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1. INTRODUCTION

It is known from general stability theory of nonro-
tating magnetically confined plasmas [1] that, in the
presence of magnetic shear, the ideal internal kink
modes play a rather important role. These modes are
separated into the 

 

m

 

 

 

�

 

 1

 

 modes, i.e., the so-called Suy-
dam modes [2], the modes with finite 

 

m

 

 > 1 (see in
detail [1]) and the 

 

m

 

 = 1 internal kink mode [3, 4],
where 

 

m

 

 is the azimuthal mode number. The papers [5,
6] brought in important contributions to the theory of
the Suydam modes in a rotating plasma by taking into
account the Velikhov effect [7, 8] and the finite flow
velocity. The goal of the present paper is to further
develop the theory of Suydam modes in a differentially
rotating cylindrical plasma column, allowing for the
Velikhov effect and making a step forward to incorpo-
rate this effect into the theory of the 

 

m

 

 = 1 internal kink
mode.

We note that by “the Velikhov effect” we mean the
term with 

 

d

 

Ω

 

2

 

/

 

d

 

ln

 

r

 

 in the mode equations of a rotating
plasma column, where 

 

Ω

 

 is the plasma rotation fre-
quency and 

 

r

 

 is the radial coordinate. As is well known,
this effect is destabilizing if the parameter 

 

d

 

Ω

 

2

 

/

 

d

 

ln

 

r

 

 is
negative, exceeds a threshold value, and is stabilizing
for positive 

 

d

 

Ω

 

2

 

/

 

d

 

ln

 

r

 

.
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The text was submitted by the authors in English.
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Deceased.

 

The growth rates of the Suydam modes in a nonro-
tating plasma were originally calculated in [9] for the
case of stellarator geometry, its results were simplified
in [10] for the case of slab geometry, and the growth
rates for the case of cylindrical geometry were obtained
in [11]. The analysis of the 

 

m

 

 = 1 internal kink mode
presented in [3] was carried out in the framework of the
energy principle. One of its important results was to
clearly demonstrate that the radial dependence of the
perturbed radial displacement of the 

 

m

 

 = 1 internal kink
mode has a step-function character. The growth rate of
this mode was first analytically calculated in [4].
Finally, the theory of ideal internal kink modes in a
nonrotating cylindrical plasma column was summa-
rized in Chapter 5 of book [1].

We assume that the equilibrium plasma velocity
along the cylinder vanishes. The modes in a plasma
moving along the cylinder have been considered, in
particular, in [5, 6]. Note also that generalization of the
Suydam stability criterion in the case of strong shear of
the perpendicular plasma velocity has been studied in
[12, 13]. These papers will be commented on below
(see Section 7).

One of the most effective tools for studying MHD
(magnetohydrodynamic) modes in a rotating plasma is
the Frieman–Rotenberg (FR) approach [14]. One of the
most important advantages of this approach is the use
of the so-called FR variable describing the sum of per-
turbed kinetic and magnetic pressures. It was shown in
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[5, 15] that, in terms of this variable and the perturbed
radial plasma displacement, the perturbed plasma
motion equations reduce to a pair of first-order differ-
ential equations with antisymmetric crossed matrix ele-
ments (see [5, 15] for details). For this reason, these
equations can be properly called the Hameiri–Bonde-
son–Iacono–Bhattacharjee (HBIB) equations.

In Section 2 we explain our basic equations and the
equilibrium. Section 3 is addressed to transformations
of the perturbed basic equations. In Section 4 we derive
the mode equation. In Section 5 the Suydam modes are
analyzed, including the Velikhov effect. In Section 6
this effect on the 

 

m

 

 = 1 internal kink mode is studied.
Discussions are given in Section 7.

2. BASIC EQUATIONS AND THE EQUILIBRIUM

 

2.1. Basic Plasmadynamic Equations

 

We describe the plasma behavior using the standard
system of equations of one-fluid MHD: the equation of
motion

 

(2.1)

 

the continuity equation

 

(2.2)

 

and the adiabatic equation of state

 

(2.3)

 

These equations are complemented by the Maxwell
equations,

 

(2.4)

(2.5)

(2.6)

 

and the generalized Ohm law,

 

(2.7)

 

Here, 

 

ρ

 

 and 

 

V

 

 are the mass density and the velocity of
the plasma, respectively; 

 

Γ

 

 is the adiabatic exponent; 

 

B

 

,

 

j

 

, and 

 

p

 

 are the magnetic field, the electric current den-
sity, and the plasma pressure, respectively; 

 

E

 

 is the
electric field; and

 

(2.8)

 

Using Eqs. (2.4) and (2.7), one obtains the frozen-in
condition in the form

 

(2.9)

 

The vector Eq. (2.7) has three projections, while
Eq. (2.9) has only two. As the third projection of (2.7),
we take

 

(2.10)

 

Thus, our starting equations are Eqs. (2.1)–(2.6), (2.9),
and (2.10).

ρdV/dt —p– j+ B,×=

dρ/dt ρ— V⋅+ 0=

d pρ Γ–( )/dt 0.=

∂B/∂t —– E,×=

— B× j,=

— B⋅ 0=

E V B×+ 0.=

d/dt ∂/∂t V —.⋅+=

∂B/∂t — V B×[ ]×[ ]– 0.=

E B⋅ 0.=

 

2.2. Equilibrium

 

We assume that the plasma has cylindrical symme-
try characterized by radial coordinate 

 

r, poloidal coor-
dinate θ, and longitudinal coordinate z. The equilibrium
parameters are functions of r. There is an equilibrium
magnetic field B0 with projections B0θ and B0z depen-
dent on r. The plasma is characterized by equilibrium
mass density ρ0 and the equilibrium pressure p0, both
dependent on r.

The plasma rotates in the poloidal direction with
radially dependent angular frequency Ω. Accordingly,
there is equilibrium electric field E0 = (E0, 0, 0) related
to rotation frequency Ω by

(2.11)

In addition, there are the poloidal and longitudinal
equilibrium electric currents j0θ, j0z related to the mag-
netic field derivatives by

(2.12)

(2.13)

The equilibrium plasma pressure gradient, , is
related to the rotation frequency and the equilibrium
magnetic field derivatives by

(2.14)

It is also assumed that the plasma moves along the cyl-
inder with the velocity V0z = V0zez.

2.3. Description of Perturbations

The time and spatial dependence of the perturba-
tions is taken in the eikonal form,

(2.15)

Here, F is any perturbed function, ω is the mode fre-
quency, m is the poloidal wavenumber, and kz is the lon-

gitudinal wavenumber. Perturbed magnetic field  is
characterized by the components

(2.16)

where the tilde denotes the perturbed values. Perturbed

velocity  is expressed in terms of perturbed plasma
displacement x defined by [15]

(2.17)

(2.18)

E0 ΩrB0z.–=

j0θ
∂B0z

∂r
-----------,–=

j0z
1
r
--- ∂

∂r
----- rB0θ( ).=

p0'

p0' ρ0rΩ2 1
2
---

∂B0
2

∂r
---------

B0θ
2

r
--------+⎝ ⎠

⎛ ⎞ .–=

F r t,( ) iωt– imθ ikzz+ +( )F r( ).exp=

B̃

B̃ B̃r B̃θ B̃z, ,( ),=

Ṽ

Ṽ ∂x/∂t V0z —⋅( )x x —⋅( )V0z,–+=

Ṽ r iω̃X ,–=
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(2.19)

(2.20)

Here, X ≡ ξr  and  = ω – mΩ – kzV0z is the Doppler–
shifted mode frequency.

The linearized version of (2.9) yields

(2.21)

(2.22)

(2.23)

Here, k|| = kzhz + mhθ/r is the parallel wave number, hz =
B0z/B0, hθ = B0θ/B0,

(2.24)

Physically, the function Y describes the binormal
plasma displacement.

Using (2.2) and (2.3), perturbed plasma density 
and pressure  are expressed in terms of x by

(2.25)

(2.26)

Here,  = Γp0/ρ0 is the square of the sound velocity,

(2.27)

(2.28)

One can introduce the third variable characterizing
the displacement vector x:

(2.29)

Physically, the function Z describes the plasma dis-
placement along the equilibrium magnetic field. In
terms of Y and Z, the expressions for ξθ and ξz are of the
form

(2.30)

(2.31)

while

(2.32)

where kb = hzm/r – hθkz is the binormal wave number.

Ṽθ iω̃ξθ–
dΩ

d rln
-----------X ,–=

Ṽ z iω̃ξz– V0z' X .–=

ω̃

B̃r ik ||B0X ,=

B̃θ ikzY
∂
∂r
----- B0θX( ),–=

B̃z
im
r

------Y–
1
r
--- ∂

∂r
----- rB0zX( ).–=

Y ξθB0z ξzB0θ.–=

ρ̃
p̃

ρ̃ Xρ0'– ρ0u,–=

p̃ X p0'– ρ0cs
2u.–=

cs
2

u τ i
m
r
----ξθ kzξz+⎝ ⎠

⎛ ⎞ ,+=

τ 1
r
--- ∂

∂r
----- rX( ).≡

Z x B0⋅ ξθB0θ ξzB0z.+≡=

ξθ hθZ hzY+( )/B0,=

ξz hzZ hθY–( )/B0,=

u τ i
B0
----- k ||Z kbY+( ),+=

3. TRANSFORMATIONS OF PERTURBED 
BASIC EQUATIONS

3.1. Reduction of Perturbed Basic Equations

The (θ, z) projections of (2.1) take the form

(3.1)

(3.2)

Here, κ2 = (2Ω/r)d(r2Ω)/dr ≡ 4Ω2 + dΩ2/dlnr and the
tilde denotes the linearly perturbed part.

Using (2.18)–(2.20), we obtain from (3.1) and (3.2)
the parallel equation of motion

(3.3)

By means of (2.21), (2.26), we find from (3.3) the fol-
lowing expression for Z:

(3.4)

Here, αs = 1 – /  and,

(3.5)

In addition, by means of (2.18)–(2.20), (3.1), and
(3.2), we find the binormal projection of the equation of
motion,

(3.6)

Here,

(3.7)

where k2 = m2/r2 + .

Let us introduce the Frieman–Rotenberg variable p∗
defined by [14]:

(3.8)

Substituting (3.7) and (3.8) into (3.6), we arrive at

(3.9)

ρ0 iω̃Ṽθ–
κ2

2Ω
-------Ṽ r+⎝ ⎠

⎛ ⎞ im
r

------ p̃– j B×[ ]θ
~,+=

ρ0 iω̃Ṽ z– Ṽ rV0z'+( ) ikz p̃– j B×[ ]z
~.+=

ρ0 ω̃2Z– i2ω̃ΩhθB0X–( )

=  ik ||B0 p̃– B̃r j0 B0×[ ]r.–

Z
iB0–

αsω̃
2

------------ λZX X cs
2k || τ

ikbY
B0

----------+⎝ ⎠
⎛ ⎞+ .=

k ||
2cs

2 ω̃2

λZX 2ω̃Ωhθ k ||rΩ2.+=

ρ0 ω̃2 Y
B0
-----– i2ω̃ΩhθX–⎝ ⎠

⎛ ⎞ ikb p̃– j B×( )b
~.+=

j B×( )b
~ hz j B×( )θ

~ hθ j B×( )z
~–=

=  B0k2Y– iB0
2kbτ+

+ i kb ρ0rΩ2 p0'–( ) 2kzhθB0
2/r+[ ]X ,

kz
2

p* p̃ B0 B̃.⋅+=

ρ0 D0 ky
2
v A

2–( ) Y
B0
----- i2ω̃ΩhθX–

=  ikb p*– ikbB0 B̃ iB0
2kbτ+⋅+

+ i kb ρ0rΩ2 p0'–( )
2kzhθ

r
-------------B0

2+ X ,
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where

(3.10)

αA = 1 – / ,  = /4πρ0 is the Alfvén veloc-
ity squared. According to (2.22) and (2.23),

(3.11)

Substituting (3.11) into (3.9), one has

(3.12)

It follows from (3.12) that

(3.13)

where

(3.14)

By means of (3.13) and (3.14), Eq. (3.11) reduces to

(3.15)

Substituting (3.13) into (3.3) yields

(3.16)

With (3.13) and (3.16), Eq. (2.33) takes the form

(3.17)

By means of (3.17) we obtain from (2.26)

(3.18)

D0 ω̃2αA,=

k ||
2
v A

2 ω̃2
v A

2 B0
2

B0 B̃⋅ iB0kbY– B0
2τ–=

+ p0' 2Bθ
2/r ρ0rΩ2–+( )X .

ρ0 D0
Y
B0
----- i2ω̃ΩhθX–⎝ ⎠

⎛ ⎞

=  ikb p*–
2ihzhθB0

2

r
---------------------k ||X .+

Y
B0
-----

i
D0
------

kb p*
ρ0

----------- λYX X–⎝ ⎠
⎛ ⎞ ,=

λYX 2hz ω̃Ω
k ||

r
----hθv A

2+⎝ ⎠
⎛ ⎞ .=

B0 B̃⋅ B0
2τ–

kb

D0
------ kbv A

2 p* B0
2λYX X–( )+=

+ p0'
2B0

2hθ
2

r
-------------- ρ0rΩ2–+⎝ ⎠

⎛ ⎞ X .

Z
iB0–

αsω̃
2

------------ λZX

k ||kbcs
2

D0
--------------λYX+⎝ ⎠

⎛ ⎞ X=

+ cs
2k ||τ

kb
2k ||cs

2

D0ρ0
-------------- p*– .

u
1
αs

----- τ
kb

2 p*
D0ρ0
------------–

k ||λZX

ω̃2
-------------

kbλYX

D0
-------------+⎝ ⎠

⎛ ⎞ X+ .=

p̃
ρ0cs

2

αs

---------- τ
kb

2 p*
D0ρ0
------------–⎝ ⎠

⎛ ⎞–=

– p0'
ρ0cs

2

αs

----------
k ||λZX

ω̃2
-------------

kbλYX

D0
-------------+⎝ ⎠

⎛ ⎞+ X .

4. DERIVATION OF MODE EQUATION

With (3.16) and (3.18), Eq. (3.8) reduces to

(4.1)

Here,

(4.2)

(4.3)

(4.4)

The rth projection of (2.1) is represented in the form

(4.5)

It can be seen that

(4.6)

By means of (3.17), Eq. (2.25) reduces to

(4.7)

Similarly, after substituting (3.13) and (3.16), Eq. (2.30)
yields

(4.8)

Finally, it follows from (2.22) and (3.13) that

(4.9)

Using (4.6)–(4.9), we transform (4.5) to

(4.10)

Dτ C1X C2 p*.–=

D D0 1 β/αs+( ),=

C1 = D0
2hθ

2

r
-------- rΩ2

v A
2

---------–
βk ||

αsω̃
2

------------λZX– kb 1 β
αs

-----+⎝ ⎠
⎛ ⎞ λYX,–

C2 D0 kb
2
v A

2 1 β/αs+( )–[ ]/B0
2.=

ρ0 ω̃2 dΩ2

d rln
-----------–⎝ ⎠

⎛ ⎞ X– 2iΩω̃ξθ+ ρ̃rΩ2–

=  p̃ '– j B+( )r
~.+

j B×( )r
~ k ||

2B0
2X–

∂
∂r
----- B0 B̃⋅( )–

2
r
---hθB0B̃θ.–=

ρ̃
ρ0

αs

----- τ
kb

2 p*
D0ρ0
------------–⎝ ⎠

⎛ ⎞–=

– ρ0'
ρ0

αs

-----
k ||λZX

ω̃2
-------------

kbλYX

D0
-------------+⎝ ⎠

⎛ ⎞+ X .

ξθ i
hθk ||cs

2

αsω̃
2

---------------τ– hz

hθkbk ||cs
2

αsω̃
2

--------------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞ kb

D0ρ0
------------ p*+

⎩
⎨
⎧

=

–
λYX

D0
-------- hz

hθkbk ||cs
2

αsω̃
2

--------------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞ hθλZX

αsω̃
2

-------------+ X
⎭
⎬
⎫

.

B̃θ B0θτ–
kzB0kb

D0
---------------- p*–=

– r
∂
∂r
-----

hθB0

r
-----------⎝ ⎠

⎛ ⎞ kzB0

D0
----------λYX– X .

p*
' ρ0 λr* p* λrττ– λrX X+( ).=
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Here,

(4.11)

(4.12)

(4.13)

By means of (4.1), we exclude τ from (4.10), arriv-
ing at

(4.14)

Here,

(4.15)

(4.16)

Substituting (4.3) and (4.4) into (4.15) and (4.16), one
obtains

(4.17)

(4.18)

where

(4.19)

λr*
1

ρ0D0
------------ 2Ωω̃kb hz

hθkbk ||cs
2

αsω̃
2

--------------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

-----+
Ω2rkb

2

αs

-------------- 2
r
---hθv A

2 kzkb+ ,

λrτ 2Ω
hθk ||cs

2

αsω̃
--------------- Ω2r

αs

---------
2
r
---hθ

2
v A

2 ,–+=

λrX D0
dΩ2

d rln
-----------– Ω2 d ρ0ln

d rln
--------------

r
αs

----- k ||
λZX

ω̃2
--------

kbλYX

D0
-------------+⎝ ⎠

⎛ ⎞+–=

– 2Ωω̃
λYX

D0
-------- hz

hθkbk ||cs
2

αsω̃
2

--------------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞ hθλZX

αsω̃
2

-------------+

+ 2hθv A
2 1

B0
----- ∂

∂r
-----

hθB0

r
-----------⎝ ⎠

⎛ ⎞ kzλYX

rD0
-------------– .

D p*
' C3X C1 p*.–=

C1 ρ0 Dλr* λrτC2+( ),–=

C3 ρ0 DλrX λrτC1–( ).=

C1 C1,=

C3 ρ0 D0 1 β
αs

-----+⎝ ⎠
⎛ ⎞ ζ 1( ) Ω2r

v A
2

---------
2
r
---hθ

2–
⎝ ⎠
⎜ ⎟
⎛ ⎞

+
⎩
⎨
⎧

=

× Ω2r
αs

---------
2
r
---hθ

2
v A

2–
2Ωk ||hθcs

2

αsω̃
-----------------------+⎝ ⎠

⎛ ⎞

– 1 β
αs

-----+⎝ ⎠
⎛ ⎞ λYX

2 D0

λZX

αsω̃
2

------------–

× Ω2rk || 2Ωω̃hθ 1 β+( ) 2
r
---k ||hθcs

2+ +
⎭
⎬
⎫

,

ζ 1( ) D0
dΩ2

d rln
-----------– Ω2 ρ0lnd

d rln
--------------–

1
ρ0
----- d

d rln
-----------

hθB0

r
-----------⎝ ⎠

⎛ ⎞
2

.+=

Excluding p∗ from (4.14) by means of (4.1), we
arrive at the mode equation

(4.20)

where

(4.21)

Now, we allow tokamak ordering (see in detail [1]).
Assume  = const; then, Eq. (4.20) reduces to

(4.22)

where

(4.23)

Expression (4.23) is transformed to

(4.24)

where  is the standard expression for the function
U0 in a nonrotating plasma given by (see [1])

(4.25)

while  is the rotational part of this function defined
by

(4.26)

We will use the notation

(4.27)

where the superscript “V” in U0 stands for the first letter
in the name of the author of [7].

5. SUYDAM MODES ALLOWING 
FOR VELIKHOV EFFECT

5.1. Mode Equation

The Suydam modes are the ideal internal kink
modes with m � 1 localized in a vicinity of the singular
point r = r0, for which

(5.1)

Introducing x ≡ r – r0, for x ≠ 0 one has

(5.2)

1
r
--- rD

C2
-------X '⎝ ⎠

⎛ ⎞ ' UX– 0,=

U
1
D
---- C3

C1
2

C2
------–⎝ ⎠

⎛ ⎞–
D

rC2
--------⎝ ⎠

⎛ ⎞ '– r
C1

rC2
--------⎝ ⎠

⎛ ⎞ '.+=

ω̃

1
r
--- ρ0r3 k ||

2
v A

2 ω̃2–( )X '[ ] ' U0X– 0,=

U0 m2U .=

U0 U0
0( ) U0

r( ),+=

U0
0( )

U0
0( ) 1

r2
---- m2 1– kz

2r2+( ) mB0θ rkzB0z+( )2 2kz
2r p0'+=

+
2kz

2

m2
-------- r2kz

2B0z
2 m2B0θ

2–( ),

U0
r( )

U0
r( ) ρ0 kz

2r2 hθ
2m2+( )dΩ2/d r.ln=

U0
V U0

0( ) U0
r( ),+=

mB0θ rkzB0z+( )r r0= 0.=

mB0θ rkzB0z+
xmB0θ

r0
----------------S,–=
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where S is the magnetic shear defined by

(5.3)

q = rB0z/(RB0θ) is the safety factor, R = L/(2π), and L is
the cylinder length.

By means of Eq. (4.22), we arrive at the following
mode equation:

(5.4)

Here

(5.5)

γ2 ≡ –  is the squared growth rate of the perturbations,
and vAθ = (B0θ/B0z)vA is the poloidal Alfvén velocity.

We are interested in perturbations near the instabil-
ity boundary, so that squared growth rate γ2 is assumed
to be a small parameter. Then, for not too small x, the
term with γ2 is unimportant, while Eq. (5.4) reduces to

(5.6)

This is the mode equation in the so-called ideal region.
On the other hand, for sufficiently small x, the term with
m2x2 in Eq. (5.4) is unimportant, so that this equation
transits to

(5.7)

This is the mode equation in the so-called inertial
region. We will look for solutions of Eqs. (5.6) and
(5.7) and then match the asymptotics of these solutions,
obtaining the growth rate of the eigenmodes.

5.2. Solution in the Ideal Region

The solution of Eq. (5.6) is of the form

(5.8)

Here  ≡ mx/r0, Kiα is the Bessel function of the second
kind of imaginary argument, and the parameter α is
determined by

(5.9)

It is assumed in (5.8) that x > 0. For x < 0, in accor-
dance with (5.6), the solution (5.8) should be substi-
tuted by replacement x  –x. The asymptotic of solu-
tion (5.8) for  � 1 has the form

(5.10)
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where

(5.11)

(5.12)

(5.13)

and Γ is the gamma function.

5.3. Solution in Inertial Region

We introduce a new variable ξ defined by

(5.14)

Then, Eq. (5.7) is transformed to

(5.15)

The general solution of Eq. (5.15) is of the form

(5.16)

Here, A and B are arbitrary constants and the functions
X+ and X– are given by

(5.17)

(5.18)

where F is the hypergeometrical function. The function
X+ corresponds to the even solutions and X– to the odd
solutions. The asymptotics of Eqs. (5.17) and (5.18) for
ξ � 1 are

(5.19)

This asymptotics, as Eqs. (5.17) and (5.18), is written
for x > 0. Here,

(5.20)

(5.21)

the value λ is the dimensionless growth rate introduced
by λ = γ/ωA, where ωA = SvAθ/r0.

5.4. Dispersion Relations for Suydam Modes 
and Growth Rate near the Instability Boundary

From the requirement of coincidence of Eqs. (5.10)
and (5.16), we find the dispersion relations for the Suy-
dam modes near the instability boundary,

(5.22)

The subscript “+”: corresponds to even modes and the
subscript “–” to odd modes.
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For the lowest level of the even modes, Eq. (5.22)
yields

(5.23)

where C is the Euler constant. This λ corresponds to the
growth rate:

(5.24)

Therefore, as an estimate for the growth rate of the Suy-
dam modes, one can use the formula γ � SvAθ/r.

5.5. Qualitative Discussion of Suydam Modes

For γ = 0, Eq. (5.4) has the solution

(5.25)

in the condition

(5.26)

This is the stability boundary. In order to determine
what the stability/instability regions are, one can use
the energy principle [1]. Then, one should constitute the
potential energy functional and determine where it is
negative. In the case considered, the functional is pro-
portional to

(5.27)

One can find that W > 0 if

(5.28)

This is the Suydam–Velikhov stability criterion. It can
be expressed in the following form:

(5.29)

The term with S2 in Eq. (5.29) describes the stabiliza-
tion effect by the magnetic shear. The term with  cor-
responds to the magnetic hill effect. Thus, in nonrotat-
ing plasma the Suydam stability criterion describes a
competition between the effects of magnetic shear and
magnetic hill. The Velikhov effect essentially modifies
this competition for

(5.30)

where ∆r is the characteristic radial width of the rota-
tion frequency shear, V0 is the characteristic velocity of
plasma rotation, and vTi is the ion thermal velocity.

It is remarkable that, for ∆r � r0, the Velikhov effect
is essential even for subthermal rotation velocity. Then,
organizing a favorable rotation frequency profile,
dΩ2/dlnr > 0, one can suppress the Suydam modes.
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6. THE VELIKHOV EFFECT ON THE m = 1 
INTERNAL KINK MODE

Taking m = 1 in Eq. (4.22), we obtain

(6.1)

The simplest problem formulation on the m = 1 ideal
internal kink mode is the following. One considers an
ideally conducting casing at the plasma boundary r = r∗
and that the longitudinal current density decreases with
increasing radius, so that the safety factor q increases
with increasing radius. It is assumed that, at some r =
r0 < r∗, the relation q(r0) = 1 is satisfied.

The instability condition of the m = 1 mode can be
obtained if one takes the radial dependence of X in the
form

(6.2)

whence C is a constant. This choice of perturbation will
be explained below. According to Eq. (6.2), for r  r0
derivative X ' is formally infinite; however, it enters inte-
gral (5.27) with weight x2  0. Therefore, the contri-
bution of the square of this derivative to the above inte-
gral can be considered negligibly small. This approxi-
mation will also be justified below.

The integral of type Eq. (5.27) characterizes the
contribution into the energy functional only from a
small vicinity near the singular point. The total energy
functional is of the form

(6.3)

where  is given by Eq. (6.1). In the absence of the

Velikhov effect one has  < 0, 1 – q > 0, i.e., both
terms in the square brackets of Eq. (6.1) are negative.
Consequently, Eq. (6.3) yields

W < 0, (6.4)

which corresponds to instability.

Evidently, the presence of the term with dΩ2/dlnr in

 should modify this conclusion. Such a modification
is obtained using the standard approach that goes back
to [4]. Let us turn to an explanation of this approach.

Introducing γ2, we represent Eq. (4.22) in the form

(6.5)
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Here k · B ≡ (1 – q)B0θ/r. In solving Eq. (6.5), one dis-
tinguishes the region of the singular layer, where (k ·
B)2 ≤ ρ0γ2, and the external regions where (k · B) � ργ2.
For the external regions, one then finds that

(6.6)

(6.7)

where  is another constant. Inside the singular layer,
one takes (cf. Eq. (5.2))

(6.8)

Then, Eq. (6.5) reduces to

(6.9)

where

(6.10)

It follows from Eq. (6.9) that

(6.11)

Here, the constants are chosen allowing for the fact that
for |x |  ∞ solution (6.11) turns into Eq. (6.2).

One finds from Eq. (6.11) that for |x | � 1

(6.12)

where λ = γ/ωA(r0) is the dimensionless growth rate.
Matching this expression with the second Eq. (6.6) and
using Eq. (6.8), we arrive at the dispersion relation

(6.13)

where

(6.14)

As in the case of Suydam modes (see Section 5),
organizing a favorable rotation frequency profile,
dΩ2/dlnr > 0, one can suppress the m = 1 internal kink
mode. A qualitative estimate of the rotation frequency
necessary for such a suppression is given by Eq. (5.30).
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7. DISCUSSIONS

We have analyzed the effect of differential plasma
rotation (the Velikhov effect [7]) on the nonaxisymmet-
ric modes in a cylindrical plasma immersed in a strong
magnetic field. We have found that this effect can be
essential even for subthermal rotation velocity; see the
estimate given by Eq. (5.30). Our analysis, which is rel-
evant to the simplest magnetic field geometry, discov-
ers practically a new trend in studying the rotation
effect on the internal modes in toroidal geometry. In
this context, it is reasonable to note that rather strong
profiles of plasma rotation velocity are revealed in the
region of internal transport barriers (ITBs) of toroidal
systems (see, e.g., [16] and the bibliography given
there). Evidently, detailed numerical calculations
should be performed for elucidating the role of the
Velikhov effect in the ITB.

The difference of our analysis from that of [5, 6] is
that we consider  as a finite constant, (r0) ≠ 0,
which is small compared with kzvA in the ideal region.
In contrast, (r0) = 0 was taken in [5, 6]. This means
that we deal with growth rates greater than those in
[5, 6].

Generalization of the Suydam stability criterion for
a sheared perpendicular plasma velocity neglecting the
Velikhov effect was considered in [12]. The authors of
[12] have concluded that the Suydam instability takes
place even in the presence of a magnetic well, i.e., for

 > 0. This conclusion has been refuted in [13]. In
contrast to [12], in the present paper, the case of mag-

netic hill is considered,  < 0. Therefore, criticism of
[13] does not concern the results of our paper.
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