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Abstract

A segmented principal component analysis is applied for dimensionality reduction of the calorimeter information at the second level

trigger of ATLAS. The segmented analysis is proposed in order to fully explore the high segmentation of the calorimeter system and the

different levels of granularity present at each segment of the hadronic and electromagnetic sections. Considering electron and jet

simulated events, a high data compaction level (above 96%) is achieved, even when preserving 95% of the original data variance. Using

data projection onto the principal components of each calorimeter segment, and a neural classifier, 97.3% of electrons are correctly

identified for a misclassification of jets below 9%.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Large Hadron Collider (LHC) will be colliding two
bunches of protons at every 25 ns, producing a huge
amount of data to be processed. Data comprise both the
physics of interest, such as the signatures of the Higgs
boson, and a deep background noise. In this scenario,
complex trigger systems need to be designed in order to
select only the interesting events.

The ATLAS trigger system consists of three distinct
levels of event selection [1]. Each trigger level should
perform specific algorithms to select only the events with
high probability in carrying interesting physics informa-
tion. From an initial bunch crossing rate of 40MHz, the
ATLAS trigger system will select events up to 100Hz to
permanent storage. The first level trigger looks at detector
data with reduced granularity in order to take a fast
e front matter r 2005 Elsevier B.V. All rights reserved.
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decision, delivering events to the second level at a
maximum rate of 100 kHz. At the second level, complex
algorithms operate with the full granularity of the detector,
guided by regions of interest (RoIs), which contain
interesting features of the events [2]. This second level
reduces the event rate to less than 1 kHz. The last step of
data selection, the Event Filter, performs even more
complex algorithms to reduce further the event rate to a
maximum of 100Hz, which corresponds to the data to be
permanently stored for offline analysis. The three levels of
selection make use of the information provided by the
calorimeter system of ATLAS, due to the fast response of
the detectors and the ability in identifying particles from
the energy deposition patterns [3].
The online triggering system requires both fast signal

processing and high efficiency in event selection. For
detailed description of particle interactions, the calorimeter
system in ATLAS is segmented into four layers in the
electromagnetic section and three layers in the hadronic
one (see Table 1). In addition, the number of cells and the
corresponding granularity vary according to data RoI.
Therefore, not only the event selection task at the second
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Table 1

Data compaction level achieved for each sub-detector layer

Sub-detector Original dimension 85% 90% 95%

serpentine ring serpentine ring serpentine ring

Pre-sampler (barrel/endcap) 165 22 3 27 4 36 11

EM Calo (barrel/endcap)—front layer 1520 210 8 250 17 312 44

EM Calo (barrel/endcap)—middle layer 800 52 3 69 5 103 10

EM Calo (barrel/endcap)—back layer 400 25 2 33 4 54 10

Hadronic Calo (barrel)—layer 0 100 19 10 21 15 25 23

Hadronic Calo (barrel)—layer 1 90 10 2 12 3 15 8

Hadronic Calo (barrel)—layer 2 40 3 1 3 1 3 1

Total 3115 341 29 415 49 548 107

Fig. 1. Signal processing chain.
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level trigger is quite difficult, but also processing speed
suffers from this extremely high input data dimensionality.
As a consequence, an efficient data compaction scheme is
mandatory.

This paper proposes the use of Segmented Principal
Component Analysis (SPCA) for data compaction and
neural classification using projected data. The SPCA
provides data representation at the layer level, instead of
global random process representation, which is the aim of
Principal Component Analysis (PCA) [4]. Thus, the highly
segmented calorimeter information can be fully explored
after projecting RoI data onto the principal components of
each calorimeter layer. Due to the high data compaction
rate of SPCA, a compact neural classifier can be designed
for achieving efficient and fast event selection.

2. Proposed system

The proposed signal processing will operate at Level 2,
on calorimeter data, in order to
(1)
 reduce the high processing load due to the high
granularity of the information;
(2)
 speed up the particle identification process;

(3)
 achieve high particle identification efficiency by means

of relevant feature extraction.
The signal processing chain comprises three building
blocks: data assembling, data projection and neural
classification, as illustrated in Fig. 1. The first step consists
of assembling raw data coming from both hadronic and
electromagnetic calorimeters. For the specific database
used in this work, raw data comprise simulated events of
dimension up to 3115 (calorimeter cells). As PCA is based
on searching for directions that account for maximum data
variance, data assembling is required to format incoming
events in an adequate form to the feature extraction
process. The formatted output events are row vectors of a
fixed dimension, for which each element corresponds to the
energy deposited by the incident particle in a calorimeter
cell. The second functional block, data projection, receives
formatted events and projects them into the principal
component space. The projection makes use of eigenvec-
tors previously computed from formatted data of a
developing data set. Note that the offline extraction is
made separately for each sub-detector (calorimeter layer),
as will be described in Section 2.2. Only the eigenvectors
with the largest eigenvalues are retained to form a matrix
of linear transformation vectors. These vectors are used to
generate data projections in the reduced dimension space.
Finally, these compacted events are concatenated to feed a
neural network that is designed to perform electron/jet
separation.

2.1. Data assembling

Simulated LVL2 data produced in the Athena environ-
ment [5] were used to test the proposed system. Data
correspond to jets and two signatures of the Higgs boson,
produced at low luminosity ðL ¼ 1033 cm�2 s�1Þ, in the
following decays: H ! 2e�2 m and H ! 4e�. The Higgs
events have 130GeV in the center of mass and the electrons
are 20GeV or 30GeV events.
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Fig. 2. Ring assembling. See text.
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The simulated raw data correspond to interactions with
seven sub-detector layers from both electromagnetic and
hadronic calorimeters. These sub-detectors are: pre-sam-
pler (barrel and endcap), EM calorimeter (barrel and
endcap) front, middle and back layers and Hadronic
calorimeter (barrel) layers 0, 1 and 2.

Two approaches for data assembling have been tested,
named serpentine and ring. In serpentine assembling, each
data vector is a serpentine concatenation of cells in the way
they appear in the RoI layer. This means that no
topological reorganization is performed on raw data. Due
to variability in dimension and missing cells occurring, in
practice, each incomplete RoI is filled in with zeros
appended to the end in order to keep a pre-defined fixed
length. Therefore, this assembling scheme has the draw-
back of increasing artificially the original data variance, as
it is clear from the results shown in Table 1. In the ring

approach, for each calorimeter layer, the cell with the
highest deposited energy is identified, and the data vector is
formed by sequentially grouping rings of cells around this
marked cell. Fig. 2 illustrates an example with an
hypothetic 25-cell RoI. This type of assembling puts in
evidence the energy deposition profile of the incident
particle, which is an important feature that makes further
classification easier to achieve [6]. Moreover, it optimizes
data variance description by minimizing the data variance
increase when zeros are eventually added.

2.2. Data compaction

In order to perform data compaction, the use of PCA in
a segmented way is proposed. This statistical technique,
which is based on the Karhunen–Löeve transformation, is
widely used in multivariate analysis of random processes,
being very useful for dimensionality reduction and for
finding patterns in data of high dimension [7].

The basic idea in PCA lies in the eigenstructure of the
data covariance matrix. Actually, it has been shown that
this matrix (considering a random process x with zero
mean (E½x� ¼ 0)) contains the principal directions
along which the variance of data has the extremal values.
The associated eigenvalues define these extremal values.
In short, if the principal directions are represented by
uj, we can define a linear orthogonal transformation of
data x as

aj ¼ uTj x ¼ xTuj ; j ¼ 0; 1; . . . ; p� 1 (1)

where aj are the projections of x onto the principal
directions. The aj are called the principal components and
have the same physical dimension of the data vector x. In
order to reduce the original data dimension, one may use
only the major p projections in Eq. (1), discarding the
projections of smaller variance.
PCA was applied to each sub-detector layer separately to

better explore the segmented structure of the calorimeter
system [8]. The entire simulated data set (22 581 electrons
and 7509 jets) was randomly splitted into developing
(training) and test sets. Principal components were
extracted only from the training data set, which comprises
11 283 electrons and 3735 jets. Table 1 illustrates the level
of compaction achieved for each sub-detector layer, for
three different levels of random process energy preserva-
tion, 85%, 90% and 95%. As expected, SPCA achieved
higher compaction levels on ring assembling data than on
serpentine data. This is due to the better exploration of the
energy deposition profile in the first approach. Fig. 3
illustrates the relation between the principal components
and data variance for the electromagnetic and hadronic
calorimeters.
2.3. Particle identification

Electron/jet classification is performed by a feedforward
fully-connected neural network [9]. After data projection
onto the reduced sub-space, vectors are concatenated to
form a unique data vector, which is then normalized and
fed into the neural classifier. Normalization is needed in
order to accommodate data values within the dynamic
range of the activating functions of the neural network.
The adopted normalization was to divide each data vector
by its maximum value.
The neural classifier has a three-layer structure with one

input layer of source nodes, one hidden layer (10 neurons)
and an output layer (1 neuron). Each neuron uses the
hyperbolic tangent as the activation function. Network
training was performed using the Resilient Backpropaga-
tion (RPROP) learning algorithm [10]. This algorithm
eliminates the harmful effects of the magnitudes of the
partial derivatives. Only the sign of the derivative is used to
determine the direction of the weight update. Training runs
were carried out with the training data set, already
employed for principal component extraction, using test
data for validation. Each training step comprised a random
selection of an electron/jet pair, in order to reduce
overtraining on electrons due to the difference in statistics.
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Fig. 4. Receiver Operating Characteristic (ROC) for SPCA and T2Calo.
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calorimeters.
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Fig. 4 compares the Receiver Operating Characteristic
(ROC) curves [11] for three levels of data compaction
(energy preservation of 85%, 90% and 95%) using SPCA
data with ring formatting. Results from baseline discrimi-
nation algorithm used in ATLAS (T2Calo) [12] are also
shown. For an electron detection efficiency of 92%, the
proposed discriminator (95% energy preservation) achieves
a false alarm probability of 4.8%, whereas T2Calo presents
16.2%.

3. Conclusions

A new particle discrimination scheme, based on segmen-
ted principal component analysis and neural networks, was
proposed for electron/jet separation at the second level
trigger of ATLAS. The extraction of the principal
components is performed on each sub-detector layer,
exploring the highly segmented structure of the calori-
meters. Results from this extraction scheme demonstrate
that preserving 95% of the original random process energy,
raw events of dimension 3115 may be compacted to 107
principal components. By feeding a neural classifier with
these compacted data, 97.3% of electron efficiency
was achieved for a false alarm probability of 8.7%.
These numbers outperform results from the baseline
discriminator in use.
The relevance of each principal component is under

investigation. This study may increase the classification
efficiency by revealing components with low energy
representation but highly discriminant. The use of Non-
linear PCA [13] is also being considered in order to achieve
even higher compaction levels. Different normalization
schemes are under study envisaging to improve the signal-
to-noise ratio of data representation.
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