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Abstract. In this work we report Monte Carlo simulations of a 2D Ising model, in which the statistics of
the Metropolis algorithm is replaced by the nonextensive one. We compute the magnetization and show
that phase transitions are present for q �= 1. A q− phase diagram (critical temperature vs. the entropic
parameter q) is built and exhibits some interesting features, such as phases which are governed by the value
of the entropic index q. It is shown that such phases favors some energy levels of magnetization states. It
is also shown that the contribution of the Tsallis cutoff is capital to the existence of phase transitions.
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1 Introduction

The nonextensive statistics is a generalization of the Boltz-
mann – Gibbs one and it is based on the nonadditive en-
tropy [1]

Sq = k
1 − ∑

i pq
i

q − 1
(q ∈ �) (1)

where q is the entropic index for a specific system, con-
nected to its dynamics, as recently proposed [2,3]; pi are
probabilities satisfying

∑
i pi = 1, k is a constant, and

limq→1 Sq = SBG, where SBG is the Boltzmann – Gibbs
entropy. In this statistics, a system composed of two in-
dependent parts A and B, in the sense that the proba-
bilities of the systems factorize, has the following pseudo-
additivity (nonextensivity) property of the entropy [4,5]

Sq(A+B) = Sq(A)+Sq(B)+(1− q)Sq(A)Sq(B)/k. (2)

This pseudo-additivity is related to the composability
property of Sq [6]. Since for any system Sq ≥ 0, then
q < 1 correspond to superadditivity (superextensivity),
q = 1 to additivity (extensivity), and q > 1 to subadditiv-
ity (subextensivity). Besides representing a generalization,
Sq, as much as SBG, is positive, concave and Lesche-stable
(∀ q > 0). Recently, it has been shown that it is also ex-
tensive for some kinds of correlated systems in which scale
invariance prevails [7,8].
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In this paper we report some results of a Monte
Carlo simulation of a 2D Ising model upon replacing the
statistics of the Metropolis algorithm by the nonextensive
statistics. From numerical calculations we compute the
magnetization of the system, and built a q−phase dia-
gram showing that, even for q �= 1, exist phase transitions,
in contrast to a previous work [9]. The text is organized
as follows: In Section 2, we describe the equilibrium dis-
tribution of nonextensive statistics and the importance of
the internal energy constrains. In Section 3, we describe
the introduction of the nonextensive formalism into the
Monte Carlo method. In Sections 4 and 5, we discuss the
main results and describe the behavior of the critical tem-
perature with the entropic index in a phase diagram (Tc

vs. q).

2 Nonextensive statistics

To calculate the equilibrium distribution, the above en-
tropy, equation (1), must be maximized [1]. If the system
is isolated, i.e., in a microcanonical ensemble,

Ω∑

i=1

pi = 1 (3)

the maximization yields equiprobability of states occupa-
tion. On the other hand, if the system is in contact with
a thermal reservoir (canonical ensemble), it is necessary
to add the internal energy constraints, which can be done
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according to three possible choices. The first one is [1]

Ω∑

i=1

pi εi = U (4)

the standard definition of internal energy in which {εi}
are the eigenvalues of the Hamiltonian of the system. The
second, as postulated in [10], is:

Ω∑

i=1

pq
i εi = Uq. (5)

Both definitions presents some difficulties with the inter-
pretation of some results [11]. Thus, a third choice for the
internal energy constraint was introduced as [11]:

∑Ω
i=1 pq

i εi
∑Ω

i=1 pq
i

= Uq (6)

which defined the escort probability (first introduced in
Ref. [12]):

P
(q)
i ≡ pq

i
∑Ω

j=1 pq
j

. (7)

The maximization of Sq in that case yields for the proba-
bility distribution

pi =
1
Zq

[

1 − (1 − q)β (εi − Uq)
∑Ω

j=1 pq
j

]1/(1−q)

(8)

where

Zq =
Ω∑

i=1

[

1 − (1 − q)β (εi − Uq)
∑Ω

j=1 pq
j

]1/(1−q)

(9)

is the nonextensive partition function and β a Lagrange
multiplier. After some algebraic manipulations [11] it be-
comes:

pi =
1
Z ′

q

[1 − (1 − q)β′ εi]
1/(1−q) =

1
Z ′

q

e−β′εi
q (10)

and

Z ′
q =

Ω∑

j=1

[1 − (1 − q)β′ εj ]
1/(1−q) =

Ω∑

j=1

e−β′εi
q (11)

where
β′ =

β
∑Ω

j=1 pq
j + (1 − q)β Uq

. (12)

and ex
q is the generalized exponential, which has the fol-

lowing the property:

[1 − (1 − q)β′εi]1/(1−q) =
{

e−x
q , if 1 − (1 − q)x ≥ 0;

0, if 1 − (1 − q)x < 0.
(13)

known as the Tsallis cutoff procedure. A detailed discus-
sion about the role of constraints within the nonextensive
statistics was done by Tsallis et al. [11], but recently it

has been showed by Ferri et al. [13] the equivalence of all
these formulations of internal energy constraints. In spite
of that, in this work, to avoid misunderstanding, we choose
the normalized internal energy form.

The thermal equilibrium in the nonextensive statistics
is still an open issue due to the definition of the physi-
cal temperature [14–20]. Thus, differently from some au-
thors [9], in our approach the parameter β′ is assumed to
be the physical temperature, i.e., β′ = (k T )−1. The valid-
ity of this choice was first shown experimentally [21], and
latter theoretically [2,3,22,23] for manganites.

3 Monte Carlo simulations of a 2D Ising
model using nonextensive statistics

In this section we are going to discuss the modification
of the Metropolis method for the nonextensive statistics,
considering a ferromagnetic 2D Ising with first-neighbors
interaction. The Hamiltonian is given by

H = −J
∑

〈ij〉
sisj (14)

where 〈ij〉 denotes the sum over first neighbors on a square
lattice of size N = L × L, si = ±1 and J > 0 (ferro-
magnetic interaction). We proceed the single flip Monte
Carlo calculations [24] to obtain the magnetization of the
system, however we have changed the usual statistical
weight to:

w =
P

(q)
i,after

P
(q)
i,before

=

⎡

⎣ e
−εafter

i /k T
q

e
−εbefore

i /k T
q

⎤

⎦

q

(15)

or, in other words, the ratio between the escort probabil-
ities before and after the spin flip. Since this quantity is
a ratio, the normalization factor of the escort probabili-
ties, i.e., the generalized partition function, equation (11),
cancels and the weight calculated can be written as the
ratio between the generalized exponentials raised to the
entropic parameter q. It is important to emphasize that w
is the quantity that will be compared to a random num-
ber in the Metropolis algorithm (see appendix for details
on the MC procedure used). It is also important to note
that the Tsallis cutoff procedure, equation (13), must be
taken into account, i.e., it must be included into w to
avoid complex probabilities. The simulations were done
with the entropic parameter q ∈ [0, 1]. Lattice size were
L = 8, 16, 24, 32, with periodical boundary condition im-
posing that sL+1 ≡ s1.

4 Results and discussion

The most probable normalized magnetization, m =
M/L2, was obtained after 5 × 105 Monte Carlo steps and
are shown in Figure 1 for q = 0.4, q = 0.7 (which are repre-
sentative results for q < 0.5 and q > 0.5, respectively), and
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Fig. 1. Normalized most probable magnetization vs. temper-
ature. For q = 0.4 it can be seen that the magnetization has
no dependence on the lattice size, dropping form m = 1 to
m = 0 suddenly at Tc. It happens due to the contribution of
the Tsallis cutoff. However, for q = 0.7 the magnetization de-
pends on the lattice size and smoothly goes to zero close to Tc

as a second order phase transition. For q = 1 it recovers the
well known result.

for q = 1. One can observe that for q > 0.5 there are strong
influences of the lattice size on the shape of the magnetiza-
tion curve and on the critical temperature, Tc. In addition,
the magnetization drops smoothly to zero close to Tc due
to the thermal fluctuations. On the contrary, for q < 0.5,
there are no dependence of those quantities on the lattice
size, and the magnetization changes suddenly at Tc, from
m = 1 to m = 0. In other words, there are no thermal
fluctuations in this case and the magnetization works like
a microcanonic two-level system.

This behavior, for q < 0.5, is simple to be under-
stood. At low temperatures (for instance T = 1.5 and
q = 0.4), the first Monte Carlo steps lead the magnetiza-
tion to m = 1, i.e., to the ground state, as expected (due to
the low temperatures). Then the subsequent Monte Carlo
steps attempt to invert the spin, but it fails because is
energetically unfavorable. Then the Metropolis algorithm
takes place; as εafter

i = 4 J and εbefore
i = −4 J , there-

fore 1 − (1 − q)β′ εafter
i < 0 for all T < 4 J (1 − q). So,

considering the cutoff, equation (13), pafter
i = 0 and then

w = 0. Since the Metropolis algorithm flips energetically
unfavorable spins if the random number is smaller then w,
for T < 4 J (1− q) those spins never flips (w = 0), keeping
the magnetization at m = 1; in other words, in the ground
state. This situation persists up to Tc = 4 J (1− q), where
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Fig. 2. Taking the thermodynamical limit of the system, one
can notice that the behavior is quite different for q < 0.5 and
for q > 0.5. As can be seen, for q = 0.4 the critical tempera-
ture has no dependence on the lattice size. It happens due to
the contribution of the Tsallis cutoff. However, for q = 0.7 the
lattice size dependence appears. For q = 1 the thermodynam-
ical limit recovers the critical temperature of Onsager result
(Tc = 2 [arctan(1/

√
2)]−1).

the cutoff for pafter
i is no longer satisfied and the thermal

fluctuation can therefore acts. However, the spins are al-
ready quite warm and the magnetization drops suddenly
to zero, i.e., to a equiprobable state. A similar behav-
ior was already found describing the generalized Brillouin
function [22].

To determine the critical temperature we must take
the thermodynamic limit (L → ∞). In Figure 2 we plot
the critical temperature as a function of the inverse lattice
size for different values of the entropic parameter, taking
the limit (L−1 → 0). Notice that the critical temperature
for q = 1 tends to Onsager result and, as explained above,
it does not depend on the lattice size for q < 0.5. Similar
independency were found in different systems [25]. Also,
the slope of the curves changes with the entropic parame-
ter q, suggesting a dependence of the critical exponents on
the entropic parameter (for studies about this connection
see for example [26–28]).

With those critical temperature values we build a
phase diagram shown in Figure 3, i.e., Tc as a function of
q. It is quite interesting because, in contrast to previous
works [9], we found that for the Monte Carlo simulations
of a 2D Ising model in nonextensive statistics has phase
transitions for q �= 1. It is clear that below the 4 J (1 − q)
line the system is in the ground state and then m = 1.
Above this line there are two regions where the thermal
fluctuation act: one above Tc, i.e., in the paramagnetic
regime and, consequently, in the equiprobable state; and
the other regime lies between 4 J (1− q) line and Tc when
the magnetization assume values between 0 and 1. It is in-
teresting that the slope of the critical temperature, Tc(q),
does not changes abruptly with the increase of the en-
tropic parameter. For q ∼ 0.5 the slope changes smoothly
indicating that the spin is not warm enough and pass to a
thermal distribution region before the equiprobable state.
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Fig. 3. Three different regions can be seen in this q− phase
diagram. The first one is the ferromagnetic ground state (m =
1) which is kept from zero Kelvin until Tc = 4 J (1 − q), due
to the contribution of the Tsallis cutoff. The second region has
influence at the thermal distribution (0 < m < 1). The third
is the equiprobable paramagnetic state (m = 0). The error is
smaller then the the size of those dots.

5 Conclusions

In this work, we studied a ferromagnetic 2D Ising model
with first-neighbor interactions through a Monte Carlo
simulation in which the Metropolis algorithm was changed
to the nonextensive statistics. Magnetization as a function
of the temperature for different values of q were evaluated
and we found phase transition for q �= 1, in contrast to
a previous work [9]. This results arises due to the defini-
tion of the physical temperature. In addition, we also have
showed the contribution of the Tsallis cutoff is of great im-
portance and rules the phase transition for q < 0.5.

The authors acknowledge S.M.D. Queirós, C. Tsallis and R.
Toral for their comments. We would like to thanks the Brazil-
ian funding agencies CNPq and CAPES. DOSP would like to
thanks the Brazilian funding agency CAPES for the financial
support at Universidade de Aveiro at Portugal.

Appendix

Each Monte Carlo step can be resumed as the following

1. Compute the interaction energy of a given spin ith of
the lattice with its neighbors εbefore

i =
∑4

j=1 εij . After
that, change the state of this spin and compute again
its interaction energy, εafter

i . If εafter
i < εbefore

i , accept
the change of state;

2. If the energy is not lower, using equation (13), compute
w. Compare this quantity to a number that belongs
to the interval [0, 1] generated randomly. Being this
random number smaller then w then accept the change
of state, otherwise not.

As can be seen, this is the ordinary Metropolis algorithm
in which the probability of state was changed from the
Boltzmann weight to the Tsallis factor, equation (7).
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