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Image thresholding using Tsallis entropy

M. Portes de Albuquerque a,*, I.A. Esquef b, A.R. Gesualdi Mello a,
M. Portes de Albuquerque b

a Centro Brasileiro de Pesquisas Fsicas, CBPF/MCT, Rua Dr. Xavier Sigaud 150 Urca, Rio de Janeiro 22290180, Brazil
b Universidade Estadual do Norte Fluminense, UENF, Av. Alberto Lamego, no. 2000, Horto, Campos, RJ, Brazil

Received 19 June 2003; received in revised form 30 October 2003

Available online 15 April 2004

Abstract

Image analysis usually refers to processing of images with the goal of finding objects presented in the image. Image

segmentation is one of the most critical tasks in automatic image analysis. The nonextensive entropy is a recent

development in statistical mechanics and it is a new formalism in which a real quantity q was introduced as parameter

for physical systems that present long range interactions, long time memories and fractal-type structures. In image

processing, one of the most efficient techniques for image segmentation is entropy-based thresholding. This approach

uses the Shannon entropy originated from the information theory considering the gray level image histogram as a

probability distribution. In this paper, Tsallis entropy is applied as a general entropy formalism for information theory.

For the first time image thresholding by nonextensive entropy is proposed regarding the presence of nonadditive

information content in some image classes. Some typical results are presented to illustrate the influence of the parameter

q in the thresholding.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Segmentation consist in subdividing an image

into its constituent part and extracting those of

interest. Many techniques for global thresholding
have been developed over the years to segment

images and recognize patterns (e.g. Kapur et al.,

1985; Sahoo et al., 1988; Pal, 1996; Li, 1993; Rosin,
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2001). The principal assumption of the use of glo-

bal thresholding as a segmentation technique is

that ‘‘objects’’ and ‘‘backgrounds’’ can be distin-

guished by inspecting only image gray level values.

Recent developments of statistical mechanics
based on a concept of nonextensive entropy, also

called Tsallis entropy, have intensified the interest

of investigating a possible extension of Shannon’s

entropy to Information Theory (Tsallis, 2001).

This interest appears mainly due to similarities

between Shannon and Boltzmann/Gibbs entropy

functions. The Tsallis entropy is a new pro-

posal in order to generalize the Boltzmann/Gibbs’s
ed.
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traditional entropy to nonextensive physical sys-

tems. In this theory a new parameter q is intro-

duced as a real number associated with the

nonextensivity of the system, and it is system

dependent.

This paper shows the application of Tsallis en-
tropy as a new method of image segmentation.

Our work is based on the entropic thresholding

technique of Kapur et al. (1985). We use Tsallis

entropy form due to the presence of nonadditive

information in some classes of images. The method

substitutes a purely additive expression found in

Kapur’s original method for a pseudo-additive

expression defined by Tsallis theory for statistical
independent systems. The paper is organized as

follows: Section 2 presents some fundamental

concepts of nonextensive systems and Tsallis en-

tropy; Section 3 describes the mathematical set-

tings of the threshold selection for the proposed

method; Section 4 gives some examples of thres-

holding using the proposed method and discusses

the influence of the nonextensive parameter q in
the image segmentation and Section 5 is dedicated

to presenting some concluding remarks.
2. Nonextensive entropy

From a conventional point of view, the entropy

is a basic thermodynamic concept that is associ-
ated with the order of irreversible processes in the

universe. Physically it can be associated with the

amount of disorder in a physical system. Shannon

redefined the entropy concept of Boltzmann/Gibbs

as a measure of uncertainty regarding the infor-

mation content of a system. He defined an ex-

pression for measuring quantitatively the amount

of information produced by a process.
The entropy of a discrete source is often ob-

tained from the probability distribution, where

p ¼ fpig is the probability of finding the system in

each possible state i. Therefore, 06 pi 6 1 andPk
i¼1pi ¼ 1, where k is the total number of states.

The Shannon entropy may be described as

S ¼ �
Xk

pi lnðpiÞ ð1Þ

i¼1
This formalism has been shown to be restricted to

the domain of validity of the Boltzmann–Gibbs–

Shannon (BGS) statistics. These statistics seem to

describe nature when the effective microscopic

interactions and the microscopic memory are short
ranged. Generally, systems that obey BGS statis-

tics are called extensive systems. If we consider

that a physical system can be decomposed into two

statistical independent subsystems A and B, the

probability of the composite system is pAþB ¼
pA � pB, it has been verified that the Shannon en-

tropy has the extensive property (additivity):

SðAþ BÞ ¼ SðAÞ þ SðBÞ ð2Þ
However, for a certain class of physical systems,

which entail long-range interactions, long time

memory and fractal-type structures, some kind of

extension appears to become necessary. Inspired

by multifractals concepts, Tsallis has proposed a

generalization of the BGS statistics. The Tsallis
statistics is currently considered useful in describ-

ing the thermostatistical properties of nonexten-

sive systems, and it is based on a generalized

entropic form,

Sq ¼
1�

Pk
i¼1 ðpiÞ

q

q� 1
ð3Þ

where k is the total number of possibilities of the

system and the real number q is an entropic index
that characterizes the degree of nonextensivity.

This expression meets the BGS entropy in the limit

q ! 1. The Tsallis entropy is nonextensive in such

a way that for a statistical independent system, the

entropy of the system is defined by the following

pseudo additivity entropic rule

SqðAþ BÞ ¼ SqðAÞ þ SqðBÞ þ ð1� qÞ � SqðAÞ � SqðBÞ
ð4Þ

Considering Sq P 0 in the pseudo-additive for-

malism of Eq. (4), three entropic classifications are

defined as follows

• Subextensive entropy ðq < 1Þ
SqðAþ BÞ < SqðAÞ þ SqðBÞ

• Extensive entropy ðq ¼ 1Þ
SqðAþ BÞ ¼ SqðAÞ þ SqðBÞ

• Superextensive entropy ðq > 1Þ
SqðAþ BÞ > SqðAÞ þ SqðBÞ



M. Portes de Albuquerque et al. / Pattern Recognition Letters 25 (2004) 1059–1065 1061
Taking into account similarities between

Boltzmann/Gibbs and Shannon entropy forms, it

is interesting to investigate the possibility of gen-

eralization of the Shannon’s entropy to the

Information Theory, as recently shown by Ya-

mano (2001). This generalization can be extended
to image processing areas, specifically for the

image segmentation, applying Tsallis entropy to

threshold images, which have nonadditive infor-

mation content.
3. Entropic segmentation

In image processing, the most commonly used

method to distinguish objects from background is

‘‘thresholding’’. Over the years, many methods of

automatic threshold selection based on optimiza-

tion of some criterion function have been pro-

posed. Pun (1981) assumed that an image is the

outcome of a symbol source. Thus, in order to

select the threshold he maximized an upper bound
of the total a posteriori entropy of the binary

image. Kapur et al. (1985) assumed two proba-

bility distributions, one for the object and the

other for the background. Next they maximized

the total entropy of the partitioned image in order

to obtain the threshold level. Abutaleb et al. (1989)

extended the method using two-dimensional

entropies. Li (1993) and Pal (1996) used the di-
rected divergence of Kullback for the selection of

the threshold, and Sahoo et al. (1988) used the

Reiny entropy model for image thresholding.

In this section, a new thresholding method will

be proposed based also on the entropy concept.

This method is similar to the maximum entropy

sum method of Kapur et al.; however, we used the

nonextensive Tsallis entropy concepts customized
for information theory.

For an image with k gray-levels, let pi ¼
p1; p2; . . . ; pk be the probability distribution of the

levels. From this distribution we derive two

probability distributions, one for the object (class

A) and another for the background (class B). The

probability distributions of the object and back-

ground classes, A and B, are given by

pA :
p1
PA

;
p2
PA

; . . . ;
pt
PA

ð5Þ
pB :
ptþ1

PB
;
ptþ2

PB
; . . . ;

pk
PB

ð6Þ

where PA ¼
Pt

i¼1 pi and PB ¼
Pk

i¼tþ1 pi.
The a priori Tsallis entropy for each distribu-

tion is defined as

SA
q ðtÞ ¼

1�
Pt

i¼1
pi
pA

� �q

q� 1
ð7Þ

SB
q ðtÞ ¼

1�
Pk
i¼tþ1

pi
pB

� �q

q� 1
ð8Þ

The Tsallis entropy SqðtÞ is parametrically depen-

dent upon the threshold value t for the foreground
and background. It is formulated as the sum of

each entropy, allowing the pseudo-additive prop-

erty for statistically independent systems, defined

in Eq. (4).

SqðtÞ ¼
1�

Pt
i¼1 ðpAÞ

q

q� 1
þ 1�

Pk
i¼tþ1 ðpBÞ

q

q� 1

þ ð1� qÞ � 1�
Pt

i¼1 ðpAÞ
q

q� 1
� 1�

Pk
i¼tþ1 ðpBÞ

q

q� 1

ð9Þ

We maximize the information measure between

the two classes (object and background). When

SqðtÞ is maximized, the luminance level t is con-

sidered to be the optimum threshold value. This

can be achieved with a cheap computational effort.

topt ¼ argmax
h
SA
q ðtÞ þ SB

q ðtÞ þ ð1� qÞ � SA
q ðtÞ � SB

q ðtÞ
i

ð10Þ

4. Experimental results

In order to analyze this segmentation technique

we simulate different histograms describing the

‘‘object’’ and ‘‘background’’ by two gaussian

peaks. As presented previously, the segmentation

process looks for a luminance value t that sepa-

rates these two regions. This procedure allows an

evaluation of the segmentation result as function

of amplitude, position and width of the peaks in
the histograms. All these parameters have a sig-

nificant role in the characterization of the image,
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as for example: homogeneity of the scene illumi-

nation (gray level contrast), image and object size,

‘‘object’’ and ‘‘background’’ texture, noisy images,

etc.

Starting from two well defined gaussian peaks

we classify four simulation cases. In each one we
analyze the threshold level for 256 different histo-

grams. An iterative procedure changes the

parameter of the right side peak until it overlaps
Fig. 2. Results of segmentation for simulations

p1(64,16) p2(192,16) p1(64,16) p2(100,16)

t0 t1

A1 p1(64,16) A2 p2(192,16) A1 p1(64,16) A2 p2(192,16)

t0 t1

(a)

(c)

Fig. 1. Four gray level segmentation testing schemes: (a) peak position

a position and a width for each peak.
the left one. In each step we calculate the entropic

segmentation threshold t. These four testing pro-

cesses are presented in Fig. 1: (a) peak position; (b)

peak width; (c) peak height and (d) noisy image.

The purpose of these tests is to check how good

the nonextensive entropic segmentation is for dif-
ferent classes of images, and also to analyze the

influence of Tsallis parameter q in the segmenta-

tion result.
cases: q ¼ 0:25; 0.80; 1.00; 1.50 and 4.00.

p1(64,16) p2(192,4) p1(64,16) p2(192,64)

t0 t1

A1 p1(64,16)

A2 p2(192,16)

A1 p1(64,16)

A2 p2(192,64)

t0 t1

(b)

(d)

; (b) peak width; (c) peak height and (d) noisy image. We define
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4.1. Simulation results

The result of all simulation cases is shown on

Fig. 2. For all proposed cases we present four

contour plots for five q values. In each contour
Fig. 4. Influence of parameter q in natural images: q ¼ 0:5,

Fig. 3. Example of entropic segmentation for mammography image

results are presented for q ¼ 1:0 (classic entropic segmentation) and q
plot we show 256 simulated histograms used to

generate the entropic curve, Eq. (4). The threshold

level is obtained at the maximum argument of each

entropic curve, see Eq. (10). Thus one can follow

the ‘‘trajectory’’ of the thresholding point at these
q ¼ 1:0 (classical entropic segmentation) and q ¼ 3:0.

with an inhomogeneous spatial noise. Two image segmentation

¼ 4:0.
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maximum values in each case. This figure shows

the behavior of the nonextensive entropic seg-

mentation in all cases. Specially, in cases (b––peak

width), (c––peak height) and (d––noisy image) we

observe a dependence of the segmentation result

on the entropic parameter q. In the case ‘‘a––peak
position’’ the nonextensive entropic segmentation

method can be used as a classic entropic segmen-

tation.

4.2. Real image results

We have evaluated the proposed method with

several real images, following the schemes pre-
sented in the simulation section. Three of them

were chosen to demonstrate the method. In Fig. 3

we show a mammography image with a bright

region (tumor) surrounded by a noisy region.

The thresholding of this type of image is usually

a very difficult task. The histogram is almost an

unimodal distribution of the gray level values. The

entropic method will search for regions with uni-
form distribution in order to find the maximum

entropy. This will often happen at the peak limit.

The entropic approach can give good results in

these types of histograms. In Fig. 4 we show an
Fig. 5. Example of nonextensive entropic segmentation. Image of a m

segmentation for q ¼ 0:5, 1.0 (classical entropic segmentation), 2.0 an
image of a flower with an inhomogeneous distri-

bution of light around it, leading to an irregular

histogram of two peaks. The nonextensive entro-

pic method can be very useful in such applications

where we define a value for the parameter q to

adjust the thresholding level to the correct point.
In Fig. 4 we segment the image with q equal to 0.5,

1.0 and 3.0 respectively. With the latter we can cut

the histogram in a more appropriate level.

Fig. 5 shows a third example of nonextensive

image segmentation. We present an image of a

magnetic domain structure observed by optical

microscopy with a spatial background scattering

noise and its gray level histogram. Four results are
presented for four q values. For q ¼ 4:0 we obtain

a more ‘‘clean’’ segmentation.

4.3. The influence of parameter q in image segmen-
tation

The parameter q in Tsallis entropy is usually

interpreted as a quantity characterizing the degree
of nonextensivity of a system. An appropriate

choice of the entropic index q to nonextensive

physical systems still remains an open field of

study. In some cases the parameter q has no
agnetic domain structure with a regular spatial noise. Result of

d 4.0.
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physical meaning, but it gives new possibilities in

the agreement of theoretical models and experi-

mental data, Tsallis and Albuquerque (2000). In

other cases, q is solely determined by constraints of

the problem and thereby q may have a physical

meaning, Tatsuaki (2001).
In image segmentation, the nonextensivity of a

system can be justified by the presence of correla-

tions between pixels of the same object in the image.

These correlations can be classified as long-range

correlations in the case of images that present pixels

strongly correlated in luminance levels and space

fulfilling.

In the presented method we use positive values
for q parameter and investigate the threshold level

by visual inspection. As we are interested in

automatic quantitative image analysis, threshold-

ing ‘‘objects’’ with the same entropy can be an

important characteristic in the image processing

chain when treating the same type of images.

Nevertheless, there is no reliable evidence between

the parameter q and image categories.
5. Conclusions

Nonextensive entropy image thresholding is a

powerful technique for image segmentation. The

presented method has been derived from the gen-

eralized entropy concepts proposed by Tsallis.
Entropic segmentation can give good results in

many cases and works better when applied to

noisy images, those in which gray level distribution

are typically composed by an unimodal histogram.

The advantage of the method is the use of a global

and objective property of the histogram and this

method is easily implemented. The Tsallis q coef-

ficient can be used as an adjustable value and can
play an important role as a tuning parameter in

the image processing chain for the same class of
images. This can be an advantage when the image

processing tasks depend on an automatic thres-

holding.
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