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Abstract. During the past few years, nonextensive statistics has been successfully applied to 
explain many different kinds of systems. Through these studies some interpretations of the entropic 
parameter q, which has major role in this statistics, in terms of physical quantities have been 
obtained. The aim of the present work is to yield an overview of the applications of nonextensive 
statistics to complex problems such as inhomogeneous magnetic systems. 
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INTRODUCTION 

The Nonextensive statistics attempts to handle some anomalies that appear in physical 
problems which are not completely described by the usual Boltzmann-Gibbs statistics. 
Its applications run through different systems; magnetic systems are just one of them. In 
this work we show that Nonextensive statistics, due to the agreement between theoretical 
models and experiments, is a interesting alternative to first principle models to the study 
of complex magnetic systems. 

NONEXTENSIVE STATISTICS OF MAGNETIC SYSTEMS 

The Tsallis generalized statistics, or Nonextensive statistics, is based on the definition 
of the generalized entropy .S"̂  = k{\ —Tr{p'^})/{q— 1), where A: is a positive constant, 
q G .^e is the entropic parameter and p is the density operator. This entropy functional 
recovers the Boltzmann-Gibbs one on the limit ^ = 1 (^ ^ 1). From the maximization 
of this entropy functional, under a correct ^-normalized constraint [1], is straightforward 

to express the density operator as p = I — {l—q)l5Jf /Z^, in which Z^ is the 

nonextensive partition function, fi = \/kT and J^ is the systems Hamiltonian. Through 
the same reasoning, the magnetization of a system in the nonextensive approach is given 
by [2] 

A - ^ ^ ^ (1) 

where jl is the magnetic moment operator. In Fig.l, it is illustrated the fit of Eq.(l), 
within the mean field approximation, to experimental data. On the main graph it is 
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FIGURE 1. Tc versus q shows a linear dependence. 
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FIGURE 2. Inverse of the susceptibility versus temperature for a paramagnetic system. The inset 
represents the same quantity calculated for a nonextensive magnetic model where q = ().\ and spin value 
5 = 5 / 2 

plotted different values of Tc, also taken from experimental data, as a function of q, 
which shows a simple straight line dependence, Tc =qTc (For details see Ref. [2]). 

Furthermore, one can define the ^-generalized magnetic moment thermal average as 

(MZ)^ = g[iB {Sz)q = qjiBS-^g , in which {Sz)q is the ^-generalized thermal average 

spin operator and 3§f' is the generalized Brillouin function given by 

?f 
S 

{S. 
ii^n'sM^+i^-in^] ms„ l« ' / ( ! -« ' ) 

z/q s 2:+" .[i + ( i -?)f^] ms„ l« ' / ( ! -« ' ) 
(2) 

where x = gjiB^SB. Using a general expression to define the magnetic susceptibility 
such as Xq = ^^^B^odB{fiz)q, One can see in Fig.2 that the inverse of the susceptibility 
predicts correctly the behavior of the paramagnetic systems (For details see Ref. [3]). 

On the other hand, considering a classical spin jl under a homogeneous magnetic field 
H, whose Hamiltonian is given by ^ = —ji H cos 0, it is then possible to determine the 
generalized Langevin function from Eq.(l), which yields: 

^ a 
M 

[l-q) 

, , I^H\ kT 
(3) 
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FIGURE 3. Magnetization versus temperature for several values of q and h = 0. For q < 0.5 the 
transition is of first-order type, whereas for </ > 0.5 the transition is of second-order type. 

in which coth^ is the ^-hyperbolic cotangent. This expression can be obtained also taking 
the limit of large spin values (S -^ °°) on the generalized Brillouin function. As can be 
seen on Fig.3, this magnetization, also within the mean field approximation, predicts a 
first-order type phase transition for q < 0.5 and a second-order type for q > 0.5 which 
which occurs in certain kinds of magnetic systems (For details see Ref. [4]). 

INTERPRETATION OF THE ENTROPIC PARAMETER 

Now, with these magnetic quantities defined in a nonextensive approach, one may 
ask the question: If is possible to connect a homogenous nonextensive system to a 
inhomogeneous one described by the Boltzmann-Gibbs statistics could the entropic 
parameter be interpreted through some magnetic quantities? 

So, to answer this question, lets us consider an inhomogeneous system (described 
by the Boltzmann-Gibbs statistics) composed by magnetic clusters distributed in size, 
therefore in their net magnetic moment, and the /{p.) representing this distribution. The 
average magnetization will be given by 

.M f{li)dii (4) 

From Eqs.(3) and (4), the average and the nonextensive susceptibilities can be derived 
as {%) = ( M ^ ) / 3 ^ ^ and Xq = qi~i^/3kT respectively. Calculating saturation values of 
the magnetization one finds {Ji)sat = (M) fo^ the average and Jiq^sat = M / ( 2 — q) 
for the nonextensive. Thus, equating those limits {{x) = Xq and {Ji)sat = •^q,sat), a 
microscopic analytical expression to the q parameter is found 

q{2-q)'=^^' 
(M)^ 

(5) 

where {ji) and (^^) are the first and secondmomentsofthedistribution/(^). This result 
is valid for any distribution / ( ^ ) and gives to the entropic parameter an interpretation, 
which involves magnetic quantities, that can experimentally determined (For details see 
Refs.[5, 6]). 
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However, it is possible to try a more fundamental magnetic quantity considering a 
ferromagnetic N spins system. In this case, let consider that each spin interacts with z 
neighbors in an inhomogeneous medium, in the Boltzmann-Gibbs framework [7]. As 
the interactions are inhomogeneous, one must consider a distribution/(/) of the system 
exchange integrals on the system. Thus, the average magnetization variation per unit of 
volume is given by 

,.,„,. CMtô  (^-f r,^m ^ im^ (v\-^^ ,,.„, ,„ 
8;r3/2 \a^zSJ Jo fil^ in^l^ WzS 

Now, calculating the same quantity but on a homogeneous nonextensive system one can 
find [7] 

2K JO Tr{p<i} An \a^S/^ 

where F{q) is a dimensionless integral that depends only on the value of the entropic 
parameter q. From the mean field approximation it is then possible to find the crit­
ical temperature r i ' = zS{S + l){J)/3kB for the inhomogeneous Boltzmann-Gibbs 

and Tc = zS{S+ l)q^/3kB for the homogeneous nonextensive. Using the relation 
showed above between these two critical temperatures, one can find that ^ = {.!). Thus, 
comparing Eqs.(6) and (7), another expression is obtained 

revealing a relation between the q parameter and moments of the exchange interaction 
distribution/(/) (For details see Ref.[7]). 

CONCLUSIONS 

Summarizing, we showed that the nonextensive statistics is an useful alternative for the 
description of complex behavior of some kinds of magnetic systems. It was also showed 
that the entropic parameter q can be interpreted through magnetic quantities, and can be 
seen as a measurement of the inhomogeneity of a magnetic system. 
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