in Eqs. (9)–(11) yielded
the best fits for our numerical data.

III. RESULTS

The results that follow refer to the Ising SG model defined
in the previous section, and in the case of the MK family
[Fig. 1(a)] we have investigated different fractal dimensions
varying in the interval from D ≈ 2.58 (corresponding to unit
cells with p = 3 parallel paths), up to D = 7 (corresponding to
unit cells with p = 64 parallel paths), whereas in Fig. 1(b) one
has a cell of the Wheatstone-Bridge family (D ≈ 3.58), whose
associated hierarchical lattice has been used in the literature to
approximate models on the cubic lattice [20,35,36,38,54]. In
order to approach appropriately fixed-point distributions, good
estimates of the paramagnetic-SG critical temperatures are
necessary in each case; except for the MK lattice with fractal
dimension D ≈ 2.58, we have computed critical temperatures
Tc within a three-decimal-digit certainty, with the associated
error bars on the fourth decimal digits. The estimates of Tc

were carried by considering, in all cases, single pools of size
M = 106 real numbers.

Flux diagrams representing the evolution of the probability
distributions P (Kij ) under RG iterations, constructed from
the coupling distributions in Eqs. (2)–(4), as well as from the
q-Gaussian of Eq. (9) and stretched exponential of Eq. (11),

are shown in Fig. 2 in terms of conveniently chosen variables
[11,29], ⟨tanh2 Kij ⟩ versus 1/⟨K2

ij ⟩1/2 (0 < ⟨tanh2 Kij ⟩ < 1
and 0 < 1/⟨K2

ij ⟩1/2 < ∞), where the brackets ⟨ ⟩ denote
averages over the corresponding distributions. One should
call attention to the fact that the abscissa is related to the
renormalized dimensionless temperature at each step of the
RG process. In Fig. 2 the results for Ising SGs defined on
two hierarchical lattices of the MK family [Fig. 1(a)] with
different fractal dimensions, namely, D = 3 [Fig. 2(a)] and
D = 6 [Fig. 2(b)], are presented. In both cases, throughout the
evolution of the distributions one has the following. (i) The
unstable fixed point, associated with the phase transition
P–SG and assigned to the fixed-point distribution P ∗(Kij ),
is indicated by an arrow. (ii) The two attractors characterizing
the corresponding phases are given by ⟨tanh2 Kij ⟩ → 0 and
1/⟨K2

ij ⟩1/2 → ∞ (P attractor), as well as ⟨tanh2 Kij ⟩ → 1 and
1/⟨K2

ij ⟩1/2 → 0 (SG attractor). (iii) These attractors define
two basins of attraction, such that for initial distributions
corresponding to values of ⟨tanh2 Kij ⟩ above (below) those
of the fixed-point distribution, one is driven to the SG (P)
attractor. (iv) From the five initial distributions considered,
one sees that the q-Gaussian and stretched exponential appear
both essentially as the fixed-point distribution, whereas the
Gaussian comes as the third closest. In the representation
of Fig. 2, the bimodal distribution corresponds the initial
distribution that presents the “largest distance” with respect
to the fixed-point distribution.

However, the most important outcome from Fig. 2 concerns
the fact that all initial distributions, when considered at their
corresponding critical temperatures Tc, approach a unique (i.e.,
universal) fixed-point distribution. The corresponding critical
temperatures Tc are presented in Table I for Ising SGs on MK
hierarchical lattices with several fractal dimensions D, as well
as for the WB hierarchical lattice, for each initial distribution
of couplings considered. Another important aspect in the
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FIG. 2. (Color online) Flux diagrams of the probability distributions P (Kij ), constructed from the coupling distributions of Eqs. (2)–(4),
as well as from the q-Gaussian of Eq. (9) and stretched exponential of Eq. (11), represented in suitable variables [11,29] for two hierarchical
lattices of the Migdal-Kadanoff family [Fig. 1(a)] with fractal dimensions: (a) D = 3; (b) D = 6. In each case an arrow indicates the point
associated with the fixed-point (FP) distribution P ∗(Kij ); the region around this point is amplified in the inset of panel (a). In this representation
one identifies clearly those initial distributions that differ most from the fixed-point distribution, as those that start the RG process with the
“largest distance” from the latter (see, e.g., the evolution of the bimodal distribution). In the variables used, ⟨⟩ represent averages over the
corresponding distributions.
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TABLE I. Estimated values of q and β associated with the q-Gaussian distribution fit [cf. Eq. (9)], or equivalently, of λ and δ associated
with the stretched-exponential fit [cf. Eq. (11)], when considered as fixed-point distributions for hierarchical lattices of the MK family with
varying fractal dimensions 2.58 ! D ! 7. In the case of the WB hierarchical lattice (fractal dimension D ≈ 3.58) the best fit was obtained
with the stretched-exponential distribution. The initial distributions (Gaussian, bimodal, and uniform) were considered at their corresponding
critical values (kTc/J ); after a few iterations all distributions approached a fixed-point distribution as shown in Fig. 2, from which one may
estimate the universal fixed-point critical temperature T FD

c .

kTc/J kTc/J kTc/J kT FD
c /J

D q β λ δ (Gaussian) (bimodal) (uniform)

MK 2.58 1.08(2) 0.045(5) 0.21(2) 1.85(4) 0.291(5) 0.479(5) 0.201(5) 0.284(2)
MK 3.00 1.10(1) 0.43(3) 0.66(2) 1.76(5) 0.8797(5) 1.1362(5) 0.5762(5) 0.856(1)
MK 3.58 1.11(1) 1.4(1) 1.19(2) 1.74(5) 1.5718(5) 1.8219(5) 0.9825(5) 1.539(1)
MK 4.00 1.11(1) 2.5(2) 1.59(2) 1.75(5) 2.0808(5) 2.3067(5) 1.2716(5) 2.046(2)
MK 4.58 1.09(2) 4.8(3) 2.16(3) 1.80(5) 2.8623(5) 3.0522(5) 1.7147(5) 2.838(2)
MK 5.00 1.08(2) 6.8(2) 2.60(3) 1.83(5) 3.4799(5) 3.6522(5) 2.0662(5) 3.464(2)
MK 6.00 1.05(2) 15.1(2) 3.87(4) 1.90(4) 5.2908(5) 5.4125(5) 3.0955(5) 5.289(3)
MK 7.00 1.03(1) 31.3(1) 5.58(4) 1.95(3) 7.7402(5) 7.8273(5) 4.4957(5) 745(6)

WB 3.58 0.78(2) 1.57(3) 0.9821(5) 1.1166(5) 0.6122(5) 0.948(2)

representation of Fig. 2 concerns the fact that one may compute
the coordinates associated with P ∗(Kij ), leading to critical-
temperature estimates related with each fixed-point distri-
bution. Herein, we define this temperature as (kT FD

c /J ) ≡
⟨(K∗

ij )2⟩−1/2, to be computed for P (Kij ) = P ∗(Kij ). For the
cases exhibited in Fig. 2 one has (kT FD

c /J ) = 0.856(1)
(D = 3) and (kT FD

c /J ) = 5.289(3) (D = 6), respectively. It
should be mentioned that T FD

c is defined only for hierarchical
lattices, being associated with fixed-point distributions within
the RG approach, having no physical counterpart on Bravais
lattices.

In Fig. 3 we present data of the fixed-point distribution for
the Ising SG on a MK hierarchical lattice with fractal dimen-
sion D = 3, together with the two best fits found. The Gaussian
distribution of Eq. (2) was considered as the initial distribution
for the couplings, at its corresponding critical temperature,

(kTc/J ) = 0.8797(5) (cf. Table I). Data for a wide range of RG
iterations, from n = 4 up to n = 16, are exhibited. In the linear
representation of Fig. 3(a), both q-Gaussian and stretched
exponential appear to yield equally good fits. However, in the
corresponding inset one sees that in a representation lnq P (Kij )
versus K2

ij [lnq u = (u1−q − 1)/(1 − q)] [50], the q-Gaussian
[q = 1.10(1)] yields a straight line, producing a good fit for
both central region and tails of the distribution, appearing
to be slightly better than the one produced by the stretched
exponential [with δ = 1.76(5)]. In Fig. 3(b) the same data
is exhibited in a log-linear representation, where due to the
wide spread of the data in the tails, in the inset we have also
considered histograms with larger bins, i.e., increased by a
factor of 2 for 2 ! |Kij | ! 4, and by a factor of 4 in the range
|Kij | > 4. From this later representation, both q-Gaussian and
stretched exponential distributions yielded equally good fits;
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FIG. 3. (Color online) Data of the fixed-point distribution for the Ising SG on a MK hierarchical lattice with D = 3. For all data shown, the
Gaussian distribution of Eq. (2) was considered as initial distribution, at its associated critical temperature (cf. Table I). For a large range of RG
iterations, from n = 4 up to n = 16 (denoted by different symbols), one gets typically a fixed-point distribution. (a) In the linear representation,
both q-Gaussian [with q = 1.10(1)] and stretched [with δ = 1.76(5)] fits are indiscernible. In the inset we represent the same data as lnq P (Kij )
vs K2

ij , where the q-Gaussian fit (full green line) follows a straight line, being compared with the stretched-exponential one (dashed black line).
(b) The same data of (a) is exhibited in a log-linear representation, where the q-Gaussian (full green line) and stretched exponential (dashed
black line) fits are shown. In the inset we represent the same data by considering larger bins for the histograms (see text).
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FIG. 4. (Color online) Data of the fixed-point distribution for the Ising SG on a WB hierarchical lattice with D ≈ 3.58. The Gaussian
distribution of Eq. (2) was considered as initial distribution, at its associated critical temperature (cf. Table I). For a given range of RG iterations,
from n = 4 up to n = 10 (denoted by different symbols), one gets typically a fixed-point distribution. (a) In the linear representation, the
stretched exponential of Eq. (11) [with δ = 1.57(3)] is presented. (b) The same data of (a) is exhibited in a log-linear representation; in the
inset we represent the same data by considering larger bins for the histograms (see text).

this conclusion is reinforced by the χ2 test analysis, as well
as by the quantities κ and κ ′ defined in Eq. (8), which gave
typically values of the same order of magnitude.

A similar investigation was carried for the WB hierarchical
lattice defined by the unit cell of Fig. 1(b). Together with the
data, the best fit found is shown in Fig. 4, namely, the stretched
exponential of Eq. (11) [with δ = 1.57(3), represented by the
full red line]. Both data and fitting distribution are exhibited
in the linear-linear representation [Fig. 4(a)] and a log-linear
representation [Fig. 4(b)]. In the latter case, due to the wide
spread of the data in the tails, we present the histogram
obtained by enlarging the size of bins in the inset of Fig. 4(b):
bins were increased by a factor of 2 for 2 ! |Kij | ! 4, and
by a factor of 4 in the range |Kij | > 4. These results show
the robustness of the stretched-exponential distribution in this
fitting.

For all hierarchical lattices of the MK family investigated
herein we have found that both q-Gaussian and stretched-
exponential distributions yielded equally good fits. These
conclusions were reached by plotting the data in different
representations (as shown in Fig. 3 for the case D = 3), by
applying the χ2 test, as well as by investigating the quantities
κ and κ ′ defined in Eq. (8); in all analyses carried out, these
two distributions were essentially equally acceptable. In each
case, the initial distributions (Gaussian, bimodal, and uniform)
were considered at their corresponding critical temperatures
Tc, and after a few RG iterations (typically four iterations),
the renormalized distributions approached the fixed-point
distribution. The estimated values of q and β associated with
the q-Gaussian distribution fit [cf. Eq. (9)], or equivalently,
of λ and δ associated with the stretched-exponential fit [cf.
Eq. (11)], are given in Table I. In this table we also present
Tc for each initial distribution considered, as well as T FD

c , for
hierarchical lattices of the MK family with several dimensions.
The universal fixed-point critical temperatures T FD

c were
calculated through flux diagrams similar to those exhibited
in Fig. 2, as described above. The parameters q and β,

associated with the q-Gaussian distribution fit of Eq. (9),
were computed at each RG step along which the distribution
remained essentially unchanged (e.g., from n = 4 up to n = 16
in the case of Fig. 3) by using the Marquardt-Levenberg
algorithm (see Ref. [55] for a description of the method),
with a similar procedure for the parameters λ and δ of the
stretched-exponential distribution. The estimates (including
error bars) for q and β (as well as for λ and δ) presented in
Table I correspond to an analysis over these RG iterations.

In Table I we also present the estimated values of λ and δ,
corresponding to the stretched-exponential fit, when consid-
ered as fixed-point distribution for the WB hierarchical lattice,
as shown in Fig. 4. Similar to the procedure used for the MK
cases, the parameters of the corresponding distribution were
calculated for a given range of RG iterations, from n = 4 up
to n = 10, where one gets typically a fixed-point distribution.
It should be mentioned that the stretched q-exponential fit
[cf. Eq. (12)] was also analyzed as a potential candidate
for this case; however, we verified that this distribution was
not robust by increasing the size of the bins in a log-linear
representation [cf., e.g., Figs. 3(b) and 4(b)]. In fact, we found
that q → 1, as the bins were gradually increased, so that the
stretched-exponential fit was recovered in this limit.

Analyzing the results of Table I, one notices a gradual
decrease in the value of q for MK lattices with sufficiently
large fractal dimensions (e.g., D > 4), suggesting that when
the number of parallel paths of the unit cell goes to infinity,
one should approach the limit q → 1, indicating that the
fixed-point distribution converges to a Gaussian, as predicted
in Ref. [49]. A similar behavior may be seen with respect
to the parameter δ in the stretched-exponential fit, which for
3 ! D ! 7 increases slowly towards the limit δ → 2, showing
the convergence to the Gaussian fixed-point distribution.

Another interesting aspect from Table I concerns the fact
that the critical-temperature estimates of the WB hierarchical
lattice are much closer to those of the MK lattice with D = 3
than to the ones of a MK lattice with the same fractal
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FIG. 5. (Color online) Fixed-point distributions for the hierarchical lattices of the MK family with several fractal dimensions in the range
2.58 ! D ! 7, following the q-Gaussian distribution fit of Eq. (9), are represented as full lines, whereas the one for the WB hierarchical lattice
that follows the stretched-exponential fit [cf. Eq. (11)] is represented by a dashed black line. (a) In a log-linear representation, where one sees that
the widths of these distributions decrease for increasing fractal dimensions (a similar behavior occurs if one considers the stretched-exponential
fits from Table I). (b) In the variables used, those q-Gaussian distributions with the same index q do not depend on their width, and collapse into
a single curve: consequently, the full red line (outer full line) applies to those hierarchical lattices of the MK family with fractal dimensions in
the range 2.58 ! D ! 5, for which q = 1.10 within the error bars (cf. Table I); the full lines correspond to decreasing values of q from outer
to inner. The dashed blue line in panel (b) corresponds to the Gaussian distribution.

dimension, namely, D ≈ 3.58. This reflects the fact that the
WB hierarchical lattice should be considered as an approach
to the cubic lattice, as discussed in Ref. [20]. Indeed, the
critical-temperature estimates (kTc/J ) = 0.9821(5) (Gaussian
distribution) and (kTc/J ) = 1.1166(5) (bimodal distribution)
of Table I are in very good agreement with those from
Monte Carlo simulations on a cubic lattice; for the first case,
one should mention the result (kTc/J ) = 0.951(9) [14], from
which our value keeps a relative discrepancy of about 3%.
The most striking outcome concerns the one for the critical
temperature in the case of a bimodal distribution, which lies
in between the two estimates, (kTc/J ) = 1.120(4) [14] and
(kTc/J ) = 1.1019(29) [19], where the latter appeared recently
from an extensive numerical investigation. However, the
corresponding estimates of the MK lattice with D = 4, namely,
(kTc/J ) = 2.0808(5) (Gaussian distribution) and (kTc/J ) =
2.3067(5) (bimodal distribution), when compared with those
of Monte Carlo simulations on a four-dimensional hypercubic
lattice, (kTc/J ) ≈ 1.80 [56] and (kTc/J ) = 2.00(4) [57], lead
to relative discrepancies around 13%.

In Fig. 5 we exhibit the q-Gaussian distributions of Eq. (9),
as well as the stretched-exponential fit of Eq. (11), considered
as fixed-point distributions for the hierarchical lattices of the
MK family (full lines), and for the WB hierarchical lattice
(dashed black line), respectively. From Fig. 5(a) one sees
that the q-Gaussian distributions of the MK family decrease
their width for increasing values of D, signaling an increase
in the corresponding critical temperatures with D; it should
be mentioned that a similar behavior occurs if one considers
the stretched-exponential fits specified in Table I. Moreover,
one sees clearly that the WB fixed-point distribution is much
closer to the one of the MK lattice with D = 3 than to the
one with fractal dimension D ≈ 3.58 of the same lattice,
reinforcing the argument that the WB hierarchical lattice
should be considered as an approach to the cubic lattice
[20]. The representation used in Fig. 5(b) is very convenient

for q-Gaussian distributions, since these distributions become
independent of their widths, depending only on the index q.
Therefore, since all hierarchical lattices of the MK family in
the range 2.58 ! D ! 5 studied herein presented q = 1.10,
within the error bars (cf. Table I), they have collapsed into a
single curve in Fig. 5(b) (full red line). Furthermore, from
Fig. 5(b) one sees that the distributions for larger fractal
dimensions, namely, D = 6 (represented by the curve for
q = 1.05) and D = 7 (represented by the curve for q = 1.03),
present a clear tendency towards the Gaussian limit (dashed
blue line).

From the fixed-point distribution P ∗(Kij ) one can calculate
numerically the exponent ν associated with the divergence of
the correlation length at the phase transition [7,58,59]. For
that, in each case one considers two temperatures T1 and T2,
slightly below T FD

c (see Table I), such that T2 < T1 < T FD
c .

Since the estimates of T FD
c in Table I were done up to three

decimal digits, we have defined [(kT1)/J ] = [(kT FD
c )/J ] −

10−3, whereas T2 = T1 − δT , with δT representing a small
temperature variation. Then, one follows the RG procedure
described in the previous section, starting with these two
temperatures, so that at a given RG step n one has the
respective widths ⟨K2

ij ⟩
1/2
1,n (RG scheme starting at temperature

T1) and ⟨K2
ij ⟩

1/2
2,n (RG scheme starting at temperature T2); since

T2 < T1, one has that ⟨K2
ij ⟩

1/2
2,n > ⟨K2

ij ⟩
1/2
1,n , for every step n.

Hence the exponent νn at a step n is defined as

νn = ln 2
ln(+n+1/+n)

, +n =
〈
K2

ij

〉1/2
2,n

−
〈
K2

ij

〉1/2
1,n

. (14)

If one considers δT sufficiently small, the estimates νn

fluctuate around a given value for a certain range of RG
iterations. In the present analysis we have considered the
q-Gaussian distribution of Eq. (9) as initial distributions in
the case of the MK hierarchical lattices [using the stretched
exponential of Eq. (11) as initial distributions yielded similar
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TABLE II. Estimates for the exponent ν, considering the q-Gaussian distribution of Eq. (9) as initial distributions in the case of the MK
hierarchical lattices, whereas for the WB lattice we have used the stretched exponential of Eq. (11) as initial distribution.

MK WB

D 2.58 3.00 3.58 4.00 4.58 5.00 6.00 7.00 3.58
ν 13.1(9) 2.97(5) 1.77(9) 1.49(9) 1.29(4) 1.20(6) 1.08(5) 1.04(3) 3.02(7)

results, within the error bars], whereas for the WB lattice,
we have analyzed the stretched exponential of Eq. (11)
as initial distribution. Considering [k(δT )/J ] = 10−6, νn

remained stable (i.e., presenting small fluctuations around
a given mean value), for a certain range of RG iterations
(typically 10 RG iterations); the results for the exponent
ν presented in Table II correspond to averages over these
iterations.

The estimates in Table II regarding MK lattices with
fractal dimensions D = 3, 4, 5, and 6 essentially coincide
with those already computed in Ref. [59]. In what concerns
the WB lattice, we obtained ν = 3.02(7). One should notice
that the estimates for the MK lattice with D = 3 and WB
lattice agree within the error bars, yielding ν ≈ 3.0. Moreover,
our value for the WB lattice also agrees with the recent
one on the same lattice, ν = 3.25(66) [54], although both
represent overestimates with respect to results from Monte
Carlo simulations on a cubic lattice, which by considering
different probability distributions for the couplings, yielded
typically a universal value, ν ≈ 2.5 [14,17–19]. It should be
mentioned that the values given in Table II represent universal
exponents for each hierarchical lattice considered, since they
were obtained from universal fixed-point distributions; in this
sense, our estimate for the WB lattice presents a relative
discrepancy of about 15% with respect to the most recent
result from extensive numerical simulations, ν = 2.562(42)
[19]. The discrepancy increases further when comparing the
result of the D = 4 MK hierarchical lattice, ν = 1.49(9), with

the one from Monte Carlo simulations on a four-dimensional
hypercubic lattice, ν = 1.025(15) [56]. It is possible that
such significant discrepancies may be associated with the
linearization procedure used to obtain Eq. (14), as argued in
Ref. [60].

In Fig. 6 we present data of the fixed-point distributions in a
log-linear representation for the cases of the MK hierarchical
lattice with D = 3 [Fig. 6(a)] and the WB hierarchical lattice
[Fig. 6(b)]. In each case, besides the fitting distributions used
in Figs. 3(b) and 4(b), respectively, we also show fits from
three other distributions, namely, the Gaussian, Student’s t ,
and α-stable Lévy distributions [52,53]; in the WB case, we
considered the stretched q-exponential fit of Eq. (12) as well.
In the Student’s t fits, the number of degrees of freedom (by
definition a positive integer) considered for the best fit was
m = 19 [for both Figs. 6(a) and 6(b)], whereas for those of
the α-stable Lévy we have used α = 1.98(1) in Fig. 6(a) and
α = 1.95(2) in Fig. 6(b). Ones sees clearly that these three
attempts, namely, Gaussian, Student’s t , and α-stable Lévy
distributions all fail in some way to fit the data appropriately,
either in the tails, or in the central region, as shown in the
insets. A curious situation occurs in Fig. 6(b), where the
stretched q-exponential fit is presented, showing apparently
a good agreement with the data. In fact, as mentioned before,
we verified that this distribution was not robust by increasing
the size of the bins in the tails, so that q → 1 as the bins were
gradually increased, recovering the stretched-exponential fit in
this limit [see Fig. 4(b)]. Hence, in the present approach, the
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FIG. 6. (Color online) Data of fixed-point distributions are represented in a log-linear representation. (a) Ising SG on a MK hierarchical
lattice with D = 3; apart from the distributions used in Fig. 3(b) (stretched exponential and q-Gaussian), the Gaussian, α-stable Lévy,
and Student’s t distributions were also considered for fitting the data. (b) Ising SG on a WB hierarchical lattice with D ≈ 3.58; apart
from the stretched-exponential distribution used in Fig. 4(b), the Gaussian, α-stable Lévy, Student’s t , and stretched q-exponential [cf.
Eq. (12)] distributions were also considered for fitting the data. The central region of the plots are amplified (linear-linear scale) in the
respective insets.
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q-Gaussian and stretched-exponential distributions appeared
as equally acceptable good fits for the MK lattice, whereas for
the WB lattice, the stretched exponential yielded the best fit
for the fixed-point distribution.

IV. CONCLUSIONS

We have investigated numerically the fixed-point distribu-
tions for the couplings of nearest-neighbor-interacting Ising
spin glasses on hierarchical lattices. Hierarchical lattices
belonging to the Migdal-Kadanoff family with fractal dimen-
sions in the range 2.58 ! D ! 7, as well as a lattice of the
Wheatstone-Bridge family with fractal dimension D ≈ 3.58
were considered. Three initial distributions for the couplings
were analyzed, namely, the Gaussian, bimodal, and uniform
ones. In all cases considered, after a few iterations of the
renormalization-group procedure (typically four iterations),
the associated probability distributions approached fixed uni-
versal shapes.

For the Migdal-Kadanoff lattices, the fixed-point distri-
butions were shown to be well fitted either by stretched
exponentials, or by q-Gaussian distributions; both fittings
recover the expected Gaussian limit as D → ∞. For the
q-Gaussian fits we have found q ≈ 1.10, for 2.58 ! D ! 5,
whereas for D = 6 and 7 we have noticed a slow decrease in
the value of q towards the limit q → 1. Moreover, in the case
of the Wheatstone-Bridge lattice, the fixed distribution was
shown to be well fitted by a stretched exponential. Hence, if

one considers the stretched-exponential distribution, P (x) ∼
exp(−λδ|x|δ), as the appropriate fixed-point distribution for
both lattices studied, one has δ typically varying in the
range δ ∈ [1.75,1.95], for MK lattices with fractal dimensions
2.58 ! D ! 7, whereas in the WB lattice, δ ≈ 1.57, represent-
ing a distribution more “different” from the Gaussian, than
those found for the Ising spin glasses on the lattices of the
Migdal-Kadanoff family.

The knowledge of the functional form of fixed-point distri-
butions represents a relevant question for spin-glass models
on hierarchical lattices. From these distributions one may
compute important critical quantities, like universal critical
exponents, which in the case of Ising spin glasses should be
independent of the initial distribution of couplings considered.
The universality of critical exponents has been found in
most recent numerical simulations of spin-glass models on
Bravais lattices, in agreement with the present investigation.
In this work, we have presented a proposal for the functional
forms of fixed-point distributions on some hierarchical lattices,
which yielded quite good agreements with the numerical data.
These distributions are expected to contribute to a better
understanding of short-range Ising spin glasses on Bravais
lattices.
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