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Supernovae observations and cosmic topology
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ABSTRACT

Context. Two fundamental questions regarding our description of the Universe concern the geometry and topology of its 3-dimensional space.
While geometry is a local characteristic that gives the intrinsic curvature, topology is a global feature that characterizes the shape and size of
the 3-space. The geometry constrains, but does not dictate, the spatial topology.
Aims. We show that besides determining the spatial geometry, the knowledge of the spatial topology allows us to place tight constraints on the
density parameters associated with dark matter (Ωm) and dark energy (ΩΛ).
Methods. By using the Poincaré dodecahedral space as the observable spatial topology, we reanalyze the current type Ia supernovae (SNe Ia)
constraints on the density parametric space Ωm −ΩΛ.
Results. From this SNe Ia plus cosmic topology analysis, we find best-fit values for the density parameters that are in agreement with a number
of independent cosmological observations.

Key words. cosmological parameters – cosmic microwave background – Cosmology: miscellaneous – Methods: miscellaneous – Cosmology:
observations

1. Introduction

Cosmologists assume that the Universe can be described as a
manifold. Mathematicians characterize manifolds in terms of
their geometry and topology. Thus, two fundamental questions
regarding our understanding of the Universe concern its geom-
etry and topology. An important difference between these two
attributes is that while geometry is a local characteristic that
gives the intrinsic curvature of a manifold, topology is a global
feature that characterizes its shape and size.

Within the framework of standard cosmology, the Universe
is described by a space-time manifoldM4 = R × M with a lo-
cally homogeneous and isotropic Robertson-Walker (RW) met-
ric

ds2 = −dt2 + a2(t)
[
dχ2 + f 2(χ)(dθ2 + sin2 θdφ2)

]
, (1)

where f (χ) = (χ , sinχ, or sinhχ), depending on the sign of
the constant spatial curvature (k = 0, 1,−1). The spatial sec-
tion M is usually taken to be one of the simply connected
spaces, namely, Euclidean R3, spherical S3, or hyperbolic H3.
However, this is an assumption that has led to a common mis-
conception that the curvature k of M is all one needs to decide
whether the spatial section is finite or not.

In a spatially homogeneous and isotropic Universe, for in-
stance, the geometry, and therefore the corresponding curvature

of the spatial sections M, is determined by the total matter-
energy density Ωtot. This means that the geometry or the cur-
vature of M is observable, i.e. for Ωtot < 1 the spatial section
is negatively curved (k = −1), for Ωtot = 1 it is flat (k = 0),
while for Ωtot > 1 M is positively curved (k = 1). In con-
sequence, a key point in the search for the (spatial) geometry
of the Universe is to use observations to constrain the density
Ωtot. In the context of the standard ΛCDM model (which we
adopt in this work), this amounts to determining regions in the
ΩΛ −Ωm parametric plane that consistently account for the ob-
servations, and from which one expects to deduce the geometry
of the Universe. As a matter of fact, the resulting regions in this
parametric plane also give information on the dynamics of the
Universe as, for example, whether an accelerated expansion is
indicated by the observations, and on the possible behaviors
regarding the expansion history of the Universe (eternal expan-
sion, recollapse, bounce, etc.).

However, geometry constrains, but does not dictate, the
topology of the 3-manifold M. Indeed, for the Euclidean ge-
ometry (k = 0) besides R3, there are 17 classes of topologi-
cally distinct spaces M that can be endowed with this geometry,
while for both the spherical (k = 1) and hyperbolic (k = −1)
geometries there is an infinite number of topologically inequiv-
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alent manifolds with non-trivial topology that admit these ge-
ometries.

Over the past few years, distinct approaches to probe a non-
trivial topology of the Universe,1 using either discrete cosmic
sources or cosmic microwave background radiation (CMBR),
have been suggested (see, e.g., the review articles of Lachièze-
Rey & Luminet, 1995; Starkman, 1998; Levin, 2002; Rebouças
& Gomero, 2004; Rebouças, 2005). An immediate observa-
tional consequence of a detectable non-trivial topology of the
3-space M is that the sky will show multiple (topological)
images of either cosmic objects or specific spots of CMBR
(Gomero, Rebouças, & Tavakol, 2001a,b; Weeks, Lehoucq, &
Uzan, 2003; Weeks, 2003). The so-called “circles-in-the-sky”
method (Cornish, Spergel, & Starkman, 1998), for instance,
relies on multiple images of correlated circles in the CMBR
maps. In a space with a detectable non-trivial topology, the
sphere of last scattering intersects some of its topological im-
ages along the circles-in-the-sky, i.e., pairs of matching circles
of equal radii, centered at different points on the last scatter-
ing sphere (LSS), with the same distribution (up to a phase) of
temperature fluctuations, δT , along the correlated circles. Since
the mapping from the last scattering surface to the night-sky
sphere preserves circles (Calvão et al., 2005), the correlated cir-
cles will be written in the CMBR anisotropy maps regardless
of the background geometry and for any non-trivial detectable
topology. As a consequence, to observationally probe a non-
trivial topology, one should scrutinize the full-sky CMBR maps
to extract the correlated circles, whose angular radii, matching
phase, and relative position of their centers can be used to deter-
mine the topology of the Universe. Thus, a non-trivial cosmic
topology is an observable and can be probed for all locally ho-
mogeneous and isotropic geometries, without any assumption
concerning the cosmological density parameters.

In this regard, the question as to whether one can use this
observable to either determine the geometry or set constraints
on the density parameters naturally arises. Regarding the geom-
etry it is well-known that the topology of M determines the sign
of its curvature (see, e.g., Bernshtein & Shvartsman, 1980).
Thus, the topology of the spatial section of the Universe dic-
tates its geometry. At first sight, this seems to indicate that the
bounds on the density parameters Ωm and ΩΛ arising from the
detection of cosmic topology should be very weak, in the sense
that they would only determine whether the density parameters
of the Universe take values in the regions below, above, or on
the flat line Ωtot = ΩΛ + Ωm = 1.

In this article, however, we show that, contrary to this
indication, the detection of the cosmic topology through the
“circles-in-the-sky” method gives rise to very tight constraints
on the density parameters. To this end, we use the Poincaré do-
decahedral space as the observable topology of the spatial sec-
tions of the Universe to reanalyze the current SNe Ia constraints
on the parametric space Ωm −ΩΛ, as provided by the so-called
gold sample of 157 SNe Ia given by Riess et al. (2004). As a re-
sult, we show that the knowledge of cosmic topology provides
very strong and complementary constraints on the region of

1 In this article, in line with the usage in the literature, by topology
of the Universe we mean the topology of the space-like section M.

the density parametric plane allowed by SNe Ia observations,
drastically reducing the inherent degeneracies of current SNe
Ia measurements.

2. SNe Ia observations and cosmic topology

The value of the total density Ωtot = 1.02 ± 0.02 reported by
the WMAP team (Spergel et al., 2003), which favors a posi-
tively curved Universe, and the low power measured by WMAP
for the CMBR quadrupole (� = 2) and octopole (� = 3) mo-
ments, have motivated the suggestion by Luminet et al. (2003)
of the Poincaré dodecahedral space topology as a possible ex-
planation for the anomalous power of these low multipoles.
They found that the power spectrum of the Poincaré dodec-
ahedral space’s fits the WMAP-observed small power of the
low multipoles, for Ωtot � 1.013, which clearly falls within
the interval suggested by WMAP. Since then, the dodecahe-
dral space has been examined in various studies (Cornish et
al., 2004; Roukema et al., 2004; Aurich, Lustig, & Steiner,
2005a; Gundermann, 2005; Aurich, Lustig, & Steiner, 2005b),
in which further features of the model have been carefully
considered. As a result, it turns out that a Universe with the
Poincaré dodecahedral space section accounts for the suppres-
sion of power at large scales observed by WMAP, and fits the
WMAP temperature two-point correlation function for 1.015 ≤
Ωtot ≤ 1.020 (Aurich, Lustig, & Steiner, 2005a,b), retaining
the standard Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
foundation for local physics.

A preliminary search failed to find the antipodal matched
circles in the WMAP CMBR sky maps predicted for the
Poincaré dodecahedral space model (Cornish et al., 2004). In
a second search, indications for these correlated circles were
found, but due to noise and foreground structure of the CMBR
maps, no final conclusion has been drawn (Aurich, Lustig, &
Steiner, 2005c). We also note that the Doppler and integrated
Sachs-Wolfe contributions to the circles-in-the-sky are strong
enough to blur the circles, and thus the matched circles can be
overlooked in the CMBR sky maps (Aurich, Lustig, & Steiner,
2005a). Additional effects such as the Sunyaev-Zeldovich ef-
fect and the finite thickness of the LSS, as well as possible sys-
tematics in the removal of the foregrounds, can further damage
the topological circle matching.

On these observational grounds, in what follows, we shall
assume the Poincaré dodecahedron model.

2.1. SNe Ia plus cosmic topology analysis

To study the consequences of the FLRW model with the
Poincaré dodecahedral space section D, we begin by recalling
that this model predicts six pairs of antipodal matched circles
on the LSS, centered in a symmetrical pattern like the faces
of the dodecahedron. Clearly the distance between the centers
of each pair of circles is twice the radius rin j of the sphere in-
scribable inD. Now, a straightforward use of a Napier’s rule to
the right-angled spherical triangle with elements rin j, the angu-
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Fig. 1. A schematic illustration of two antipodal matching circles in
the sphere of last scattering. The relation between the angular radius
α and the angular sides rin j and χlss is given by the following Napier’s
rule for spherical triangles: sin(π/2−α) = tan rin j tan(π/2− χlss) (see,
e.g., Coxeter, 1965).

lar radius α of a matched circle, and the radius χlss of the last
scattering sphere (see Fig. 1), furnishes

cosα =
tan rin j

tanχlss

, (2)

where rin j = π/10 for the dodecahedron. Note that χlss depends
only on the cosmological scenario, and for the ΛCDM model
it reads (in units of the curvature radius)

χlss =
√|Ωk |

∫ 1+zlss

1

dx√
Ωmx3 + Ωk x2 + ΩΛ

, (3)

where Ωk = 1 − Ωtot and zlss = 1089 (Spergel et al., 2003).
Equations (2) and (3) give the relations between the angu-

lar radius α and the cosmological density parameters ΩΛ and
Ωm, and thus can be used to set bounds on these parameters.
To quantify this, we proceed in the following way. Firstly, we
take the angular radius α = 50◦ estimated in Aurich, Lustig, &
Steiner (2005a). Secondly, we note that measurements of the
radius α unavoidably involve observational uncertainties, and
therefore, in order to set constraints on the density parameters
from the detection of cosmic topology, one should take such
uncertainties into account. To obtain very conservative results,
we take δα � 6◦, the scale below which the circles are blurred
(Aurich, Lustig, & Steiner, 2005a).

In our statistical analysis, we use SNe Ia data from Riess
et al. (2004). The total sample presented in that reference con-
sists of 186 events distributed over the redshift interval 0.01 �
z � 1.7 and constitutes the compilation of observations made
by two supernova search teams plus, 16 new events observed
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Fig. 2. The 68.3%, 95.4%, and 99.7% confidence regions in the den-
sity parametric plane, which arise from the SNe Ia plus dodecahedral
space topology analysis. The best-fit values for the dark matter and
dark energy density parameters are, respectively, Ωm = 0.316+0.011

−0.009
and ΩΛ = 0.706+0.010

−0.009 at a 95.4% confidence level. The value of the
total density parameter, as well as of the angular radius of the circles
and the corresponding uncertainties, are also displayed.

by the Hubble space telescope (HST). This total data set was
initially divided into “high-confidence” (gold) and “likely but
not certain” (silver) subsets. Here, we consider only the 157
events that constitute the so-called gold sample. The confidence
regions in the parametric space Ωm − ΩΛ are determined by
defining a probability distribution function L = ∫ e−χ2(p)/2dh,
where p stands for the parameters Ωm, ΩΛ, and h, and we
have marginalized over all possible values of the Hubble pa-
rameter h (for some recent SNe Ia analyses see Choudhury
& Padmanabhan, 2003; Nesseris & Perivolaropoulos, 2004;
Alcaniz & Pires, 2004). The Poincaré dodecahedral space
topology is added to the SNe Ia data as a Gaussian prior on the
value of χlss, which can easily be obtained from Eqs. (2) – (3).

Figure 2 shows the results of our joint SNe Ia plus cosmic
topology analysis. There, we display the confidence regions
(68.3%, 95.4%, and 99.7%) in the parametric plane Ωm − ΩΛ.
Compared to the conventional SNe Ia analysis, i.e. the one
with no such cosmic topology assumption (see, e.g., Fig. 8
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of Riess et al., 2004), it is clear that the effect of the cos-
mic topology as a new cosmological observable is to consid-
erably reduce the area corresponding to the confidence inter-
vals in the parametric space Ωm − ΩΛ, as well as to break de-
generacies arising from the current SNe Ia measurements. The
best-fit parameters for this joint analysis are Ωm = 0.316 and
ΩΛ = 0.706 with reduced χ2

min/ν � 1.13 (ν is defined as de-
grees of freedom). At a 95.4% confidence level (c.l.) we found
Ωm = 0.316+0.010

−0.009 and ΩΛ = 0.706 ± 0.010, which corresponds
to Ωtot = 1.022 ± 0.014. Note that this value of the total en-
ergy density parameter derived from our SNe Ia plus topol-
ogy statistics is in full agreement with those reported by the
WMAP team, Ωtot = 1.02 ± 0.02 (Spergel et al., 2003), as well
as with the value obtained by fitting the Poincaré dodecahedral
power spectrum for low multipoles with the WMAP data, i.e.
1.015 ≤ Ωtot ≤ 1.020 (Aurich, Lustig, & Steiner, 2005a) and
Ωtot � 1.013 (Luminet et al., 2003).

Concerning the above analysis it is also worth empha-
sizing three important aspects at this point. First, the range
1.015 ≤ Ωtot ≤ 1.020 in which the Poincaré dodecahedral
space model fits the WMAP data (and also gives rise to six
pairs of matching circles) has not been used as a prior of our
statistical data analysis. Second, the best-fit values for both Ωm

and ΩΛ (and, consequently, for Ωtot) depend very weakly on
the value used for the angular radius α of the circle. As an ex-
ample, by assuming α = 11◦ ± 1◦, as suggested in Roukema et
al. (2004), it is found that Ωm = 0.312+0.078

−0.072, ΩΛ = 0.698+0.072
−0.078,

and Ωtot = 1.010 ± 0.002 at a 95.4% (c.l.), which is very close
to the value found by considering α = 50◦ (Aurich, Lustig, &
Steiner, 2005a) with an uncertainty of 6◦. Third, the uncertainty
on the value of the radius α alters the width corresponding to
the confidence regions, without having a significant effect on
the best-fit values. Finally, we also notice that, by imposing
the topological prior, the estimated value for the matter den-
sity parameter is surprisingly close to those suggested by dy-
namic or clustering estimates (see, e.g., Calberg et al., 1996;
Dekel, Burstein, & White, 1997; Feldman et al., 2003; Allen
et al., 2004; Pope et al., 2004). On the other hand, as shown in
Riess et al. (2004) (see also Choudhury & Padmanabhan, 2003;
Nesseris & Perivolaropoulos, 2004; Alcaniz & Pires, 2004), the
conventional SNe Ia analysis (without the above cosmic topol-
ogy constraint) provides Ωm � 0.46, which is ∼ 1σ off from
the central value obtained by using independent methods, as
for instance, the mean relative peculiar velocity measurements
for pairs of galaxies (Feldman et al., 2003).

3. Final remarks

Fundamental questions, such as whether the Universe will ex-
pand forever or eventually re-collapse and what are its shape
and size, are associated with the nature of its constituents as
well as with the measurements of both the local curvature and
the global topology of the 3-dimensional world. The so-called
“circles-in-the-sky” method makes it apparent that a non-trivial
detectable topology of the spatial section can be probed for any
locally homogeneous and isotropic Universe, with no assump-
tion about the cosmological density parameters. In this article,
we have shown that the knowledge of spatial topology of the

Universe not only dictates the sign of its local curvature (and
therefore its geometry), but also imposes very restrictive con-
straints on the density parameters associated with dark matter
(Ωm) and dark energy (ΩΛ). Indeed, by combining the detection
of the cosmic topology through the “circles-in-the-sky” method
with the current SNe Ia observations, we have shown that the
effect of the cosmic topology as a cosmological observable is
to drastically reduce the degeneracies inherent to current SNe
data, providing limits on the cosmological density parameters,
which cannot presently be obtained from combinations of the
current cosmological data. This role of cosmic topology has
previously been emphasized in the context of cosmic crystal-
lography by Uzan et al. (1999). We underline the fact that the-
best fit values are not the most important outcome of our work,
since the dodecahedral space model has not been confirmed as
the ultimate global topology of the Universe.

We emphasize that even though the precise value of the ra-
dius α of the circle and its uncertainty (fundamental quantities
in our analysis) can be modified by more accurate analysis and
future observations, the general aspects of our analysis remain
essentially unchanged, since the best-fit values of the cosmo-
logical parameters depend very weakly on α, and the value
of uncertainty δα primarily alters the confidence uncertainty
area in the density parametric plane Ωm − ΩΛ. On the other
hand, regarding the possibility of using the observational re-
sults to guide the search for the circles in the sky, from a SDSS
plus WMAP combination of large-scale structure, SNe Ia, and
CMBR data (Tegmark et al., 2004), we can only place an upper
bound on the angular radii of the circles for a Poincaré dodec-
ahedral topology, namely α < 70◦, which is consistent with
value of α we have used in this work.

Given the immense efforts expended in the quest for the
local curvature of the Universe, we believe that our results re-
inforce the cosmological interest in the search for definitive ob-
servational evidences of a non-trivial cosmic topology. Further
investigations of the other globally homogeneous spherical
spaces that also fit current CMBR data are in progress and will
be presented in a forthcoming article.
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