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bk LIP and Instituto Superior Técnico, Lisboa, Portugal
bl J. Stefan Institute, Ljubljana, Slovenia
bm Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
bn Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain
bo Universidad Complutense de Madrid, Madrid, Spain
bp Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
bq Universidad de Granada & C.A.F.P.E., Granada, Spain
br Universidad de Santiago de Compostela, Spain
bs Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
bt School of Physics and Astronomy, University of Leeds, United Kingdom
bu Argonne National Laboratory, Argonne, IL, USA
bv Case Western Reserve University, Cleveland, OH, USA
bw Colorado School of Mines, Golden, CO, USA
bx Colorado State University, Fort Collins, CO, USA
by Colorado State University, Pueblo, CO, USA
bz Fermilab, Batavia, IL, USA
ca Louisiana State University, Baton Rouge, LA, USA
cb Michigan Technological University, Houghton, MI, USA
cc New York University, New York, NY, USA
cd Northeastern University, Boston, MA, USA
ce Ohio State University, Columbus, OH, USA
cf Pennsylvania State University, University Park, PA, USA
cg Southern University, Baton Rouge, LA, USA
ch University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
ci University of Nebraska, Lincoln, NE, USA
cj University of New Mexico, Albuquerque, NM, USA
ck University of Wisconsin, Madison, WI, USA
cl University of Wisconsin, Milwaukee, WI, USA
cm Institute for Nuclear Science and Technology (INST), Hanoi, Viet Nam

a r t i c l e i n f o

Article history:
Received 8 December 2010
Accepted 19 December 2010
Available online 28 December 2010

a b s t r a c t

We present the results of searches for dipolar-type anisotropies in different energy ranges above
2.5 � 1017 eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase
and the amplitude measurements of the first harmonic modulation in the right-ascension distribution.
Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being
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below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as
well as with some theoretical expectations.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The large-scale distribution of the arrival directions of Ultra-
High Energy Cosmic Rays (UHECRs) is, together with the spectrum
and the mass composition, an important observable in attempts to
understand their nature and origin. The ankle, a hardening of the
energy spectrum of UHECRs located at E ’ 4 EeV [1–5], where
1 EeV � 1018 eV, is presumed to be either the signature of the tran-
sition from galactic to extragalactic UHECRs [1], or the distortion of
a proton-dominated extragalactic spectrum due to e± pair produc-
tion of protons with the photons of the Cosmic Microwave Back-
ground (CMB) [6,7]. If cosmic rays with energies below the ankle
have a galactic origin, their escape from the Galaxy might generate
a dipolar large-scale pattern as seen from the Earth. The amplitude
of such a pattern is difficult to predict, as it depends on the as-
sumed galactic magnetic field and the charges of the particles as
well as the distribution of sources. Some estimates, in which the
galactic cosmic rays are mostly heavy, show that anisotropies at
the level of a few percent are nevertheless expected in the EeV
range [8,9]. Even for isotropic extragalactic cosmic rays, a dipole
anisotropy may exist due to our motion with respect to the frame
of extragalactic isotropy. This Compton-Getting effect [10] has been
measured with cosmic rays of much lower energy at the solar fre-
quency [11,12] as a result of our motion relative to the frame in
which they have no bulk motion.

Since January 2004, the surface detector (SD) array of the Pierre
Auger Observatory has collected a large amount of data. The statis-
tics accumulated in the 1 EeV energy range allows one to be sensi-
tive to intrinsic anisotropies with amplitudes down to the 1% level.
This requires determination of the exposure of the sky at a corre-
sponding accuracy (see Section 3) as well as control of the system-
atic uncertainty of the variations in the counting rate of events
induced by the changes of the atmospheric conditions (see Section
4). After carefully correcting these experimental effects, we present
in Section 5 searches for first harmonic modulations in right-ascen-
sion based on the classical Rayleigh analysis [13] slightly modified
to account for the small variations of the exposure with right
ascension.

Below E ’ 1 EeV, the detection efficiency of the array depends
on zenith angle and composition, which amplifies detector-depen-
dent variations in the counting rate. Consequently, our results be-
low 1 EeV are derived using simple event counting rate differences
between Eastward and Westward directions [14]. That technique
using relative rates allows a search for anisotropy in right ascen-
sion without requiring any evaluation of the detection efficiency.

From the results presented in this work, we derive in Section 6
upper limits on modulations in right-ascension of UHECRs and dis-
cuss some of their implications.

2. The Pierre Auger Observatory and the data set

The southern site of the Pierre Auger Observatory [15] is located
in Malargüe, Argentina, at latitude 35.2�S, longitude 69.5�W and
mean altitude 1400 m above sea level. Two complementary tech-

niques are used to detect extensive air showers initiated by
UHECRs: a surface detector array and a fluorescence detector. The
SD array consists of 1660 water-Cherenkov detectors covering an
area of about 3000 km2 on a triangular grid with 1.5 km spacing,
allowing electrons, photons and muons in air showers to be sam-
pled at ground level with a duty cycle of almost 100%. In addition,
the atmosphere above the SD array is observed during clear, dark
nights by 24 optical telescopes grouped in four buildings. These
detectors observe the longitudinal profile of air showers by detect-
ing the fluorescence light emitted by nitrogen molecules excited by
the cascade.

The data set analysed here consists of events recorded by the
surface detector from 1 January 2004 to 31 December 2009. During
this time, the size of the Observatory increased from 154 to 1660
surface detector stations. We consider in the present analysis
events3 with reconstructed zenith angles smaller than 60� and satis-
fying a fiducial cut requiring that the six neighbouring detectors in
the hexagon surrounding the detector with the highest signal were
active when the event was recorded. Throughout this article, based
on this fiducial cut, any active detector with six active neighbours
will be defined as an unitary cell [16]. It ensures both a good quality
of event reconstruction and a robust estimation of the exposure of
the SD array, which is then obtained in a purely geometrical way.
The analysis reported here is restricted to selected periods to elimi-
nate unavoidable problems associated to the construction phase,
typically in the data acquisition and the communication system or
due to hardware instabilities [16]. These cuts restrict the duty cycle
to ’85%. Above the energy at which the detection efficiency satu-
rates, 3 EeV [16], the exposure of the SD array is 16,323 km2 sr year
for 6 years used in this analysis.

The event direction is determined from a fit to the arrival times
of the shower front at the SD. The precision achieved in this recon-
struction depends upon the accuracy on the GPS clock resolution
and on the fluctuations in the time of arrival of the first particle
[17]. The angular resolution is defined as the angular aperture
around the arrival directions of cosmic rays within which 68% of
the showers are reconstructed. At the lowest observed energies,
events trigger as few as three surface detectors. The angular reso-
lution of events having such a low multiplicity is contained within
2.2�, which is quite sufficient to perform searches for large-scale
patterns in arrival directions, and reaches �1� for events with mul-
tiplicities larger than five [18].

The energy of each event is determined in a two-step procedure.
First, using the constant intensity cut method, the shower size at a
reference distance of 1000 m, S(1000), is converted to the value S38�

that would have been expected had the shower arrived at a zenith
angle 38�. Then, S38� is converted to energy using a calibration
curve based on the fluorescence telescope measurements [19].
The uncertainty in S38� resulting from the adjustment of the shower
size, the conversion to a reference angle, the fluctuations from
shower-to-shower and the calibration curve amounts to about

3 A comprehensive description of the identification of shower candidates detected
at the SD array of the Pierre Auger Observatory is given in Ref. [16].
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15%. The absolute energy scale is given by the fluorescence mea-
surements and has a systematic uncertainty of 22% [19].

3. The exposure of the surface detector

The instantaneous exposure xðt; h;/; S38� Þ of the SD array at the
time t as a function of the incident zenith and azimuth4 angles (h,/)
and shower size S38� is given by:

xðt; h;/; S38� Þ ¼ ncellðtÞ � acell cos h� �ðS38� ; h;/Þ; ð1Þ

where acell cosh is the projected surface of a unitary cell under the
incidence zenith angle h, ncell(t) is the number of unitary cells at
time t, and �ðS38� ; h;/Þ is the directional detection efficiency at size
parameter S38� under incidence angles (h,/). The conversion from
S38� to the energy E, which accounts for the changes of atmospheric
conditions, will be presented in the next section.

The number of unitary cells ncell(t) is recorded every second
using the trigger system of the Observatory and reflects the array
growth as well as the dead periods of each detector. It ranges from
’60 (at the begining of the data taking in 2004) to ’1200 (from the
middle of 2008). From Eq. (1), it is apparent that ncell(t) is the only
time-dependent quantity entering in the definition of the instanta-
neous exposure, modulating within any integrated solid angle the
expected number of events as a function of time. For any periodic-
ity T, the total number of unitary cells Ncell(t) as a function of time t
within a period and summed over all periods, and its associated
relative variations DNcell(t) are obtained from:

NcellðtÞ ¼
X

j

ncellðt þ jTÞ; DNcellðtÞ ¼
NcellðtÞ
hNcellðtÞi

; ð2Þ

with hNcellðtÞi ¼ 1=T
R T

0 dtNcellðtÞ.
A genuine dipolar anisotropy in the right ascension distribution

of the events induces a modulation in the distribution of the time
of arrival of events with a period equal to one sidereal day. A side-
real day indeed corresponds to the time it takes for the Earth to
complete one rotation relative to the vernal equinox. It is approx-
imately Tsid = 23 h, 56 min, 4.091 s. Throughout this article, we de-
note by a0 the local sidereal time and express it in hours or in
radians, as appropriate. For practical reasons, a0 is chosen so that
it is always equal to the right ascension of the zenith at the center
of the array.

On the other hand, a dipolar modulation of experimental origin
in the distribution of the time of arrival of events with a period
equal to one solar day may induce a spurious dipolar anisotropy
in the right ascension distribution of the events. Hence, it is essen-
tial to control DNcell(t) to account for the variation of the exposure

in different directions. We show DNcell(t) in Fig. 1 in 360 bins of
4 min at these two time scales of particular interest: the solar
one T = Tsol = 24 h (left panel), and the sidereal one T = Tsid (right
panel). A clear diurnal variation is apparent on the solar time scale
showing an almost dipolar modulation with an amplitude of
’2.5%. This is due to both the working times of the construction
phase of the detector and to the outage of some batteries of the
surface detector stations during nights. When averaged over 6 full
years, this modulation is almost totally smoothed out on the side-
real time scale as seen in the right panel of Fig. 1. This distribution
will be used in Section 5.1.1 to weight the events when estimating
the Rayleigh parameters.

From the instantaneous exposure, it is straightforward to com-
pute the integrated exposure either in local coordinates x(h,/,a0)
by replacing ncell(t) by DNcell(a0) in Eq. (1), or in celestial coordi-
nates x(a,d) by expressing the zenith angle h in terms of the equa-
torial right ascension a and declination d through:

cos h ¼ sin ‘site sin dþ cos ‘site cos d cosða� a0Þ; ð3Þ

(where ‘site is the Earth latitude of the site) and then by integrating
Eq. (1) over time. Besides, let us also mention that to account for the
spatial extension of the surface detector array making the latitude
of the site ‘site varying by ’0.4�, the celestial coordinates (a,d) of
the events are calculated by transporting the showers to the ‘‘cen-
ter’’ of the Observatory site.

4. Influence of the weather effects

Changes in the atmospheric pressure P and air density q have
been shown to affect the development of extensive air showers de-
tected by the surface detector array and these changes are reflected
in the temporal variations of shower size at a fixed energy [20]. To
eliminate these variations, the procedure used to convert the ob-
served signal into energy needs to account for these atmospheric
effects. This is performed by relating the signal at 1 km from the
core, S(1000), measured at the actual density q and pressure P, to
the one eSð1000Þ that would have been measured at reference val-
ues q0 and P0, chosen as the average values at Malargüe, i.e.
q0 = 1.06 kg m�3 and P0 = 862 hPa [20]:

eSð1000Þ

¼ 1� aPðhÞðP � P0Þ � aqðhÞðqd � q0Þ � bqðhÞðq� qdÞ
h i

Sð1000Þ;

ð4Þ

where qd is the average daily density at the time the event was re-
corded. The measured coefficients aq = (�0.80 ± 0.02) kg�1 m3,
bq = (�0.21 ± 0.02) kg�1 m3 and aP = (�1.1 ± 0.1)10�3 hPa�1 reflect
respectively the impact of the variation of air density (and thus
temperature) at long and short time scales, and of the variation of
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Fig. 1. Relative variation of the integrated number of unitary cells as a function of the solar hour of the day in UTC (left panel), and as a function of the local sidereal time
(right panel).

4 The angle / is the azimuth relative to the East direction, measured
counterclockwise.
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pressure on the shower sizes [20]. It is worth pointing out that air
density coefficients are here predominant relative to the pressure
one. The zenithal dependences of these parameters, that we use
in the following, were also studied in Ref. [20]. It is this reference
signal eSð1000Þ which has to be converted, using the constant inten-
sity cut method, to the signal size eS38� and finally to energy. For con-
venience, we denote hereafter the uncorrected (corrected) shower
size S38� (eS38� ) simply by S (eS).

Carrying out such energy corrections is important for the study
of large scale anisotropies. Above 3 EeV, the rate of events R per
unit time above a given uncorrected size threshold Sth, and in a gi-
ven zenith angle bin, is modulated by changes of atmospheric
conditions:

Rð> SthÞ /
Z 1

Sth

dS
dJ

deS deS
dS
/ ½1þ ðcS � 1ÞanDn�

Z 1

Sth

dSS�cS ; ð5Þ

where hereafter n generically denotes P, q or qd, and where we have
adopted for the differential flux dJ/dS a power law with spectral in-
dex cS. Hence, under changes of atmospheric parameters Dn, the
following relative change in the rate of events is expected:

1
R

dRð> SthÞ
dn

’ ðcS � 1Þan: ð6Þ

Over a whole year, this spurious modulation is partially compen-
sated in sidereal time, though not in solar time. In addition, a sea-
sonal variation of the modulation of the daily counting rate
induces sidebands at both the sidereal and anti-sidereal5 frequen-
cies. This may lead to misleading measures of anisotropy if the
amplitude of the sidebands significantly stands out above the back-
ground noise [21]. Correcting energies for weather effects, the net
correction in the first harmonic amplitude in sidereal time turns
out to be only of ’0.2% for energy thresholds greater than 3 EeV,
thanks to large cancellations taking place when considering the
large time period used in this study.

In addition to the energy determination, weather effects can
also affect the detection efficiencies for showers with energies be-
low 3 EeV, for the detection of which the surface array is not fully
efficient. Changes of the shower signal size due to changes of
weather conditions Dn imply that showers are detected with the
efficiency associated to the observed signal size S, which is related
at first order to the one associated to the corrected signal size
through:

�ðSÞ ’ �ðeSÞ þ ðS� eSÞd�ðSÞ
dS

����
S¼eS ’ �ðeSÞ þ anDneS d�ðSÞ

dS

����
S¼eS ; ð7Þ

where we have made use of Eq. (4). The second term modulates the
observed rate of events, even after the correction of the signal sizes.
Indeed, the rate of events R above a given corrected signal size
threshold eSth is now the integration of the cosmic ray spectrum
weighted by the corresponding detection efficiency expressed in
terms of the observed signal size S:

Rð> eSthÞ /
Z 1eSth

deS �ðeSÞ þ anDneS d�ðSÞ
dS

� ����
S¼eS
#

dJ

deS : ð8Þ

Hence, the relative change in the rate of events under changes in the
atmosphere becomes:

1
R

dRð> eSthÞ
dn

’ an

R

Z 1eSth

deSeS dJ

deS d�ðSÞ
dS

�����
S¼eS ; ð9Þ

which, after an integration by parts and at first order in an, leads to:

1
R

dRð> eSthÞ
dn

’ ðcS � 1Þan 1�
�ðeSthÞ

R1eSth
deSeS�cSR1eSth

deS�ðeSÞeS�cS

24 35: ð10Þ

The expression in brackets gives the additional modulations (in
units of the weather effect modulation (cs � 1)an when the detec-
tion efficiency is saturated) due to the variation of the detection
efficiency. Note that this expression is less than 1 for any rising
function � satisfying 0 6 �(S) 6 1, and reduces to 0, as expected,

when �ðeSthÞ ¼ 1. As a typical example, we show in Fig. 2 the ex-
pected modulation amplitude as a function of S by adopting a rea-
sonable detection efficiency function of the form �ðSÞ ¼
S3= S3 þ S3

1=2

h i
where the value of S1/2 is such that �(S1/2) = 0.5. This

relative amplitude is about 0.3 for S = S1/2, showing that for this sig-
nal size threshold the remaining modulation of the rate of events
after the signal size corrections is about 0.3 � (cs � 1)an. The value
of S1/2 being such that it corresponds to ’0.7 EeV in terms of energy,
it turns out that within the current statistics the Rayleigh analysis of
arrival directions can be performed down to threshold energies of
1 EeV by only correcting the energy assignments.

5. Analysis methods and results

5.1. Overview of the analyses

The distribution in right ascension of the flux of CRs arriving at a
detector can be characterised by the amplitudes and phases of its
Fourier expansion, I(a) = I0(1 + rcos(a � u) + r0 cos(2(a � u0)) +� � �).
Our aim is to determine the first harmonic amplitude r and its
phase u. To account for the non-uniform exposure of the SD array,
we perform two different analyses.

5.1.1. Rayleigh analysis weighted by exposure
Above 1 EeV, we search for the first harmonic modulation in

right ascension by applying the classical Rayleigh formalism [13]
slightly modified to account for the non-uniform exposure to dif-
ferent parts of the sky. This is achieved by weighting each event
with a factor inversely proportional to the integrated number of
unitary cells at the local sidereal time of the event (given by the
right panel histogram of Fig. 1) [22,23]:

a ¼ 2
N

XN

i¼1

wi cos ai; b ¼ 2
N

XN

i¼1

wi sin ai; ð11Þ

where the sum runs over the number of events N in the considered
energy range, the weights are given by wi � ½DNcellða0

i Þ�
�1 and the
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Fig. 2. Relative modulation of the rates above a given corrected signal size due to
the variations of the detection efficiency under changes of atmospheric conditions,
relatively to the factor modulating the rate of events above the corresponding
uncorrected signal size in units of S1/2.

5 The anti-sidereal time is a fictitious time scale symmetrical to the sidereal one
with respect to the solar one and that reflects seasonal influences [21]. It corresponds
to a fictitious year of ’364 days.
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normalisation factor is N ¼
PN

i¼1wi. The estimated amplitude r and
phase u are then given by:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
; u ¼ arctan

b
a
: ð12Þ

As the deviations from an uniform right ascension exposure are
small, the probability P(>r) that an amplitude equal or larger than
r arises from an isotropic distribution can be approximated by the
cumulative distribution function of the Rayleigh distribution
P(>r) = exp(�k0), where k0 ¼Nr2=4.

5.1.2. East–West method
Below 1 EeV, due to the variations of the event counting rate

arising from Eq. (10), we adopt the differential East–West method
[14]. Since the instantaneous exposure of the detector for Eastward
and Westward events is the same,6 with both sectors being equally
affected by the instabilities of the detector and the weather condi-
tions, the difference between the event counting rate measured
from the East sector, IE(a0), and the West sector, IW(a0), allows us
to remove at first order the direction independent effects of exper-
imental origin without applying any correction, though at the cost
of a reduced sensitivity. Meanwhile, this counting difference is di-
rectly related to the right ascension modulation r by (see
Appendix):

IEða0Þ � IWða0Þ ¼ � N
2p

2hsin hi
phcos di r sinða0 �uÞ: ð13Þ

The amplitude r and phase u can thus be calculated from the arrival
times of each set of N events using the standard first harmonic anal-
ysis [13] slightly modified to account for the subtraction of the
Western sector to the Eastern one. The Fourier coefficients aEW

and bEW are thus defined by:

aEW ¼
2
N

XN

i¼1

cosða0
i þ fiÞ; bEW ¼

2
N

XN

i¼1

sinða0
i þ fiÞ; ð14Þ

where fi equals 0 if the event is coming from the East or p if coming
from the West (so as to effectively subtract the events from the
West direction). This allows us to recover the amplitude r and the
phase uEW from

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

EW þ b2
EW

q
; uEW ¼ arctan

bEW

aEW

� �
: ð15Þ

Note however that uEW, being the phase corresponding to the max-
imum in the differential of the East and West fluxes, is related to u
in Eq. (12) through u = uEW + p/2. As in the previous analysis, the
probability P(>r) that an amplitude equal or larger than r arises
from an isotropic distribution is obtained by the cumulative distri-
bution function of the Rayleigh distribution Pð> rÞ ¼ expð�kEW

0 Þ,
where kEW

0 ¼ ð2hsin hi=phcos diÞ2 � Nr2=4. For the values of hsinhi
and hcosdi of the events used in this analysis, the first factor in
the expression for kEW

0 is 0.22. Then, comparing it with the expres-
sion for k0 in the standard Rayleigh analysis, it is seen that approx-
imately four times more events are needed in the East–West
method to attain the same sensitivity to a given amplitude r.

5.2. Analysis of solar, anti-sidereal, and random frequencies

The amplitude r corresponds to the value of the Fourier trans-
form of the arrival time distribution of the events at the sidereal
frequency. This can be generalised to other frequencies by per-
forming the Fourier transform of the modified time distribution
[24]:

~a0
i ¼

2p
Tsid

ti þ ai � a0
i : ð16Þ

Such a generalisation is helpful for examining an eventual resid-
ual spurious modulation after applying the Rayleigh analysis after
the corrections discussed in Sections 3 and 4. The amplitude of the
Fourier modes when considering all events above 1 EeV are shown
in Fig. 3 as a function of the frequency in a window centered on the
solar one (indicated by the dashed line at 365.25 cycles/year). The
thin dotted curve is obtained without accounting for the variations
of the exposure and without accounting for the weather effects.
The large period of time analysed here, over 6 years, allows us to
resolve the frequencies at the level of ’1/6 cycles/year. This in-
duces a large decoupling of the frequencies separated by more than
this resolution [24]. In particular, as the resolution is less than the
difference between the solar and the (anti-)sidereal frequencies
(which is of 1 cycle/year), this explains why the large spurious
modulations standing out from the background noise around the
solar frequency are largely averaged out at both the sidereal and
anti-sidereal frequencies even without applying any correction.
The impact of the correction of the energies discussed in Section
4 is evidenced by the dashed curve, which shows a reduction of
’30% of the spurious modulations within the resolved solar peak.
In addition, when accounting also for the exposure variation at
each frequency, the solar peak is reduced at a level close to the sta-
tistical noise, as evidenced by the thick curve. Results at the solar
and the anti-sidereal frequencies are collected in Table 1.

To provide further evidence of the relevance of the corrections
introduced to account for the non-uniform exposure, it is worth
analysing on a statistical basis the behaviour of the reconstructed
amplitudes at different frequencies (besides the anti-sidereal/so-
lar/sidereal ones). In particular, as the number of unitary cells ncell

has increased from ’60 to ’1200 over the 6 years of data taking,
an automatic increase of the variations of DNcell(t) is expected at
large time periods. This expectation is illustrated in the left panel
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Fig. 3. Amplitude of the Fourier modes as a function of the frequency above 1 EeV.
Thin dotted curve: before correction of energies and exposure. Dashed curve: after
correction of energies but before correction of exposure. Thick curve: After
correction of energies and exposure. Dashed vertical lines from left to right: anti-
sidereal, solar and sidereal frequencies.

Table 1
Amplitude and corresponding probability to get a larger amplitude from an isotropic
distribution at both the solar and the anti-sidereal frequencies for events with
energies > 1 EeV.

rsolar (%) P(>rsolar) (%) ranti-sid (%) P(>ranti-sid) (%)

No correction 3.7 ’2 � 10�37 0.36 43
Energy corrections 2.9 ’4 � 10�23 0.15 85
+Exposure correction 0.96 0.2 0.49 19

6 The global tilt of the array of ’0.2�, that makes it slightly asymmetric, is here
negligible – see Section 5.4.
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of Fig. 4, which is similar to Fig. 1 but at a time periodicity
T ’ 87.5 h, corresponding to a low frequency of 100 cycles/year.
The size of the modulation is of the order of the one observed in
Fig. 1 at the solar frequency. In the right panel of Fig. 4, the results
of the Rayleigh analysis applied above 1 EeV to 1600 random fre-
quencies ranging from 100 to 500 cycles/year are shown by histo-
graming the reconstructed amplitudes. The thin one is obtained
without accounting for the variations of the exposure: it clearly
deviates from the expected Rayleigh distribution displayed in the
same graph. Once the exposure variations are accounted for
through the weighting procedure, the thick histogram is obtained,
now in agreement with the expected distribution. Note that in both
cases the energies are corrected for weather effects, but the impact
of these effects is marginal when considering such random fre-
quencies. This provides additional support that the variations of
the counting rate induced by the variations of the exposure are un-
der control through the monitoring of DNcell(t).

5.3. Results at the sidereal frequency in independent energy bins

To perform first harmonic analyses as a function of energy, the
choice of the size of the energy bins, although arbitrary, is impor-
tant to avoid the dilution of a genuine signal with the background
noise. In addition, the inclusion of intervals whose width is below
the energy resolution or with too few data is most likely to weaken
the sensitivity of the search for an energy-dependent anisotropy
[25]. To fulfill both requirements, the size of the energy intervals
is chosen to be Dlog10(E) = 0.3 below 8 EeV, so that it is larger than
the energy resolution even at low energies. At higher energies, to
guarantee the determination of the amplitude measurement with-
in an uncertainty r ’ 2%, all events (’5000) with energies above
8 EeV are gathered in a single energy interval.

The amplitude r at the sidereal frequency as a function of the
energy is shown in Fig. 5, together with the corresponding proba-
bility P(>r) to get a larger amplitude in each energy interval for a
statistical fluctuation of isotropy. The dashed line indicates the
99% C.L. upper bound on the amplitudes that could result from
fluctuations of an isotropic distribution. It is apparent that there
is no evidence of any significant signal over the whole energy
range. A global statement referring to the probability with which
the six observed amplitudes could have arisen from an underlying
isotropic distribution can be made by comparing the measured
value K ¼

P6
i¼1k0i

(where the sum is over all six independent
energy intervals) with that expected from a random distribution
for which hKi = 6 [26]. The statistics of 2K under the hypothesis
of an isotropic sky is a v2 with 2 � 6 = 12 degrees of freedom. For
our data, 2K = 19.0 and the associated probability for an equal or
larger value arising from an isotropic sky is ’9%.

The phase u of the first harmonic is shown in Fig. 6 as a function
of the energy. While the measurements of the amplitudes do not
provide any evidence for anisotropy, we note that the measure-
ments in adjacent energy intervals suggest a smooth transition be-
tween a common phase of ’270� in the first two bins below
’1 EeV compatible with the right ascension of the Galactic Center
aGC ’ 268.4�, and another phase (a ’ 100�) above ’5 EeV. This is
intriguing, as the phases are expected to be randomly distributed
in case of independent samples whose parent distribution is isotro-
pic. Knowing the p.d.f. of phase measurements drawn from an iso-
tropic distribution, p0(u) = (2p)�1, and drawn from a population of
directions having a non-zero amplitude r0 with a phase u0,
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Fig. 5. Top: amplitude of the first harmonic as a function of energy. The dashed line
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p1(u;r0,u0) [13], the likelihood functions of any of the hypotheses
may be built as:

L0 ¼
YNbins

i¼1

p0ðuiÞ; L1 ¼
YNbins

i¼1

p1ðui; r0;u0Þ: ð17Þ

Without any knowledge of the expected amplitudes r0(E) in each
bin, the values considered in L1 are the measurements performed
in each energy interval. For the expected phases u0(E) as a function
of energy, we use an arctangent function adjusted on the data as
illustrated by the dashed line in Fig. 6. Since the smooth evolution
of the phase distribution is potentially interesting but observed a
posteriori, we aim at testing the fraction of random samples whose
behaviour in adjacent energy bins would show such a potential
interest but with no reference to the specific values observed in
the data. To do so, we use the method of the likelihood ratio test,
computing the �2ln(k) statistic where k = L0/L1. Using only Nbins = 6,
the asymptotic behaviour of the �2ln(k) statistic is not reached.
Hence, the p.d.f. of �2ln(k) under the hypothesis of isotropy is built
by repeating exactly the same procedure on a large number of iso-
tropic samples: in each sample, the arctangent parameters are left
to be optimised, and the corresponding value of �2ln(k) is calcu-
lated. In that way, any alignments, smooth evolutions or abrupt
transitions of phases in random samples are captured and contrib-
ute to high values of the �2ln(k) distribution. The probability that
the hypothesis of isotropy better reproduces our phase measure-
ments compared to the alternative hypothesis is then calculated
by integrating the normalised distribution of �2ln(k) above the va-
lue measured in the data. It is found to be ’2 � 10�3.

It is important to stress that no confidence level can be built
from this report as we did not perform an a priori search for a
smooth transition in the phase measurements. To confirm the
detection of a real transition using only the measurements of the
phases with an independent data set, we need to collect’1.8 times
the number of events analysed here to reach an efficiency of ’90%
to detect the transition at 99% C.L. (in case the observed effect is
genuine). It is also worth noting that with a real underlying anisot-
ropy, a consistency of the phase measurements in ordered energy
intervals is expected with lower statistics than the detection of
amplitudes significantly standing out of the background noise
[26,28]. This behaviour was pointed out by Linsley, quoted in
[26]: ‘‘if the number of events available in an experiment is such
that the RMS value of r is equal to the true amplitude, then in a se-
quence of experiments r will be significant (say P(>r) < 1%) in one
experiment out of ten whereas the phase will be within 50� of
the true phase in two experiments out of three.’’ We have checked
this result using Monte Carlo simulations.

An apparent constancy of phase, even when the significances of
the amplitudes are relatively small, has been noted previously in
surveys of measurements made in the range 1014 < E < 1017 eV
[29,30]. In [29] Greisen and his colleagues comment that most
experiments have been conducted at northern latitudes and there-
fore the reality of the sidereal waves is not yet established. The
present measurement is made with events coming largely from
the southern hemisphere.

5.4. Additional cross-checks against systematic effects above 1 EeV

It is important to verify that the phase effect is not a manifesta-
tion of systematic effects, the amplitudes of which are at the level
of the background noise. We provide hereafter additional studies
above 1 EeV, where a few tests can cross-check results presented
in Fig. 6.

The first cross-check is provided by applying the Rayleigh anal-
ysis on a reduced data set built in such a way that its correspond-
ing exposure in right ascension is uniform. This can be achieved by
selecting for each sidereal day only events triggering an unitary
cell whose on-time was almost 100% over the whole sidereal
day. To keep a reasonably large data set, we present here the re-
sults obtained for on-times of 98% and 99%. This allows us to use
respectively ’77% and ’63% of the cumulative data set without
applying any correction to account for a non-constant exposure.
The results are shown in Fig. 7 when considering on-time of 98%
(triangles) and 99% (squares). Even if more noisy due to the reduc-
tion of the statistics with respect to the Rayleigh analysis applied
on the cumulative data set, they are consistent with the weighted
Rayleigh analysis and support that results presented in Fig. 6 are
not dominated by any residual systematics induced by the non-
uniform exposure.

From the Fourier analysis presented in Section 5.2, we have
stressed the decoupling between the solar frequency and both
the sidereal and anti-sidereal ones thanks to the frequency resolu-
tion reached after 6 years of data taking. However, as the ampli-
tude of an eventual sideband effect is proportional to the solar
amplitude [21], it remains important to estimate the impact of
an eventual sideband effect persisting even after the energy correc-
tions. To probe the magnitude of this sideband effect, we use
10,000 mock data sets generated from the real data set (with ener-
gies corrected for weather effects) by randomising the arrival times
but meanwhile keeping both the zenith and the azimuth angles of
each original event. This procedure guarantees the production of
isotropic samples drawn from a uniform exposure with the same
detection efficiency conditions than the real data. The results of
the Rayleigh analysis applied to each mock sample between 1
and 2 EeV at the anti-sidereal frequency are shown by the thin his-
tograms in top panels of Fig. 8, displaying Rayleigh distributions for
the amplitude measurements and uniform distributions for the
phase measurements. Then, after introducing into each sample
the temporal variations of the energies induced by the atmospheric
changes according to Eq. (4), it can be seen on the same graph
(thick histograms) that the amplitude measurements are almost
undistinguishable with respect to the reference ones, while the
phase measurements start to show to a small extent a preferential
direction. The same conclusions hold when reversing the energy
corrections (dashed histograms), but resulting in a phase shift of
’180�. Finally, the filled histograms are obtained by amplifying
by 10 the energy variations induced by the atmospheric changes.
In this latter case, the large increase of the solar amplitude induces
a clear signal at the anti-sidereal frequency through the sideband
mechanism, as evidenced by the distributions of both the ampli-
tudes and the phases. The sharp maximum of the phase distribu-
tion points towards the spurious direction, while the amplitude
distribution follows a non-centered Rayleigh distribution with
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from an empirical fit, is used in the likelihood ratio test (see text).
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parameter ’1.4 � 10�2. The spurious mean amplitude stands out
from the noise (�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=200;000

p
’ 4� 10�3) sufficiently to allow

us to estimate empirically the original effect to be 10 times smaller,
at the level of ’1.4 � 10�3. This will impact the analyses only in a
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text). Left: analysis of the amplitude. The full (dashed) line indicates the 99% C.L. upper bound on the amplitudes that could result from fluctuations of an isotropic
distribution when using on-times of 98% (99%). Right: analysis of the phase, the dashed line being the same as the one plotted in Fig. 6. Results of Fig. 6 are also shown with
circles.
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marginal way even if we had not performed the energy corrections,
or if we had over-corrected the energies. The energy corrections
necessarily reduce even more the size of the sideband amplitude,
well below ’10�3. Hence, only small changes are expected in the
anti-sidereal phase measurements on the real data when applying
(or not) or reversing the energy corrections. This is found to be the
case, as illustrated in the bottom panels of Fig. 8. In addition, this
phase distribution (bottom right panel of Fig. 8) does not show
any particular structure aligned with the spurious direction. This
second cross-check supports the hypothesis that the phase mea-
surements presented in Fig. 6 are not dominated by any residual
systematics induced by the sideband mechanism.

In the left panel of Fig. 9 we show the results of the East/West
analysis (circles). They provide further support of the previous
analyses (squares). As previously explained, this method relies on
the high symmetry between the Eastern and Western sectors.

However, the array being slightly tilted (’0.2�), this symmetry is
slightly broken, resulting in a small shift between the Eastward
and Westward counting rates. As this shift is independent of time,
it does not impact itself in the estimate of the first harmonic. How-
ever, it is worth examining the effect of the combination of the
tilted array together with the spurious modulations induced by
weather effects, as this combination may mimic a real East/West
first harmonic modulation at the solar frequency. The size of such
an effect can be probed by analysing the mock data sets built by
amplifying by 10 the energy variations induced by the atmospheric
changes. The results obtained between 1 and 2 EeV at both the so-
lar and the anti-sidereal frequencies are shown in the right panel of
Fig. 9: while the phase distribution starts to show a preferential
direction at the solar frequency (dashed histogram), the same dis-
tribution is still uniform at the anti-sidereal one (thick histogram).
Hence, it is safe to conclude that the results obtained at the sidereal
frequency by means of the East/West method are not affected by
any systematics.

5.5. Results at the sidereal frequency in cumulative energy bins

Performing the same analysis in terms of energy thresholds
may be convenient for optimizing the detection of an eventual gen-
uine signal spread over a large energy range, avoiding the arbitrary
choice of a bin size Dlog10(E). The bins are however strongly corre-
lated, preventing a straightforward interpretation of the evolution
of the points with energy. The results on the amplitudes are shown
in Fig. 10. They do not provide any further evidence in favor of a
significant amplitude.

6. Upper limits and discussion

From the analyses reported in the previous section, upper limits
on amplitudes at 99% C.L. can be derived according to the distribu-
tion drawn from a population characterised by an anisotropy of
unknown amplitude and phase as derived by Linsley [13]:ffiffiffiffi

2
p

r
1

I0ðr2=4r2Þ

Z rUL

0

ds
r

I0
rs
r2

� �
exp � s2 þ r2=2

2r2

� �
¼ C:L:; ð18Þ

where I0 is the modified Bessel function of the first kind with order
0, and r ¼

ffiffiffiffiffiffiffiffiffiffiffi
2=N

p
in case of the Rayleigh analysis, and rEW ¼

ðphcos di=2hsin hiÞ �
ffiffiffiffiffiffiffiffiffi
2=N

p
in case of the East/West analysis.

As discussed in the Appendix, the Rayleigh amplitude measured
by an observatory depends on its latitude and on the range of ze-
nith angles considered. The measured amplitude can be related
to a real equatorial dipole component d\ by d\ ’ r/hcosdi. This is
the physical quantity of interest to compare results from different
experiments and from model predictions. The upper limits on d\

are given in Table 2 and shown in Fig. 11, together with previous
results from EAS-TOP [11], KASCADE [32], KASCADE-Grande [33]
and AGASA [34], and with some predictions for the anisotropies
arising from models of both galactic and extragalactic UHECR ori-
gin. The results obtained in this study are not consistent with the
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Fig. 10. Same as Figs. 5 and 6, but as a function of energy thresholds.

Table 2
Results of first harmonic analyses in different energy intervals, using the East/West
analysis below 1 EeV and the Rayleigh analysis above 1 EeV.

DE N rsid (%) Pð> rsidÞ ð%Þ u (�) Du (�) dUL
? (%)

0.25–0.5 553,639 0.4 67 262 64 1.3
0.5–1 488,587 1.2 2 281 20 1.7
1–2 199,926 0.5 22 15 33 1.4
2–4 50,605 0.8 47 39 46 2.3
4–8 12,097 1.8 35 82 39 5.5
>8 5486 4.1 9 117 27 9.9
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’4% anisotropy reported by AGASA in the energy range 1 < E/
EeV < 2.

If the galactic/extragalactic transition occurs at the ankle energy
[1], UHECRs at 1 EeV are predominantly of galactic origin and their
escape from the galaxy by diffusion and drift motions are expected
to induce a modulation in this energy range. These predictions de-
pend on the assumed galactic magnetic field model as well as on
the source distribution and the composition of the UHECRs.7 Two
alternative models are displayed in Fig. 11, corresponding to differ-
ent geometries of the halo magnetic fields [9]. The bounds reported
here already exclude the particular model with an antisymmetric
halo magnetic field (A) and are starting to become sensitive to the
predictions of the model with a symmetric field (S). We note that
those models assume a predominantly heavy composition galactic
component at EeV energies, while scenarios in which galactic pro-
tons dominate at those energies would typically predict anisotropies
larger than the bounds obtained in Fig. 11. Maintaining the ampli-
tudes of such anisotropies within our bounds necessarily translates
into constraints upon the description of the halo magnetic fields
and/or the spatial source distribution. This is particularly interesting
in the view of our composition measurements at those energies
compatible with a light composition [35]. Alternatively to a leaky
galaxy model, there is still the possibility that a large scale magnetic
field retains all particles in the galaxy [36,37]. If the structure of the
magnetic fields in the halo is such that the turbulent component pre-
dominates over the regular one, purely diffusion motions may con-
fine light elements of galactic origin up to ’1 EeV and may induce
an ankle feature due to the longer confinement of heavier elements
at higher energies [38]. Typical signatures of such a scenario in terms
of large scale anisotropies are also shown in Fig. 11 (dotted line): the
corresponding amplitudes are challenged by our current sensitivity.

On the other hand, if the transition is taking place at lower ener-
gies around the second knee at ’5 � 1017 eV [7], UHECRs above
1 EeV are dominantly of extragalactic origin and their large scale
distribution could be influenced by the relative motion of the ob-
server with respect to the frame of the sources. If the frame in
which the UHECRs distribution is isotropic coincides with the

CMB rest frame, a small anisotropy is expected due to the Comp-
ton-Getting effect. Neglecting the effects of the galactic magnetic
field, this anisotropy would be a dipolar pattern pointing in the
direction a ’ 168� with an amplitude of about 0.6% [39]. On the
contrary, when accounting for the galactic magnetic field, this
dipolar anisotropy is expected to also affect higher order multi-
poles [40]. These amplitudes are close to the upper limits set in this
analysis, and the statistics required to detect an amplitude of 0.6%
at 99% C.L. is ’3 times the present one.

Continued scrutiny of the large scale distribution of arrival
directions of UHECRs as a function of energy with the increased
statistics provided by the Pierre Auger Observatory, above a few
times 1017 eV, will help to discriminate between a predominantly
galactic or extragalactic origin of UHECRs as a function of the en-
ergy, and so benefit the search for the galactic/extragalactic transi-
tion. Future work will profit from the lower energy threshold that
is now available at the Pierre Auger Observatory [41].
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7 The dependence of the detection efficiency on the primary mass below 3 EeV
could affect the details of a direct comparison with a model based on a mixed
composition.
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Appendix

The first harmonic amplitude of the distribution in right ascen-
sion of the detected cosmic rays can be directly related to the
amplitude d of a dipolar distribution of the cosmic ray flux of the
form Jða; dÞ ¼ J0ð1þ d d̂ � ûÞ, where û and d̂ denote respectively
the unit vector in the direction of an arrival direction and in the
direction of the dipole. Eqs. (11) and (12) can be used to express
a, b and N as:

a ¼ 2
N

Z dmax

dmin

dd
Z 2p

0
da cos dJða; dÞxðdÞ cos a;

b ¼ 2
N

Z dmax

dmin

dd
Z 2p

0
da cos dJða; dÞxðdÞ sin a;

N ¼
Z dmax

dmin

dd
Z 2p

0
da cos dJða; dÞxðdÞ;

ð19Þ

where we have here neglected in the exposure x the small depen-
dence on right ascension. Writing the angular dependence in J(a,d)
as d̂ � û ¼ cos d cos dd cosða� adÞ þ sin d sin dd, with dd the dipole
declination and ad its right ascension, and performing the integra-
tion in a in the previous equations, it can be seen that

r ¼ Ad?
1þ Bdz

���� ����; ð20Þ

where

A ¼
R

ddxðdÞ cos2 dR
ddxðdÞ cos d

; B ¼
R

ddxðdÞ cos d sin dR
ddxðdÞ cos d

and dz = dsindd denotes the component of the dipole along the Earth
rotation axis while d\ = dcosdd is the component in the equatorial
plane [31]. The coefficients A and B can be estimated from the data
as the mean values of the cosine and the sine of the event declina-
tions. In our case, A = hcosdi ’ 0.78 and B = hsindi ’ �0.45. For a di-
pole amplitude d, the measured amplitude of the first harmonic in
right ascension r thus depends on the region of the sky observed,
which is essentially a function of the latitude of the observatory ‘site,
and the range of zenith angles considered. In the case of a small Bdz

factor, the dipole component in the equatorial plane d\ is obtained
as d\ ’ r/hcosdi. The phase u corresponds to the right ascension of
the dipole direction ad.

Turning now to the East–West method, the measured flux from
the East sector for a local sidereal time a0 can be similarly ex-
pressed as

IEða0Þ ¼
Z p=2

�p=2
d/
Z hmax

0
dh sin h�ðhÞJðh;/;a0Þ; ð21Þ

and analogously for the measured flux coming from the west sector
changing the azimuthal integration to the interval [p/2,3p/2].
Expressing d̂ � û in local coordinates (h, / and a0), and performing
the integration over / we obtain for the leading order

IE � IW

hIE þ IWi
ða0Þ ¼ � 2d?C

pð1þ dzD sin ‘siteÞ
sinða0 � adÞ; ð22Þ

where

C ¼
R

dh�ðhÞ sin2 hR
dh�ðhÞ sin h

; D ¼
R

dh�ðhÞ sin h cos hR
dh�ðhÞ sin h

:

In this calculation any dependence of the exposure on the local
sidereal time a0 gives at first order the same contribution to the East
and West sectors flux, and thus gives a negligible contribution to
the flux difference.8 The next leading order, proportional to the
equatorial dipole component times the sidereal modulation of the
exposure, is negligible. The coefficients C and D can be estimated
from the observed zenith angles of the events. In our case,
C = hsinhi ’ 0.58 and D = hcoshi ’ 0.78. The total detected flux aver-
aged over the local sidereal time can be estimated as hIE + IWi = N/
2p. In case Ddz	 1, we get finally:

ðIE � IW Þða0Þ ¼ � N
2p

2d?hsin hi
p

sinða0 � adÞ: ð23Þ
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